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Abstract

The skeleton and medial axis transform con-
cepts used in traditional image processing rep—
resentations are adapted to the quadtree repre-
sentation. A new data structure termed the Quad-
tree Medial Axis Transform (QMAT) is defined. A
QMAT results in a partition of the image into a
set of non-disjoint squares having sides whose
lengths are sums of powers of two rather than, as
is the case with quadtrees, a set of disjoint
squares having sides of lengths which are powers
of two. Some of the interesting properties of the

" QMAT vis a vis the quadtree are its compactness and
a decreased sensitivity to shift.

1. Introductiom

are a number of methods oif representing
among which are borders, arrays, and
The quadtree {2,3] is interchangeable
these representations and it can also
compute a number of diverse geometrical
[8,9] (see the overview im [6]). In
‘this paper we demonstrate the usefulness of the
‘Chessboard distance transform of [10] in computing
the skeleton and medial axis transform [4] of an
image represented by a.gquadtree.

There
images [4]
skeletons.
[1,7] with
be used to
properties

2. The quadtree medial axis transform

We are given an image where the set of points
in a certain‘region are labeled 5 and the set of
points outside of the region are labeled § (analo-
gous to BLACK and WHITE respectively). We say that
for a point x and a set V, the distance according
to a suitably defined distance metric, d, from x to
a nearest point of V is d(xaV)=min{d(x,y)JyaV}.

Two points x and y are said to be neighbors if
d{x,y)=1. We are interested in a subset of §, say
I, such that all elements of T have a distance from
5 which is 2 local maximum. Tn other words, for
each point in T, no neighboring point in § but not
in T has a greater distance from S. The set of
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points comprising T is said to constitute a skele-::
tal description of 8. As an example, consider the
rectangle in Figure 1 whose skeleton consists of
line segments labeled a,b,c,d, and €. If we know
the points of the skeleton and their associated
distance values, then we can reconstruct S exactly.
The set of points comprising the skeleton and their
associated values is termed the medial axis trang~
form (MAT). The MAT of § provides a concise method
of defining and representing S.

) Clearly, the definition of the distance metric:
plays an important role in determining the form of
the MAT., The most- commonly known distance metric
is the Euclidean distance -

2 )
4y (P> )=S0RE((p, 0,0 "+ (p =g ))?

whose maximal blocks are discs. Two other metrics
which are more commonly known in digital picture
processing are the Absolute Value distance (also
known as the City Block distance) '

d,(p,q)= [px-qxl+lpy-qyf

whose maximal blocks are diamonds, and the Maximal
Value distance (also known as the Chessboard dis—
tance) :

dy (P O=max{lp,—q,|.Ip - |}

whose maximal blocks are squares. Note that in any
case, the MAT determines the entire image although
it is true that a point in the image may lie in
more than ope maximal block. ’

Maximal blocks can be of any size and at any
position. Thus they are somewhat unwieldy as pri-
mitive elements for representation purpcses since
the process of determining them may be complex. o
The quadtree approach to image representation is an
attempt to exploit the maximal block concept in a
more systematic manner. Given a 20 x 2T array of
unit pixels, we repeatedly subdivide the array into
quadrants, subquadrants, ... until we obtain blocks

a da
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Figure 1, A rectangle and its skeleton using dﬁ;



{possibly single pixels) which consist entirely

of a single vlaue (e.g., gray level). This process
is represented by a tree of out degree 4 in which
the root node represents the entire array, the four
sons of the root mode represent the quadrants, and
the texrminal nodes correspond to those blocks of
the array for which no further subdivision is ne-
cessary. The nodes at level k (if any) represent

" respectively.
‘nodes, denote non-terminal nodes.
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Block decomposition

2a. Sample iﬂage. 2b.
i : . of the image in (a).
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2e. Block decomposition
of the QMAT of (b).
Radius values are
within parentheses.

2d. Chessboard distance
transform of (b).
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%¢c. Quadtree representation of the blocks in (b).

Figure 2,

in the QMAT are shaded.
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blocks of size 2% x 2K and are often referred to as
nodes of size 2%. For example, Figure 2b is a
block decomposition of the region im Figure 2a
while Figure 2c is the corresponding quadtree. In
general, we will be dealing with two values 1 and O
where BLACK and WHITE square nodes in the tree rep-
resent blocks consisting entirely of 1's and 0's
Circular nodes, also termed GRAY

In [10] the concept of distance is applied to
a quadtree. It is shown that the Chessboard dis-
tance metric is especially suitable for a quadtree
since it has the property that given a point P, the
set of points q such that d{p,q)=t is a square.
The Chessboard distance transform for a quadtree,
DIST, is defined as a function that yields for each
BLACK block in the quadtree the Chessboard -distance
from the center of the block to the nearest point
which is on a BLACK-WHITE border. More formally,
letting x be the center of a BLACK block b, z be
a point on the border of the WHITE block W, say
B(W), we have

-F(b,W)=minZEB(W)d(x,z)
DIST(b)=minWF(b,W)

We also say that DIST of a WHITE block is zero and
that the border is BLACK for the purpose of the
computation of F and DIST.

We now define the Quadtree Medial Axis Trans-.
form {QMAT). We first define the Quadtree Skeleton.
Let the set of BLACK blocks in the image be denoted
by B. TFor each BLACK block, b, let S{(b.) be the
part of the image spanned by alsQuare with side
width 2*DIST(b.) centered about b.. The (Quadtree
Skeleton consifts of the set T-bleLACK blocks sa-
tisfying the following properties:

(1) area(B) = UNION(5(t,)) _
(2) for any tjsT EbksB(bk%tj)BS(tjxis(bk)
(3) VbisB :—ltjaTas(bi)gs(tj)
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2f.  QMAT représentation of the blocks in (b).

Radius values are within parentheses.

An image, its maximal blocks, the corresponding Chessboard distance transform,
the block decomposition of the QMAT, and the QMAT.

Blocks in the image and




Property (1) insures that the entire image is the region given in Figure 2a. Figures Ze and I
spanned by the skeleton. Property (2) is termed contain the block and tree representations resped
the subsumption property and we say that b, is tively of the (MAT of Figure Za.

subsumed by bk when S(b.)ES(b ). Propertyj (2} o=

means that the elements”of the Quadtree Skeleton

are the blocks with the largest distance transform 3; Properties of the QMAT

valu=s. MNote that this is not the same as saying

that for t €T Ht§51(k%3)35(t JE5(t, ) as shown in We make the following observations with the
{5]. Prop rty (3) insures tﬁat no bilock in B and aid of ¥Figure 2. The squares spanned by the Chex:
aot in T requires more than one element of T for board distance transform of the blocks of the QMAT
its subsumption - 'e.g., one half of the block is have sides whose lengths are sums of powers of two
subsumed by another element of T. Using such a and they are not ncecessarily disjoint. This is in
definition it is shown im [5] that the Quadtree contrast with the quadtree which is a partition o
Skeleton of an image is unique. an image into a set of disjoint squares having

sides whose lengths are powers of two.
The QMAT of an image is the quadtree whose 8 P

BLACK nodes correspond to the BLACK blocks com— Our interest in the QMAT is more as an alter-
prising the Quadtree Skeleton and their asseciated native data struecture for the representation of an
Chessboard distance transform values. - All remain- image rather than as a skeleton serving to approﬁi—
ing nodes in the QMAT are WHITE and GRAY with dis- mate. the image. In particular, it has the property
tance value Zero. For example, Figure 2d contains that for any image it requi.res at most as many .
the Chessboard distance transform corresponding to nodes as the quadtree. This is obvious when we re-
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3a. Image. The value of the Chessboard distance b. Quadtree repraesentation of the image in (a).
transform is within parentheses.
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3c.  QMAT representation of the image in (a). Radi-

us values are within parentheses.
3d. The image in (a) shifrad by one unit to the
right. The values of the Chessboard distance
transform are within parentheses

Figure 3. An image and its corresponding quadtree and QMAT, and the result of shifting it by
one unit to the rlght' Blocks in the image are shaded.
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call that each node in the (MAT corresponds to one
or more nodes of the quadtree and that each member
of the Quadtree Skeleton is a nodea in the quadtree.
Of course, the QMAT does require that the DIST
value be stored with each node. As an example of
the savings in storage, consider the image in Figure
2a., The OQMAT, shown in Figure 2f, requires 17
‘nodes while the quadtree, shown in Figure Zc, re-
quires 57 nodes.

The QMAT representatieon alse has
that the number of nodes necessary to
~ imege is not as shift-sensitive as is the quadtree,

For example, when the image of Figure 3a is shifted
by one unit to the right yielding Figure 3d, its
quadtree is considerably larger. Iun particular,
Figure 3b contains 17 nodes while Figure 3e, the
quadtree corresponding to the shifted image, con-
tains 49 nodes. However, the (MAT is not as sen-
gitive to shifts since it always requires a number
of nodes less than or equal to those contained in
the quadtree. In Figure 3, the QMAT of Figure 3a,
given in Figure 3¢, is identical to the gquadtree.
However, the QMAT of the shifted image, given in
Figure 3f, is considerably smaller than its corres-—
ponding quadtree as well as the QMAT of the image
prior to the shift (i.e., 9 nodes vs. 17 nodes).

the property
represent an

4. . Concluding remarks

The concept of a skeleton and medial axis
" rransform have been adapted to images represented
Iy quadtrees and have resulted in the definition
F a new data structure termed the QMAT. Note that
any operation that can be performed with a quadtree
representation can also be performed with the CQMAT.
additional properties of the QMAT are discussed in
{5]. An algorithm for the construction of the QMAT
siven a quadtree representation of an image is
lound in [5].

Our view of the QMAT as an alternative image
jopresentation rather than as a skeletal approxima-
| ion serves to reinforce the appropriateness of the
Chessboard distance metrie [10] for quadtrees in
..witrast wirh the city block distance metric [1l].
s particular, the analogy between squares and cir-
~les as the basis for the QMAT is noteworthy.
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vnadtree representation of thé image in (d).

3f.  QMAT representation of the iname in (d).

Radius values are within parenthesas.

Figure 3, cont'd.
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