0044 03

PROCESSING GEOGRAPHIC DATA WITH QUADTREES"

Hanan Samet, Asriel Rosenfeld, Clifford A. Shaffer, and Robert E. Webber ™

Computer Science Departinent and Center for Antomstion Research
University of Maryland, College Park, MD 20742, USA

ABSTRACT

We describe’ the current status of an ongoing research
eflort to develop a geographic information system based oa quadtrees,
A linear quadtree encoding was implemented using & B-tree to
organize the list of leaves and allow management of trees too large to
Bt in core memory. Several database query functions have been
implemented including set operations, region property computations,
map editing functions, and map subset and windowing functions. A
user of the system may access the datibase via an English-like query
language.

1. INTRODUCTION

The quadtree representation of regions (e.g., Figure 1), first
proposced by Klinger [5] bas been the sabject of intensive research over
the past several years (for an overview, see [0]). Nomercas algorithms
bave been developed for constructing compact quadiree
representstioas, converting between them and other region
fepresentations, compuling region properties from them, and
computing the quadiree representations of Boolesn combinations of
regions from those of the given regions. Quadtrees have teaditionally
been implemented as trees which require space for the pointers from »
node (o its sons. However, pointer-kess quadtree representations (es.
bncar gquadirecs [4]) are muperior when working with very -large
quadtrecs. In this case, the set of regions is treated as a collection of
leaf nodes. Each leaf is represented by use of a locational code
corresponding to a sequence of directional moves that Jocate the lower
lelt pixel of the leaf along a path from the root of the tree,

In this paper we describe the current status of an ongoing;
research effort to develop a geographic information system based on 3
variant of licear quadtrees. Quadtree encodings were constructed for,
arca, point, and line featores from maps and overlays representing a
small ares of Northern California. A memoty manxgement system
based on B-trees [2] was devised to organise the resulting collection of
leaf nodes, allowing for the mse of arbitrary sized maps withia a
restricted amount of core memory. Many database fanctions wete
implemented, including map editing capabilities, set optrations, and
region property functions. Further details ahout this effort can be
fourd in {7,8'.

The database used in the study was supplied by the US.
Asmy Engiveer Topographic Laboratory, Fi. Belvoir, VA. The area
- data consisted of three registered map overlays representing landase
classes, terrain elevation contours, and Eoodplain boundaries, which
were hand-digitized at a resolution of 400 by 450 pixels and thea
embedded within a 512 by 612 grid for quadtree encoding. A
geographic survey map for this wres supplied point data {kouse

*The support of the US. Army Engineer Topographic Laboratories
under Contract DAAK70-81-C~0059 is gratefully acknowledged.

¢+Department of Computer Scicnce, Rutgers Unii'enity
Busch Campus, New Brunswick, NJ 08903

locations) and four sets of line data (s rsilroad line, a power line, a
city border, and a road aetwork).

Note that the variant of the quadiree that we use results in a
decomposition of space into equaleized parts. This is ix contrast to
the point quadtree [3] and the k-d tree [1] where the decomposition is
governed by the inpet. The advantage of our variant of the quadtree
is that different maps will be in registration thereby facilitaticg set
operations such as map overlay.

Our database system can be viewed 28 being made up of four
levels. The lowest level (written in C and discussed in section 2)
coatrols the interface between the disk Ale used fo store the quadtree
data and the programs that sre used to manipelate the images. The
second level, also wrilten in C, implements map editing: {discussed in
section 3) and other map manipulations (discussed in section 5). The
interpretation of quadtree node values as features ia a map is
discuesed in section 4. The third level, written in LISP, controls the
interface between the C programs that manipulate the map and oar
query language. User defined names and data items sre maintained at
this fevel. The highest level is an English-like query language also
written in LISP and described in sectioa 8.

%. THE QUADTREE MEMORY MANAGEMENT SYSTEM

The quadtree memory management system (henceforth called
the kernel) is based on the quadtree encoding scheme illustrated in
Figore 2. The key feature of our encoding scheme is that » preorder
traversal of the explicit tree will produce the nodes in ascending order
of their locational codes. Each node’s Jocational code is formed by
interleaving the bits corresponding to the £ and y coordinates of the:
pixel at the lower left corner of the node. We store only the leaf
nodes of the tree, sorted in ascending order of this addreas field. Any
pixel contained within = node will have an address greater than that
of the leaf’s lower left corner, but less than that of the next node im
preorder. Therefore, given the address of any pixel and a list of leaves
ordered by their addresses, finding the leaf coptaining that pixel
reduces to searching a sorted list.

Given the linear ordering of leaf nodes and the fact that we
are storing files containing as many as 30,000-40,000 leaves, we
decided to organize the quadtree files using a B-tree structure. The
kernel maintains a buffer pool in core and a B-tree in the disk file,
The buffer pool need only store that portion of the tree in core for
which there is room. We expect that there will be strong locality of
reference - ie. the leaf for which we are presently searching will very
likely be near the leaf we lasi found. Therefore, the buffer pool is
maintained on s schedyle that replaces the Jeast recently used bullers
Grat. The kernel also controls inserting, deleting and finding quadtree
node descriptors in the B-tree structure.

A quadtree node deacriptor is composed of two 32-bit words.
The first word contains information on the Jeal's position and depth in
the tree. In particular, it contains a 24 bit fleld which consists of the
address of the pixel at the lower left corner of the node formed by
interleaving the bits of its z and y coordinates. The remaining eight
bits indi¢ate the depth of the node in the tree. The second word |
contains icformation about the data that the node represents. The
contents of the second word is not wsed by the kernel.- Thus the
kernel is unaware of whether it is manipulating point, live, or area

212

data
’ A quadtree file is made up of four parts. First, there is the
kernel's Exed-size hesder whick contains information sbout the size of
the file and the B-trec strcture. Second, there is a Bxed-size block for
the user's beader (further described in Section 3). The third part s a
list of comments. These comments are cither generated by database
functions when s mew map is created, or are inserted at the request of
the database user. In either case, they serve to document a map.
Finally, a quadtree fils contsins the B-tree pages that contain the
quadtree node descriptors.

The bulk of the quadtree file is made up of the B-tree pages.
Eack page is 512 bytes long (s convenient size for system tead and
write routines). We store 80 quadtree node descriptors in each page.
Thke remaining space in the page contsins information related to the
B-tree organiration of the database,

3. THE QUADTREE EDITOR

The quadtree editor serves to facilitate the interactive

construction and updating of maps stared as quadirees. Presently, it

is subsystem enterable from the query language, but having its owa
command langeage. Rather thap forcing the user to think in terms of
the tree structure, the editor's tree manipuolstion commands make
references to logical units of the map (e.g., lines, points or polygons).
It allows the user to perform such operations as inserling a line or
point, changing the valye of s specified polygom, or splitling a
specified polygon into more than one pisce,

When many changes sre to be made, the wser may wish to see
the effects of each step. Commands are provided to enable him to
examine all or part of the map at 3 selected window oa a display
device. This display is continuously apdated as further map
manipulation commands are executed. Associated with each map's
quadtree representation is a descriptor termed the quadiree header,
There exist commands which allow the uwser to modify this header.
The header contains the size of the map, the tree type (area, point, or
line), the coordinate of the lower left corner of the map in relation to
a global coordinate system, the rotation angle or tilt of the map from
the external horizontal, and some information as to the type of data
{i.e. topography, landuse, house) that is being stored. A command is
also provided Lo enable the user to insert textual comments for
documentation purposes.

When the editor is invoked, the user gives the pame of the file
to be edited. A temporary disk fle is created on whick all editing is
to be done. Another Blc is created to store the commands given by
the user. These files belp protect the .nur-_trom serious Joms due to
gystem crashes or his own errors such as mistyped or unwanted
commands. They also enable him to abort the editing session withoat
damaging the original copy. H the file to be edited is an old one,
copy is made in the temporary fle. If » pew map is to be created, thea
a default beader is installed and the map is initialized to be one
WHITE region.

The user of the quadtree editor views the map as & collection
of polygons (sets of contiguous pixels with the same value). Each
polygon (and hence each node makiog wp the polygoa) is a member of
a “clam". This class could be an elevation range or a Fanduse type
such as “wheatfields." Class information is recorded for eack node by
use of a value Held that is part of the node's descriptor.

Changes o region maps are made by use of the REPLACE,
CHANGE, and SPLIT commands as described below. These
commands are sufficient for sny needed map modification. Line and
point maps can be modified via the INSERT and DELETE commauds
a8 discussed in Section 4. The REPLACE command is executed by
traversing the entire quadtree. Those nodes with the old {class) valne
have that value replaced by the new.

The CHANGE commard is more complicated. It changes the
clasa value of only one polygon; however, other polygons of that clasa
may also exist, Thus, instead of traversing the entire guadtree, a
“sced™ pode inside the polygom is “grown™ by examirning all of its
neighbors until the entire polygon kas been proceseed. .

The SPLIT command allows the user to draw an arbitrary
line, one pixel wide, of a designated vilae onto the msap. The

arbitrary line is specified as a chain code. The intended uvse of the
command is to eplit » polygon into twe or more scparate parts. One
of these parts would then become a polygon of the same class as the
pixels representing the arbitrary line vis subsequent invocation of the
CHANGE command. The pixels representing the arbitrary line would
then be part of this new polygon. Alternatively, the SPLIT command
can be used Lo make alight modifications of otly 2 very few pixels,
such as correcting a slightly misplaced border of & polygon. This type
of correction could not be applied in any other way with the available
command set.

The SPLIT command operates by first inserting a one pixel
node into the tree corresponding to the frst location given 2ad thes
following the chaincode inserting nodes as it reads the code, A key
feature of our implementation of the SPLIT command is that the user
can observe the progress of the chaitcode as be is inputting it. Whee
the backspace key is typed, the chaincode is undone by one pixel,
allowing for easy ervor correction

By repeated use of the three commands REPLACE,
CHANGE, and SPLIT, it is possible to a make any desired changes to
a region map. Clearly this is true since in the worst case the user
could construct an entire map from one pixel chaineodes,

4. POINT AND LINE REPRESENTATIONS

Quadtree representations for point and line dats were also
developed. It sbould be noted that the same kernel {deacribed ia

Section 2) is used for manipulating quadtrees of all three dats types.

When storing area data in region quadtrees, the value of a leaf
corresponds to the color of the region that contains the leaf. Since
there is no notion of color associated with ejther point or line dats,
other interpretations are placed on the information stored in the value
portion of the leal descriptor. The interpretation that a particalar
roatine makes of a leal's value is dependent on the type of data that
is being stored in the quadtree. The database system stores the dats
type of the map in the user header which was described in Section 8.
The value Beld of & quadiree node is made up of a single word
32 bits long. For area quadtrees, this is a numeric value which c2a be
interpreted as BLACK/WHITE, a color value, or as the key for a
symbolic item such as landuse or elevation classes. In this last case,

further information describing the item might be part of the database.
For point data, nodes containing data points are interpreted as

contaiging the z coordinate {in the upper half of the word) and the y
coordinate (in the lower half of the word) of the point. A single word
32 bits long is sufficient to describe. the coordinates of ope point, as
the kernel limits the tree to a depth of twelve (ie. » 4006 by 4008
pixel image). Nodes that do not contair a data point are represented
by the vzlue WHITE,

Insertion of & point in a point data quadtree works as follows.
First, we find the leafl that contains the point’s location. If the leaf in
empty, then the point's 2 and y coordinates are entered in the Jeal's
descriptor. Otherwise, the leaf is eplit into its four sons, the old leals
point value is copied into the appropriate son, and insertion i re-
attempted. Deletion of 2 point in & point data quadtree is a matter of
finding the leaf that contains the point and then changing that jeal's
descriptor to that of an empty keaf. Next, we must check to see if it
is possible Lo merge the new empty leaf with its siblings.

The point data quadtree described above is termed 3 PR
quadtree [0f and is also used in [8]. It differs from the point quadtree
of Finkel and Bentley 3], in that the structere of the PR quadtree is
independent of the order of point insertion. This is & resutt of the fact
that PR quadtree leaves are always split into fonr congruent squares
(conforming to an area quadiree decomposition). In contrast, the
eplitting points for the point quadtree are the data points themselves,
thereby resulting in four rectangles that are not necessarily equal in
size. €
To store line data, we developed a varisnt of the edge
quadiree of Shaecier {10] restricted by our 32-bit node value Seld.

Noo-WHITE edge nodes contain exactly ome line segment which

intersects two of the node’s edges. When inserting a new line into the
tree, nodes which would not conform to this requirement are quartered
and re-processed as appropriate. When two or more lines intersect,

213

the point of intersection will mever contain only one line segment.
Special consideration must therefore be made for single pixel nodes (in
this case the intersect point). Such single pixel nodes may also result
at the endpoints of a line segment that doesn't begin or end on a
larger node’s boundary,)

The value field of the edge quadtree leal descriptor has four
subflelds. The first subfield (one bit) indicates error values. The
second subfield {one bit) indicates whether or not the node contains a
line segment. The third subfield (two bits) tells for all non-WHITE"
nodes which son & node is with respect to its father. By setting this
ficld, we guarantee that the leaf will not be automatically merged with
its brothers by the kermel's insert routine. As this feld is rot set when
the leaf value is WHITE, four empty quadrants are actomatically
merged together.

The fourth subfield (28 bits) of the value field of the edge
quadtree’s leal descriptor contains different information depending on
whether or not the leal corresponds to » single pixel in the map, If
the leaf corresponds to a single pixel, then the fourth subfield indicates
bow many lines pass through that pixel. Otherwise, pon-WHITE
nodes of a larger region contaia exactly one line segment. We have 14
bits to encode each of the intercepts of the line with the edges of the
block in which it is contained. We use two bits to indicate which of
the four edges of the block the line intersects. The remaining 12 bits
indicate the distance slong the edge to the intercept. Thus we are
able to bandle maps containing blocks as large s 4006 by 4096 pixels.

Insertion and deletion algorithms for edge quadtrees are
analogous to those of region or PR quadtrees. Insertion of s second.
line segment into a region described by a leaf that already contains
one line segment causes the leafl to be quarlered. The information
that was in the original leaf is distributed among the new leaves, and
the insertion attempt s repeated. Deletion of line segments is simply *
3 matter of dcleting all the information that is specific to that line
segment. This means that nodes containing line segments are given
the valoe WHITE and merged with their siblings if possible. Siagle
pixel podes bhave the number of lines pasing through them
decremented (with the value becoming WHITE when the number of
lines becomes zero).

8. DATABASE FUNCTIONS

One of the basic functions of & geographic information system
i to indicate the, name of the clats or polygon containing a given.
point. For some purposes, it is sufficient Lo describe a polygon by
listing any point contained within it, and its class value. At times, it
is necessary to be able to determisie if two points which have the same
class value are indeed within the same polygon. For this sitaation, the
user can invoke a function which creates a unique polygon descriptor
from a point. This function uses s modified version of the polygon-
seed function used by the CHANGE function of Séction 3. It
examines all of the nodes in the polygon and determines which node
has the lowest address, The pixel at the Jower Yeft corner of this aode
is used to describe the polygon. This is an expensive algorithm and
should only be used when sbeolutely necessary.

The database language allows the formation of a map that
‘corresponds to the extraction of s set of polygons from another map,
This is achieved by the SUBSET function to which the user gives a
list of classes and polygons. The SUBSET function first traverses the
input tree, placing in the output tree any nodes whose ralue is that of
a class on the list. Thea for each polygon on the list, the polygon-seed
function is performed, placing all nodes of the polygon into the output
tree, '

‘We bave implemented functions that compute region
propertics such as area and perimeter. In addition, we can compute a
minimum enclosing rectangle for a given subset of the map as well as
extract a square window from the map. A list of all the classes or
polygons in & map ean be generated. As an example, such a list could
be used to compute the area of every polygon on the map.

Point and line maps can afso can be used in conjunction with
some of these functions, although they may have slightly different
definitions. Given the coordinate vzlues of a point, functions are
provided to indicate if it lies o a data point or line of the input map,

The area of a point map is the number of points contained within it.
The area of & line map is the length of the lines within it. A special
regionsearch function is provided, similar to the window function,
which yields & map containing all of the points within a given radias
of a given point from the input point map. The window and enclosing
rectangle functions may also be applied to point and line maps.

' "We have also implemented set operations such ss unjon snd
intersection. Both grion and intersection may be applied to any two
maps of the same type (i.c. area, line, or point). In addition, a line or
point map may be intersected with an ares map, yielding a line oz
point map containing only those points or lines contained within the
non-WHITE regions of the area map.

8. THE QUERY LANGUAGE

The query language provides an English-like keyword-based
interface between the database user and the database system. It
allows a non-programming oriented user to access the database with a
more natural command fanguage than LISP.

The query language is keyword-based. It operates by
trapslating 2 query into LISP functios calls, ignoring any words not ia
its vocabulary. This has the advantage that the nser can insert noise
words and phrases (cx., articles like “the” and “an”) to give the
command a more natural appearance. This added Bexibility i bought
at the cost of more cbscure error messages resulting from the
misspelling of & keyword, In order to allow the user to customize kis
interface with the database, there are comntands that allow keywords
to be changed.

Table 1 prescats a brief syntax of the query banguage in its
present form. The Plesse command is used to learn abouat the system.
The Use command changes the display device usage sres. The
Measure command lets the user indicate whether coordinates will have
the referted map's lower left corner as origin, or use the global
coordinate system's origin. The Enler command allows the user to
inform the system of new data files. The Display command enables the
displzy of & map on the display device. The Let, Describe, and Forget
commands maripulate names of entities or keywords in the system -
e.g., to rename items, describe items, or to remove items from the
system, respectively. Let and Forge! sllow the user to name or forget a
data item {e.g. assigning a name to a polygon description) as well an
renaming keywords of the query language. Lisf returns a list of
polygons or clases from a map. Edit accesses the quadtiree editor.
Move displays s carsor at a given point on the display device.

One of the key features of the implementation of our query
language is the ability to compose functions. Thus, where the Display
command requires a map, this could be cither s map name, or an
exptession which yields » map.” For example, if we want to display
the intersection of the landuse class map with the region below 100
feet elevation, it could be done with the following command:

Display the intersection of land with the map formed from
Jevell in top on the Grinaell

where ‘land’ is the name of the landuse map, ‘top’ is the name of the
topography map, ‘levell’ is the elevation class from O to 100 fect, and
‘Grinaell' is the name of our display device.

7. CONCLUDING REMARKS

Oar experience in developing a geographic information eystem
based on quadtrees demonstrates that such a system is feasible. The
potentizl advantage of using quadtrecs, rather than conventional dats
structures, lies in the efficiency with which many types of queries can
be handled. In its current state, our system can handle 3 wide range
of queries. More capabilities will be added in the future. For the
operations that we have implemented so far, we never use more than
two input maps and one cutput map at the same time, However, the
system places mo restrictions on the number of maps which can be
entered in the database. The map size is limited by the address space
arailable, whick is s function of the node size. In the current -
implementation, sn individual map may not be larger than 4096 by :

214

4006 pixels. Larger regions can be represented by breaking them up
into smaller maps.

REFERENCES

1. J1. Bentley, Multidimensional binary search trees used for
associative searching, Communications of the ACM 18, 509-517(1975).

2. D. Comer, The Ubiquitous B-tree, ACM Compuling Survepr 11,
121-137(1979).

3. RA. Fiokel and JL, Bentley, Quad trees: a dats structure for
retrieval on composite keys, Acta Informatics §, 1-0{1974).

4. L Gargantini, An effective way (o represent quadtirees,
Communications of the ACM 25, 005-010(1082).

5. A Klinger, Patterns and Search Statistics, in Opiimiring Methods
in Statistics, 1.S. Rustagi, Ed., Academic Press, New York, 303
337(1971).

6. J.A. Orenstein, Multidimensional tries used for associative
searching, Information Proccesing Lelters 14, 150-157(1982).

7. A. Rosealeld, H. Samet, C. Shaffer, and R.E. Webber, Application
of hierarchical data structures to geographical information systems,
Computer Science TR-1197, University of Maryland, College Park,
MD (1982).

8. A. Rosenleld, H. Satnet, C. Shaffer, and R.E. Webber, Application
of hierarchical data structures to geographical iaformation systems
phase 11, Computer Scicnce TR-1327, University of Maryland, College
Park, MD (1983).

9. H. Samet, The quadtree and related hierarchical data structures, to
appear in ACM Computing Surveys. See also Compuater Science TR-
1320, University of Maryland, College Park, MD (1983).

10. M. Shneier, Two hierarchical linear feature representations: edge
pytamids and edge quadtrees, Compuler Graphice and Image
Processing 17, 211-224(1081).

.

oJoJolo]olo]olo e
[olofolojolplolo "

olojolo] 114 ri1 7777
olololo i LAY
olojoftjfifiing g, [sEe
ololi i) | ¥ Bsai 9
elo]thlifitolo 7
olo[1Ti]tIofolo] | * E¥ssleq ©

5758 59 60

. 37383940
Figure 1. An image (a}, its binary array (b}, its maximal blocks (c),
and the corresponding quadtree (d). Blocks in the image are shaded;
background blocks are blank, - ‘ .

Commands:

Please {explain} <syntactic_uzit> {}

Use {the Grinnell at} <window>> {}

Measure {points from tke jower left corner of} map {}
Measure {points from the} global {origin}

Enter <file_name> {into database}

Display <map> {on Grinnell)

Display <map> {on Grinnell startieg from) <point> {}
Display {the} value {of} <number> {}

Let <pame> {} denote {} <object> {}

Let <pame> (} rename ()} <map> {}

Describe {the type of this} <name> {}

Forget (about the meaning of this} <key_word> {}
List {all the} classes {on} <map> {}

List {all the} polygons {on} <map> {}

Edit {) <map>> {with the databas¢ editor}

Move {to} < poiat> {}

Otber syntactic units:

<number> = {the} area {of} <map>
{the) perimeter {of} <map>

<point> :w= {where x =} <number> {and y ==} <number>
{the point at the} cursor

<window> = <point}> {extended} <number> {by} <number>
{the smallest} window {for} <map>

<map> = {the} intersection {of} <map> (with} <msp>
{the} union {of} <map> {with} <map>
{tbe} windowing {of} <map> {with} <window>
{the} map {formed from} <cplist> {in} <map>

<class>> 2= {the) clasa {of} <poly>
{the} class {at} <point> {on} <map>

<poly> :e= {the} polygon {at} <point>> {on} <map>
{tbe)} unique polygon {at} <point> {on} <map>

. <cplist> »= «a list of polygons and classes> .

Table 1. The syntax of the query language. Words enclosed in curly
braces {} are noise words and may be removed or replaced with any
other mon-keyword. Words enclosed in angle brackets <> are
syntactic units, and are replaced by words or phrases matching their
defipition. In addition to s variable name or integer value which
corresponds to the requested syntactic wmit in a command, some
syntactic ugits bave further definitions as listed above. For example,
where <number>> is requested, 3 number may be typed.
Alternatively, one of the two definitions given above for <sumber>
may be used (with the first definition resulting in the ares of the map,
the second definition resulting in the perimeter of the map).

222‘22! 32235 (a2t mfssa 333

2zateai 230|231 [azo|s21] s30(38
[z02}z03| 212 [213 jsozjacs siz 313
210 20 [soofso1]sw0| su
lozzjces|ose|oss|iee|ies| 22| 1ss

[c20 021 |030|C3¢ 120 | 129 | 130] i3

OCZ JOOS |12 [OI3 | WOR 03] 412 | IS

o = N e N
g
g

jooc|oot] oo | ol Fioo]] 4a | i
1 2 3 4 5 67

(b) The block decomposition

of the image from Figure 0a
with each block labelled by the
address of its lower Left pixel.

(a) A 2° x 2* grid with

each pixel labelled with the
{base four) value cbtained by
.interleaving the yand =
coordinates of the pixel.

"Figure 2. Ar example demonsirating the wse of locational

 coden'to
address blocks in an image represented by a quadtree. L o

215

