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ABSTRACT

A new pointer-less quadtree representation is presented,
It is used to define a sequence of approximations to quadtree
images that are progressive and lead to compression.

1. INTRODUCTION

The quadtree [5,9] is a hierarchical data structure that -

is finding incressing use in image processing and graphics appli-
cations. It is uswvally implemented as a tree (e.g., Figure 1).
However, the amount of space required for pointers from a node
to its sons is not trivial. Consequently, there has been interest
in pointer-less quadtree representations. Tkey car be grouped
into two categories. The first represents the image in the form
of a preorder traversal of the nodes of its quadtree {4] while the
second treats the image as a collection of leaf nodes (e.g., [1.2)).
In this paper we define a new pointer-less quadtree representa-
tion of the latter type and nse it to obtain a sequence of
approximations to quadtrees. These approximations are seen to
be progressive and also lead to compression.

3. A POINTER-LESS QUADTREE. REPRESENTATION

Instead of uwsing a tree consisting of BLACK,WHITE,
and GRAY nodes, we use a representation in the form of a col-
lection of the leaf modes of the quadtree. Each leaf mode is
represented by a locational code which corresponds to am
encoding of the path from the root of the tree to the node. In

- fact, we only need to maintain a coliection of the BLACK rodes
since the WHITE nodes can be determined given the BLACK
nodes. In this paper, we make use of the following definition of

a locational code. Let the sequence < z;> represent the path of .

nodes from the root of a quadtree to z,, the desired rode, such
that z.==root of the quadtree and 2=FATHER(z.,). The
directions NW, NE, SW, SE are represented by the directional
codes 1, 2, 3, and 4 respectively and are accessed by the func.
tion SONTYPES. The encoding of the locational code for node
%y i8 given by z, where z; is defined below:

o 0 f==m

% {52._1+SONTYPE5(3,) m< l.S!l

For example, node 10 of Figure 1 would be encoded by the _
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number z, =582. It can be decoded into the sequence of dires-
ticnal codes <(h;> == <2,1,34> = <NENW,SW,SE> - je.,
2 = 45%+3-5%+1-5'42-5°

The above encoding method differs from these of Gap
gantini [2] and Abel and Smith [1] who use fixed length codes.
Our method has a number of useful features. First, it lends
itself easily to decoding a locational code into the sequence of
directional codes by using a combination of medulo and integer
division operations. We obtain the directional codes in the
order in which we traverse a path from the root of the quadtree
to the root of the subquadtree. Second, sorting the codes of the
BLACK nodes in increasing order, results in a sequence which is .
a variant of a breadth-first traversal of the BLACK portion of
the tree - i.e., for i<, nodes at level J (representing a block of
size 2 by 2’) will appear in the sequence before rodes zt level ¢,
This breadth-first property means that the sequence yields a
progressive approximation of the image - i.c., successive nodes
lead to a better approximation. Finally, increasing the resolu-
tion of the image does not require extensive recoding of the
codes for the existing nodes.

2. HIERARCHICAL APPROXIMATION METHODS

By virtue of its hierarchical structure the quadiree lends
itself to scrve as an image approximation device. By truncating
the tree (i.e., ignoring all nodes below a certain level), we get a
crude approximation. Ranade, Rosenfeld, and Samet [6] define
two basic variants termed an inner and outer approximation.
Given an image I, the inner approximation, IB(k), is the binary
image defined by the BLACK nodes at level >k (e.g., for Fig-
ure 1, IB(2)={16, 25}). The outer approximation, OB(#), is the
binary image definéd by the BLACK nodes at levels >k and
the GRAY nodes at level & (e.g., for Figure 1, OB{(2)=={18, 25,
F, G, H}). At this point, let us use < and > to indicate set
inclusion in the sense that A < B and B 2 A imply that the
space spanned by A is a subset of the apace spanned by B. It
can be shown that IB(n) < IB{(n-1) < - <IB(0)=I and
OB(n) > OB(n-1) > - >OB(0)=L Alternatively, we can
approximate the image by using its complement, T - ie., the
WHITE blocks. We define IW(k). and OW(K) in an analogons
manner to that of IB(#) and OB(k) respectively except in terms
of WHITE blocks. It can be shown that IW(n) < W(n1) <
= SIW(0) =T and OW(n) > OW(n-1) > - 20W(0) =T.

4. FOREST-BASED APPROXIMATION METHODS
Jones and Iyengar [3] introduced the coneépt of a forest

of quadtrees which is a decomposition of a quadtree into a col-
lection of subquadtrees, cach of which corresponds to & maxi-



mal square. The maximal squares are identified by refining the
concept of s non-terminal node to indicate some information
about its subtrees. An.internal nodeis said to be of type GB if
at least two of its sons are BLACK or of type GB. Otherwise,
the node is said to be of type GW, For example, in Figure 1,
nodes F,J, and M are of type GB and nodes A, B, C, D; E; G,
H, I, K, L, andNareoltypeGW Each BLACK ‘mode or an
mternal node with a label GB is.said to. be-maximal square. A
BLACK forest is the minimal set of maximal squares that-are
not contained in other nxnnnl squares and that span the
BLACK area of the - unage Thus the BLACK. forest
corresponding to Figure 1 is {F, 10, 16, 25, 27, M, 38} and their

- corresponding subtrees. The elements of the BLACK foreet are

specified by locational codes (although Jones and Iyengar use a
d:l!erent definition than z;). Such a representat:on ¢an lead to
» aavmgs ‘of space since Iarge WHITE ATean are. lgnored by lt '

A forest can nluo be used as an approxlmat:on where we
treat its eleménts as BLACK and. all remaining . nodee a8
WHITE. It is useful to sort the nodes of the forest. aecordlng to
their codes.. We. use the locational codes gwen by-z;. For exam-

_ ple, for Figure 1, the nodes will ‘appear in the order 25,16, F,
M, 27, 38, and .10. This order is. a partial ordering (S, >) such
- that S; > S;,; means that the block subsumed-by S, is 2 in
size. than the block subsumed by S;,;.-In fact, for-a breadth-
first traversa! we. only.need to process the nodes in an order

that satisfies the above subsumption relation. It should be’

clear that a sorted list is just one of many possible order:ngu
satisfying the subsumption relation.

Al approxtmatlon ‘based ‘on BLACK forests ¢an be for-
mulated ss follows. Let" FBB(n) be the forest as defined by
Jones and Iyengar. We say that FBB{:’) is the resalt- of replae-
ing GRAY nodes ‘in PBB(¢+1) by their BLACK ‘forests. " It
should be clear that FBE(n} > FBB(n-1) > -
" For example, for Figure 1, FBB(4)-{25 18, F M 27,738, 10};
FBB(3) is obtained by adding the BLACK forests of F (ie.,
nodes 19, J, 22, and 23) and M fi.e., nodes 28 and 20) to yield
FBB(3)=(25, 16, J; 22, 23, 28, 27, 29, 38, 16, 10}.” Continuing
the replicement of GRAY wodes by their BLACK forests: leads
to FBB(2)=={25, 16,722, 23, 20, 14, 27, 29, 28, 38, 19, 21,
10}==FBB(1)=FBB(0)=l. Clearly, FBB(n) > FBB(ml) >
> FBB(O) ==f. Note that FBB provides a “closer approxlmatnon
to the image than OB in the sense that OB(s) 2> FBB(i). This
can be seen by observing that OB(s) and FBB(I) ‘bath ‘contain
all ‘the terminal’ BLACK nodes at level €23, but all nodes of
FBB(:') at levels J<c are eontmned in the GRAY nodes at level s
which are elements of OB(i). It skould be cléar that the com-
parisons between OB(#) and’ FBB(:') can be made despite the
fact that i cnrresponds to a level in the former and an lteratlon
in the latter. :

Weé ean ‘also have ‘a forést npprox:matlon that is made

>FBB(0) == 1.

shiould be' clear ‘that ' FWW(n) > FWW(n—l) > >
FWW({0) = T 'For exaniple, for Figure I, FWW(4}=={A},
FWW(3) is obtained by adding the WHITE forests of A (i.e.,
odes B, C, D, E) to yield FWW(3)=(B, C, D, E}. Continuing
the replacement of GRAY nodes by their WH[TE‘fnre'liteleddh
to FWW{2)={F; 2, 11, 1, 15, G, 5, 17, 24, 40, 41, H, 30, 42,43},
ete. By analogy to the BLACK foreet we see that FWW' pro-
vides a closer approximation to the inverse lmage than OW in
the sense that. ow(y) > FWW(!') for all i

We can’ also ‘make use of FWW to approxlmate I hy
working with its complement, FWW. ‘It has the l’ollowmg pro-
perties.  OW(i) > FWW(i) implies that FWW{5) > 0W1 ')
== [B(s): Similarly, FWW{i) > T implies FWW <
These two properties plus the faet that I < FBB(:) S
0B(:} lea.d to the follow:ng theorem ' o

Theorem 1: IB() < FWW” <1 < FBB(-') < OB(l'j,

0<i<n.

. ‘This is a0 lmportant result becanse it means that we
have found better approximaticns to I (i.e, FBB and FWW)

‘than OB and IB." In: partlenla.r, we'see that: unmg FBB results

in overeutlmatmg the area spanned by the image while using
FWW.results -in underestimating’ the area’ spanned by " the
image. In essence, we-are approximating the image solely by
-ise of BLACK blocks or solely by use of WHITE blocks. Haw-

. ever, we could alao approximate the image by a eomblnatmn of

_ BLACK and WHITE blocks. “Lét FBW: be such an approxima-

up entu'e]y of ‘nodes eorreepondmg to WHITE blocks. In ‘other

words, we approximate the complement of the image, T Such a
forest is deﬁned analogonnly to the one preeented ‘earlier using
the. BEACK “blocks' < i.e., ench qnadtree is & collectnon of
subquadtreee, each of whleh eorreeponds to » maximal squ
A WHITE Iorert is the minimal set of maxlmal ‘squares “that are
pot contained in other’ “maximal ‘squaiés ‘and ‘that ‘span the
WHITE area of the i image. “Let FWW(n) be the WHITE forest
as defined above. ‘We say that FWW(3)'is the result of replac-
ing GRAY nodes in FWW(i+1) by theu' WH!TE foresta It
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‘tion. ‘'FBW(n) is FBB{). For FBW[n-1), we augment FBW(n}

by adding:the WHITE- forests: (usrng FWW) of all the GRAY
todes'in FBW{n). For FBW{n-2); we apply the same aug gmenta-
tion process except that now we:add the BLACK" orests ‘of ‘all
the GRAY nodes added in the previous step. ‘Th alternating
process of adding BLACK® and: WHITE  forests 'is-continue

-until no. GRAY ‘tiodes’ are left." For example, !or Fl
have FBW(4)—{25 16, F, M; 27, 38;: ' _
by adding the ' WHITE- forests of ‘mode” 'f(".’" '
and M (i.e., nodes:33 and 34):to yield: FBW(3)-{25 16 F M
27, 38, 10, 1, 15,33, 34}.” FBW(2) is"ob ;
BLACK forests of node I(i.6., node 19) to-yield' BW(2)={25,
16, F, M, 27, 38, 10, I, 15, 33; 34; 19}=-=FBW(1}-FBW(0)-I

The quadtree eorrespondmg to' he lmage represented by
the approximation. ‘sequence FBW .can be .casily. reconstructed.
This does not require. the. indieation of, the colors.of the indivi-
dual nodes in the sequence. . .We.start. with the empty tree...We
add the nodes.in. increasing order of t.hen- loeatmnal codes. (l €.,
nodes to the tree in nn order so that for any two. nodes P and
Q: snch that Pis: an, ancestor of Q, P'ts added to the tree before
-@: 'When adding:a- node, a path (destg’nated by the node’s loca-
tional code) is. traced from the root of the quadtree to the node.
Any. terminal, rode: encountered during this process:. will be
expanded In. partxcu!ar, the. noden Aype is changed 0. GRAY
and its four sons take: on its previous value ‘When the decod-
ing of the path is done, the nodé’s type s eomplemented For
example; when a.ddmg 1, one of the WHITE forests of F in Fig-
ure 1, F becomes a GRAY node; I becomes WHITE, and ‘all
bro__thers of..I become. BLACK. . The reconstruction -sequence
shows the use of FWW in the sense that:the WHITE: forests
(i.e:, FWW-) are added to_.the tree as. WHITE nodes thereby
subtracting from the BLACK forests. . -




FBW is attractive as an approximation becanse it con-
vergen Lo the image from both directions - i.e., it alternates
between overestimating and underestimating the BLACK com-
ponent. It is not hard to see that FBW satisfies the following

relationships. FBW(n) > FBW(n-1), FBW(n-1) <
FBW(n-2), FBW(n-2} > FBW(n-3) and in general,
FBW(n-2i) > FBW(n-2¢1) and FBW n-2i-1) <

FBW(n-2+-2). Furthermore, it is easy to show that FBW(n)
2 FBW(n-2) > - > FBW(n-2i) > -- 2 FBW{O) =
1 2 - 2 FBW(n-2i1) 2> - > FBW(n-3) >

- FBW(n-1). In other words, the approximations FBW spiral in
from both sides of I in converging to 1. Note that individually,
FBB and FWW may, at times, be better approximations to I
than FBW - i.., there exist images for which the amount of
BLACK by which FBB overestimates 1 is less thar the amount
by which FBW underestimates I. The opposite is also true -
i.e, an image can be comstructed such that the amount of
BLACK by which FBB overestimates I is greater than the
amount by which FBW underestimates 1.

The FBW approximation has a number of interesting
properties. First of all, it is progressive. Second, use of the
FBW approximation will often lead to compression in the sense
that it reduces the amount of data that is needed to encode the
image (and transmit it). Recall that we can represent a guad-
tree by merely specifying all of the BLACK blocks or all of the
WHITE blocks. Depending on the image we would use the
color with the smaller cardinality in order to save storage. The
FBW approximation consists of a combination of GRAY,
BLACK, and WHITE nodes thereby striking a balance betwesn
wsing all BLACK or all WHITE nodes. In fact, use of FBW
may lead to the result that fess dats is being transmitted than
‘were the quadtree transmitted using all BLACK or all WHITE
nodes. For example, encoding Figure 1 with FBW requires 12
nodes whereas the image contains 13 BLACK and 30 WHITE
nodes. Letting F, B, and W denote the number of nodes when
encoding the quadtree using FBW, BLACK, and WHITE nodes
respectively, compression is said to exist whenever F <«
MIN(B,W). As we shall see below, variants of FBW can be
constructed so that F is always < MIN(B,W}. Thus we can
Euarantee that our approximation methods are always at least
a1 good or better than encoding the quadiree by listing ita
BLACK nodes (or its WHITE nodes),

To see the type of compression that is achievable, let
C==F /MIN(B,W) be s compression factor. C can be made as
close to zero as desired. Figure 2a demonstrates the empty tree
which has F=0 (ic., 2 WHITE node st the root) which we
exclude. Figure 2b illustrates a tree with F=1 byt C==]. For
a 2" by 2" image, a tree having depth n=2-m can be cons
.structed such that F=3 apd C==3/3-m=1/m. Figure 2 is
- such a tree with n=6. In this case F'=3 {zodes 1, D, and 19)
while B=10, W=9, and C=1/3. In general, the achievable
compression increases with the frequency of the occurrence of 3
out of 4 sons of the same color at different levels of the tree.
The following is an upper bound on the number of podes
comprising FBW (i.e., F). Its proof can be found in i8).

Theorem 2: The maximum pumber of nodes in an FEW
approximation is less than or equal to one ples the number of
WHITE nodes in the quadiree {ie. F < W + 1). '

Thke FBW zpproximation relies on, slternating between
the FBB and FWW approximations. We can also define ap

approximation FWB which alternates between FWW and FBB -

FWB(n-1), we angment FWB(n} by adding the BLACK forests
(using FBB) of all the GRAY nodes in FWB(n). For FWB(n-2)
we apply the same augmentation process except that cow we
add the WHITE forests of ali the GRAY ncdes added in the
previous step, This alternating process of adding WHITE and
BLACK forests is continued until no GRAY nodes are left. In
this case, W, the number of WHITE nodes in the quadtree, is
an upper bound on the number of nodes in an FWB approxi-
mation [8].

: We can also obtain vpper bounds in terms of B, the
sumber of BLACK nodes. In order to do this we redefine our
approximation sequence in terms of maximal WHITE blocks, In
particular, we relabel our quadtree with GB' and GW' such
that an internal node is said to be of type GW? if at least two
of its sons are WHITE or of type GW?; otherwise, the node i»
said to be of type GB' (ie., at least three of its sons are
BLACK or of type GB'). We now redefine FBB, FWW, FBW,
and FWB iz terms of GB' and GW' to yield FBB', FWwW",
FBW', and FWB' respectively. In other words, FWE' now
alternates between FWW' and FBB', and FBW' alternates
between FBB' and FWW'. This results in upper bounds of B
and B+1 for the FBW' and FWB' approximations respectively
[8]. These upper bounds as well as those of FBW and FWB can
be tightened slightly by examining the type of the root node. A
summary of these results is given in Table 1. We now see that
a judicious choice of an approximation method means that
F < MIN(B,W).

5. CONCLUDING REMARKS

The various encoding schemes discussed in Section 3
were applied to a 512 by 512 image (i.c., n==9) consisting of a
floodplain used in prior experiments with quadtrees [l A
quadtree encoding of the image contains 2208 BLACK nodes
and 2485 WHITE nodes. Table 2 contains a summary of the
results for the FBW and FBW! approximations. No resulis are
tabulated for the FWB and FWB' approximations because their
node counts will differ by one. To see this we consider the two
possible cases depending on the type of the root. When the
root is of type GB, FBW(n)= froot}  and
FBW(n-1) = {root}+FWB{n). Au analogous statement can be
made with respect to the FEW' and FWB' approximations,
Since the approximstions alternate between BLACK and

~ WHITE nodes, our table specifies the counts for them 33 well as

the total number of nodes. .

Table - 2 correlates with our theoretical results with
respect to upper bounds on the number of nodes necessary. In
particular, we find that FBW! requires 1714 nodes to encode
the image while FBW requires 1815 nodes. Thus, coIRpating

these counts with the minimum of the BLACK and WHITE .

nodes in the quadtree (i.e., 2208 BLACK rodes), we find that
FBW' leads to 22.3% fewer nodes while FBW leads to 17.8%
fewer nodes. These compression factors increase considerably
as larger images are used {i.c., greater than 2° by 2° as in this
example). ‘We also observe that FBW{n) and FBW!(n) have a
different number of nodes. This is because of the different

* definition of GB. Recall, that for FBW, GB corresponds to at

least two sons of type GB or BLACK terminal nodes; whereas
for FBW', GB corresponds to at least three sons of type GB or

- BLACK terminal nodes. Thus it shonld be clear that the GB

approximations. [n other words, FWB(n) is FWW(n}. For .
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criterion corresponding to FBWY is harder to satisfy than the
GB criterion of FBW thereby causing the initial approximation
FBW!{(n} to contain nodes from lower levels in the tree {znd

-hence more of them!).



It is interesting to make some general observations on
the quality of the approximations., First, the FBB approxima-

tion is less “‘blocky™ at the edges than OB or IB. Second, IB-

does mot preserve connectivity whereas OB and FBB do so at
the possible expense of creating holes where there may not be
any. This is not surprising in light of the fact that IB underes-
_timates the BLACK regions. It should be clear that the FBW
approximations have connectivity preblems similar to IB. In
particular, FBW alternates between GB and GW nodes. At
iterations that use GW nodes, connectivity may be destroyed.
It should be clear that FWB has the same problems with

respect to connectivity. Similarly, for FWB' (and FBW'), we

- have the problem that spurious holes may result at iterations
that use GB' modes. Third, use of FBW as an approximation
method is superior to the inner and outer approximations of [8].
FBW-like approximations are biased in favor of objects with
so-called “pankandies™ rather than “staircases.” Nevertheless,
it does not always result in compression (e.g., a checkerboard).
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illustrating the compression
factors available through
the use of FBW,
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