
Information Processing Letters 21 (1985) 1-6

North-Holland

10 July 1985

BIDIRECTIO NAL C O R O U T I N E S *

Hanan SAMET

Department of Computer Science, University of Maryland, College Park, MD 20742, U.S.A.

Communicated by Alan C. Shaw
Received 29 December 1983
Revised 27 September 1984, 28 January 1985

The bidirectional coroutine is introduced as a mechanism for overcoming a shortcoming in the method of specification of the
transfer of control between coroutines. An analogy is drawn between subroutines and coroutines by observing that coroutines,
like subroutines, should not have to know with whom they are interacting. At present, most coroutine implementations require
specific mention of the coroutine being resumed, or use a s u s p e n d mechanism in which case one coroutine acts as a slave (the
suspending one) and the other as a master. In the second case, the slave need not know the identity of its master while the
master must know the identity of its slave. For bidirectional coroutines, a coroutine need not know the identity of its master
nor its slave. This is achieved by replacing the s u s p e n d primitive with two new primitives - - r e sume_mas te r and
resume_ slave.

Keywords: Coroutines, semicoroutines, hierarchical coroutines

1. Introduction

The coroutine [2,1] concept is important in the
design of control structures for programming lan-
guages. In a taxonomy of control structures it fits
somewhere between a subroutine and parallel
processing (i.e., tasking). It is useful when it is
necessary to model a situation where two or more
processes must operate in a handshaking manner
--i .e. , process A does a bit of work, at which time
it relinquishes control to process B which also does
some work and subsequently returns control to
process A, process A continues for awhile at which
time it resumes process B at the point where B last
re turned control to A. This pa t te rn of sharing of
control is different from a subrout ine because a
subroutine can only be invoked at its start. It is
less general than parallel processing because each
coroutine depends on the actions of other corou-
tines whereas in the case of parallel processing the

* This research has been supported in part by the National
Science Foundation under Grant DCR-8302118.

processes could be executed autonomously.
In this article we point out a shortcoming in the

way in which the transfer of control between
coroutines is specified. In particular, it is our view
that just as subroutines need not know who in-
voked them, the same feature should be available
when using coroutines. At present, most coroutine
implementations either require specific ment ion of
the coroutine being resumed (termed a symmetric
coroutine [8]), or use a suspend mechanism (termed
a semi-symmetric [8] or hierarchical [7] coroutine).
In the latter case, one coroutine acts as a slave (the
suspending one) and the other acts as a master.
The slave need not know the identity of its master
but the master must know the identity of its slave.
At times, it may also be convenient for the master
not to know the identity of its slave. In order to
achieve this symmetry, we develop the concept of
a bidirectional coroutine. Our approach is an itera-
tive one starting with a simple ga la , refining it to
yield a subroutine, symmetric coroutine, hierarchi-
cal coroutine and finally a bidirectional coroutine.

0020-0190/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 1

Volume 21, Number 1 INFORMATION PROCESSING LETTERS 10 July 1985

2. Bidirectional coroutines

The simplest programming construct for trans-
ferring control is the goto . It has fallen into
disfavor because there is no structure associated
with it. If the programmer wishes to return to the
site of the go to , then he must explicitly remember
it. The subroutine is a control structure which
resolves such problems. It permits the creation of
separate programs which can be invoked by other
programs. The invoked program, termed a sub-
routine (i.e., a procedure or a function), need not
know who invoked it in order to return control
upon completion to its invoker (also termed its
caller). A call to a subroutine, say A, is like an
interrupt and A executes to completion unless A
calls another subroutine. Thus there is a nested
flow of control (i.e., stack-like). As an example,
consider Fig. 1 where we show the interaction
between three procedures, A, B, and C. Note that
A calls B which eventually calls C. When C is
through, B is resumed and it runs to completion at
which time A is resumed.

The coroutine is an at tempt to make the inter-
rupt characterization of the subroutine symmetric.
Recall that, for a subroutine, the caller is resumed
where the interrupt occurred. Once the called sub-
routine has returned control to its caller, it cannot
be resumed again except at its start. Using corou-
tines it is possible for two programs to interact
with each other in a handshaking manner. For
example, consider Fig. 2 where we show the
coroutine interaction between two coroutines, A
and B. Such an interaction is termed symmetric
[8]. Notice that we no longer have a flow of
control that can be managed by a single stack. If
there are only two coroutines, then once one
coroutine has initiated the other (i.e., established a

procedure A;

b e g i n ~ __

B;

coroutine A;

begin / -

initialize (B) ;

end;
~ e n d ;

coroutine B;

begin

resume (A) ;
/

/
/

resume (B) ;

r e s u m e

resume (B);

end;

(A) ;

end;
Fig. 2. Example coroutine interaction.

coroutine-like link), say A has initiated B, then we
can simply use the primitive r e s u m e to denote a
switch in control. If there are more than two
coroutines, then we must specifically name the
coroutine that is being resumed (i.e., resume(A)) .
It is useful to observe that there does not exist a
hierarchical relationship between the coroutines.
Each coroutine invokes another as if it were the
main program.

The interaction between two subroutines can be
characterized as a master-s lave relationship where
the caller is the master and the called subroutine is
the slave. A similar relationship can also be estab-
lished between two coroutines. In essence, the
initiating coroutine acts as a master and the ini-
tiated coroutine acts as a slave. Often, the sub-
ordinate coroutine acts as a producer and the

procedure B;

b e g i n ~ ~ '~

C;

procedure C;

begin

~end;

Fig. 1. Example subroutine interaction. (Note: Underlined parts of Figs. 1-4 are shown boldface in text.)

Volume 21, Number 1 INFORMATION PROCESSING LETTERS 10 July 1985

master acts as a consumer (or vice versa). The
slave need not know the identity of its master. It
returns control to its master by use of a suspend
operation which is a version of resume without
explicitly naming the successor. In contrast, the
master must know the identity of its slave since it
can have more than one slave. Thus, the master
resumes the appropriate slave, say B, via use of the
primitive resume (i.e., resume(B)) . Note that a
slave may also be a master of another coroutine.
The flow of control is hierarchical in the sense that
when a coroutine terminates--i.e. , it exits via ex-
ecution of its final statement or executes a return
as in a subrout ine-- then we assume that control is
returned to its master. All remaining coroutines

which are slaves of the terminating coroutine are
implicitly terminated. Coroutines that interact in
such a manner are termed semi-symmetric by Wang
and Dahl [8] and hierarchical by Vanek [7]. Dahl
and Hoare [3] use the term call~detach to describe
the master-slave relationship between two or more
coroutines. They also call the slave coroutine a
semicoroutine and use the primitive detach in an
equivalent manner to suspend.

In his formulation of the hierarchical coroutine,
Vanek stipulates that the master does not need to
know whether the routine that is being called is a
coroutine or not. Thus, he does not distinguish
between initial coroutine invocation and coroutine
resumption. As an example, consider Fig. 3, where

corou____tin__ee A; coroutine B; coroutine C;
bells be!in begin

B; C;

~suspend;

B,; ~ . s u

C ; " "

~ end ;

end;
Fig. 3. Example hierarchical coroutine interaction.

Volume 21, Number 1 INFORMATION PROCESSING LETTERS 10 July 1985

we show the interaction between coroutines A, B,
and C. Note that A is a master of B. B is both a
slave of A and a master of C. If B should terminate
while A and C are still active, then C would be
implicitly terminated. Vanek uses static nesting to
indicate coroutine dependence.

Symmetric coroutines have the shortcoming that
each coroutine must know its successor or prede-
cessor (e.g., a parser). Because they lack structure
enforcing constructs, symmetric coroutines permit
the creation of convoluted code fragments which
may lead to a degree of confusion similar to that
achieved by the goto . A partial remedy is pro-
vided by hierarchical coroutines. We are now at

coroutine A; coroutine B;
begin / begin

initialize (B);

resume_slave;

resume_slave;"

the main point of this article. As we saw above,
the master -s lave relationship of hierarchical
coroutines is somewhat one-sided in the sense that
in the event of coroutine resumption the slave
need not know the identity of its master whereas
the master must know the identity of the slave that
it is resuming. Clearly, when a master has several
slaves, then it must be able to distinguish among
them. However, we adopt the hierarchical princi-
ple that when a master suspends without explicitly
specifying which slave is to be resumed, and if
there are several slaves, then the most recently
suspended slave is resumed. Since a coroutine can
be both a master and a slave simultaneously we

coroutine C ;
begin

initialize (C)

~ - r e s u m e _ m a s t e r ;

resume_maste{~/

resume_slave;

resume_master;

resume_slave;
end;

resume_master;

~ e n d ;

end ;
Fig. 4. Example bidirectional coroutine interaction.

Volume 21, Number 1 INFORMATION PROCESSING LETTERS 10 July 1985

introduce a new resume primitive resume_slave
corresponding to the situation that a master re-
sumes its slave and rename the suspend primitive
to be resume_master. Note that resume_slave
must still be used in conjunct ion with a resume(x)
operation. As an example, consider Fig. 4 which is
identical to Fig. 3 with the exception that once
again we distinguish between initial coroutine in-
vocation and coroutine resumption, and we use
the resume_master and resume_slave primi-
tives. The initial interaction is between A and B.
Once the interaction between B and C is started,
when we are in B we have a choice of resuming A
(via resume_master) or resuming C (via
resume_slave).

When coroutines are permit ted to interact in
the manner described above, we say that they are
bidirectional We use the term bidirectional be-
cause each coroutine can act like a subroutine with
respect to the coroutine with which it is inter-
acting. It need only know if it is a slave or a
master with respect to the other coroutine. As an
example of the utility of bidirectional coroutines,
suppose that we replace the invocation of corou-
tine C in Fig. 4 by the following program frag-
ment which tests a condit ion and depending on its
value initiates coroutine WRITER or coroutine
READER. All subsequent interactions can be done
by use of resume_slave without having to test the
condit ion again. Here we see an example where
the target of resumeslave is ambiguous. Of
course, an alternative approach is to use variables
of type c o r o u t i n e (e.g., e n v i r o n m e n t in SL5 [4])
to denote the coroutine that is being resumed.
Nevertheless, we prefer our approach for the same
reason that re tu rn and suspend are used instead
of return address variables for subroutines and
semicoroutines.

if (cond) then coroutine_initiate~WRZTER)
else coroutine_ initiate(READER);

re~ume_slave;

Bidirectional coroutines are also useful in a
simulation environment where tasks do not always
have to know who invoked them in order to trans-

fer control among themselves. Alternatively, a con-
sumer need not always know the identity of his
supplier (i.e., producer).

Notice that our use of the resumeslave
primitive does not comport with Vanek's stipu-
lation that the master should not distinguish be-
tween initial coroutine invocation and coroutine
resumption. However, this uniformity is only ap-
plicable for the transfer of control f rom a master
to a slave, lgecall that control is transferred from a
slave to a master in a different way (i.e., by use of
the suspend primitive). In contrast, our approach
treats the resumption of a master and a slave in a
uniform manner at the cost of requiring a distinc-
tion between initial coroutine invocation and
coroutine resumption.

3. Concluding remarks

We have developed the concept of a bidi-
rectional coroutine in an iterative manner starting
with the simplest of control structures. In this
article, our goal was simply to introduce this con-
cept and to motivate it. It should be clear that
much more work remains in defining the full
ramifications of its introduction into a pro-
gramming language. The resume_master primi-
tive can be implemented by Wang and Dalal's
swap while the resume_slave primitive would
require a variation of swap which takes as its
argument the special d e m e n t P representing the
execution environment. In addition, we must de-
fine more carefully the accessibility of variables i n
such a context and binding rules upon coroutine
resumption. For a good exposition on the semantics
of coroutines and interaction among variables of
different coroutines, see ACL of Marlin [6]. See
also the discussion by Lindstrom and Soffa [5] on
referencing and retention in the context of
hierarchical coroutines.

Bidirectional coroutines can be used in an oper-
ating system or a simulation environment where
the scheduler is both a master and a slave. The
scheduler could serve as a slave to some processes.
The occurrence of certain conditions would cause
the scheduler to invoke other subprocesses as a
master. Based on the response from these sub-

Volume 21, Number 1 INFORMATION PROCESSING LETTERS 10 July 1985

processes, the scheduler would either resume them
or its invoking process. In general, examples are
difficult to construct in a vacuum. An evaluation
of the actual utihty of bidirectional coroutines
awaits their implementation and use.

Acknowledgment

I have benefitted from discussions with Fredrick
Boland, John Gannon, Glenn Pearson, Olaf
Schoenrich, and Deepak Sherlekar. I would like to
thank Simon Kasif for suggesting the name bidi-
rectional.

References

[1] G.M. Birtwistle, O.J. Dahl, B. Myhrhaug and K. Nygaard,
SIMULA Begin (Auerbach Publishers Inc., Philadelphia,
PA, 1973).

[2] M.E. Conway, Design of a separable transition-diagram
compiler, Comm. ACM 6 (7) (1963) 396-408.

[3] O.J. Dahl and C.A.R. Hoare, Hierarchical program struc-
tures, in: O.J. Dahl, E.W. Dykstra and C.A.R. Hoare, eds.,
Structured Programming (Academic Press, London, 1972)
184-193.

[4] D.R. Hanson and R.E. Griswold, The SL5 procedure mech-
anism, Comm. ACM 21 (5) (1978) 392-400.

[5] G. Lindstrom and M.L. Sofia, Referencing and retention in
block-structured coroutines, ACM Trans. on Programm.
Languages and Systems 3 (3) (1981) 263-292.

[6] C.D. Marlin, Coroutines, Lecture Notes in Computer Sci-
ence 95 (Springer, Berlin, 1980).

[7] L. Vanek, Hierarchical coroutines: A mechanism for im-
proved program structure, Tech. Rept. No. 99, Computer
Systems Research Group, University of Toronto, 1979.

[8] A. Wang and O.J. Dahl, Coroutine sequencing in a block
structured environment, BIT 11 (1971) 425-449.

