IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-3, NO. 1, JANUARY 1981 93

Correspondence

An Algorithm for Cdnverting Rasters to Quadtrees
HANAN SAMET

Abstract—An algorithm is presented for constructing a quadtree for
a binary image given its row-by-row description., The algorithm pro-
cesses the image one row at a time and merges identically colored sons
as soon as possible, so that a minimal size quadtzee exists after process-
ing each pixel. This method is spacewise superior to one which reads
in an entire array and then attempts to build the quadtree,

Index Terms—Image processing, pattern recognition, quadtrees,
region representation.

I. INTRODUCTION

Region representation is an important issue in image process-
ing, cartography, and computer graphics, and consequently a
number of representations are currently in use (see [1] for a
brief review). In this correspondence we present an algorithm
for obtaining an in-core quadtree representation [2], [3] given
the row-by-row description of a binary image. The algorithm
is useful because each of the two representations is well-suited
for a particular set of operations or may be desirable for its
compaciness. For example, the row-by-row representation is
especially useful for interaction with rasterdike display de-
vices, since input and output requires very little additional
computation. In addition, it is also a useful technique when
memory size limitations preclude storing in core an array cor-
responding to the image (e.g., [{10]). On the other hand, the
quadtree is a compact hierarchical representation, thereby
facilitating search. For related work dealing with reorganiza-
tion of raster-scan 1mage data for aux1hary storage see [4].

Assume that the image is 2 2" X 2" array. Each row of the
image is thus a bit string of length 2”. The quadiree is an
approach to image representation based on successive subdi-
vision of the image into quadrants. In essence, we repeatedly
subdivide the array into quadrants, subquadrants, ..., until
we obtain blocks (possibly single pixels) which consist entirely
of either 1's or 0’s. This process is represented by a tree of
out-degree 4 in which the root node represents the entire
array, the four sons of the root node represent, in order, the
NW, NE, SW, and SE quadrants, and the terminal nodes cor-
respond to those blocks of the array for which no further
subdivision is necessary. For example, Fig. 1(b) is a block
decomposition of the region in Fig. 1(a), while Fig. 1(c) is
the corresponding quadtree. In general, BLACK and WHITE
square nodes represent blocks consisting entirely of 1% and
(’s, respectively. Circular nodes, also termed GRAY nodes,
denote nonterminal nodes.

Manuscript received June 13, 1979; revised December 19, 1979. This
work was supported by the Defense Advanced Research Projects
Agency and the U.S. Army Night Vision Laboratory under Contract
DAAG-53-76C-0138 (DARPA Order 3206).

The author is with the Department of Computer Smence Umvers1ty
of Maryland, College Park, MD 20742.

PAZIETiAs [817] 8 @B RS AE
] [5 5] s I B T T
17]18[19 [20] 21f22 231 [1L Tl
2502627 28] 20156 M EE £
Bﬂﬁ%&%ﬂm A .
u1[u2|a3|unlis lealar ue t %
ug|50]51[52[53)54]55 56 ' I L__
57|58159]50]61]62 636y | 1
(@) (b)

34111256887 8BBLA203%
©
Fig. 1. An image, its maximal blocks, and the corresponding quadtree.

Blocks in the image are shaded. (a) Sample image. (b) Block de-
composition of the image in (a). (¢) Quadtree representation of the
blocks in (b).

II. ALGORITHM -

The raster-to-quadtree algorithm processes the image by
rows starting with the first row. One of its key features is
that at any instant of time (i.e., after each pixel in a given
row has been processed) a valid quadtree exists with all un-
processed pixels presumed to be WHITE. Thus, as the quadtree
is built, nodes are merged to yield maximal blocks. This is
in contrast with an algorithm that first builds a complete quad-
tree with one node per pixel and then attempts to merge,
i.e., replace all GRAY nodes with four sons of the same color
by a node of the same color. The disadvantage of the com-
plete quadtree method is that it requires more space. In
particular, for a 2% X 2" image, 22" BLACK and WHITE nodes
may be required in addition to 1/3 * 22" nonterminal GRAY
nodes. This is clearly undesirable when compared with a maxi-
mum of 227 bits required by the binary armray representation

~and the fact that a significant amount of merging is expected

to take place. Note that a hybrid method was used in [6] to
construct a quadtiree from the boundary code of the image,

e., the first pass left a number of links unspecified, while
the second pass filled in the links and attempted to merge the
resulting nodes.

Recall that the given binary image is assumed to be par-
titioned into rows. Clearly, no odd-numbered row can lead
to a merge of nodes. Thus, odd-numbered rows do not require
as much processing as even-numbered rows. We further as-
sume that the image contains an even number of rows. If the
image contains an odd number of rows, then it is presumed
that one extra row of WHITE has been added.

For an odd-numbered row, the tree is constructed by pro-

0162-8828/81/0100-0093300.75 © 1981 IEEE

94 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-3, NO. 1, JANUARY 1981

1 1 1 1 2
o -
i /HEf s\ i HEfSH\S e/
1 2 12

SWAS

1 2

1 2 3

Fig. 2. Intermediate frees in the process of obtaining a quadtree for
the first past of the first row in Fig. 1(a).

cessing the row from left to right adding a node to the tree
for each pixel. For example, Fig. 2(a)-{i) shows the construc-
tion of a quadtree corresponding to the first four pixels of the
binary image of Fig. 1(a) (i.e., pixels 1,2, 3, and 4). This is
done by invoking a procedure described below, called ADD —
NEIGHBOR. As the quadiree is constructed, nonterminal
nodes must also be added. Since we wish to have a valid quad-
tree after processing each pixel, whenever we add a non-
terminal node we also add, as is appropriate, three or four
WHITE nodes as its remaining sons.

We now describe ADD—NEIGHBOR more formally. Adding a
neighbor of a node, say P, in a specified direction consists of
traversing ancestor links until a common ancestor of the two
nodes is found. Once the common ancestor is found, we
descend along a path that retraces the previous path with the
modification that each step is a reflection of the corresponding
step about the axis formed by the common boundary between
the two nodes. For example, when attempting to add the
eastern neighbor of node 3 (i.e., node 4) in Fig. 2(h), node X
is the common ancestor and the eastern edge of the block
corresponding to node 3 is the common boundary. Thus,
having ascended a NW link to reach node X, reflection about

. the eastern edge of node 3’ block causes us to descend to the
NE son of X. If a common ancestor does not exist, then a
nonterminal node is added with its three remaining sons being

WHITE [e.g., Fig. 2(c) and (f}]. Once the common ancestor

and its three sons have been added, we once again descend
along the retraced path modified by reflecting each step about
the axis formed by the boundary of the node whose neighbor
we seek. During this descent, a WHITE node is converted to a
GRAY node and four WHITE sons are added {e.g., Fig. 2(g)1.
As a final step, the terminal node is colored appropriately [e.g.,
Fig. 2(d) and (h)]. In the example, Fig. 2(a), {b)-(d), (e)-(h),
and (i} are snapshots of the quadtree construction process for
the nodes corresponding to pixels 1, 2, 3, and 4, respectively,
of Fig. 1(a).

Even-numbered rows require more work since merging may
also take place. In particular, a check for a possible merge
must be performed at every even-numbered vertical position
(i.e., every even-numbered pixel in a row). Once a merge oc-
curs, we may have to check if another merge is possible. In
particular, for pixel position (a - 2%, 5+ 2') where a mod 2 =5
mod 2=1, a maximum of k =min ({,}) mesrges is possible.
For example, at pixel 60 of Fig. 1(a), i.e., position (8, 4), a

. maximum of 2 merges is possible and indeed this is how block

U ERENEN W) i
12910 341 17 56 78

Fig. 3. Quadtree prior to meiging nodes 1, 2, 9, and 10,

E of Fig. 1(b) has been obtained. The fact that merging does
take place causes an additional amount of bookkeeping. In
particular, we wish to maintain the position in the tree where
the next pixel is to be added as well as the next row., There-
fore, prior to attempting a merge, a node corresponding to the
next pixel in the image is added to the quadtree [e.g., node 11
is added to the quadiree in Fig, 3 prior to attempfing to merge
nodes 1, 2, 9, and 10 of Fig. 1(a)]. Similarly, we precede the
processing of each even-numbered row by adding to the quad-
tree a node corresponding tfo the first pixel in the next row
[e.g., the addition of node 17 to the tree of Fig. 3 prior to
processing row 2 of Fig. 1(a)]. This type of look-ahead was
also employed for different reasons in algorithms for comput-
ing the perimeter of a region [7] and labeling connected com-
ponents [8].

For a more detailed presentation of the algorithm see [9],
where Algol-like procedures are given to perform the conver-
sion. As an example of the algorithm, consider the image
given in Fig. 1(a). Fig. 1(b) is the corresponding block decom-
position and Fig. 1(c) is its quadtree representation. The nodes
labeled A-T are a result of merging and the alphabetical order
corresponds to the order in which the merged nodes were cre-
ated. Fig, 2(a)-(i} shows the steps in the construction of the
quadtree corresponding to the first pari of the first row, Figs. 4
and 5 show the resulting tree after the first and second rows
have been processed.

HI. CONCLUDING REMARKS

An algorithm has been presented for converting a row-by-
row representation of a binary image into a quadtree repre-
sentation of the image. In [9] it is shown that the algorithm’s
execution time has a time complexity proportional to the
number of pixels in the image. This is obtained by examining
the number of nodes that are visited as the tree is constructed.
In particular, the number of nodes visited by the merging
process is bounded by the number of pixels in the image
while the remaining part of the tree construction process
visits four times as many nodes as there are pixels in the image
(see {9]1). Note that the algorithm is also spacewise efficient
in that merging is attempted whenever possible. Thus, after
processing each pixel in a given row the resulting quadiree
contains a minimal number of nodes,

The algorithm is one-dimensional in the sense that it pro-
cesses the image a row at a time. Thus, it can be used in con-
junction with the run length representation [5], which views
each row as a sequence of maximal runs of pixels having the
same value. Therefore, a row is completely determined by

.specifying the lengths of these runs and the value of the first

run. When only a few runs are present, this representation is
very economical. For example, consider the image in Fig.
1(a). [Its run length coding is B4121, B2141, W53, W53,
W422, W8, W8, where commas serve as separators between
IOWS, i

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-3, NO. 1, JANUARY 1981 95

[]] W]
12 34 56 78
Fig. 4. Quadtree after processing the first row in Fig. 1 (a).

D aooo O uf IS
34112 17 56 1314 7 81516

Fig. 5. Quadtree after processing the second row in Fig. 1{a).

The algorithm can be contrasted with two other approaches.
If sufficient memory is available to store the array in core,
then the technique of [10], which only creates nodes cor-
responding to maximal blocks, and hence requires no merging,
should be used. Alternatively, we could attempt to find
maximal blocks by processing several rows at once (e.g., 2™
consecutive rows with runs of length =2 at the NW-most
corner of the image yield a block of size 2™). The disadvan-
tage of such an approach is that it requires searching and a
substantial amount of bookkeeping as the rows are being
processed, Instead, we have found maximal blocks by merging
at appropriate pixel positions.

ACKNOWLEDGMENT

The author would like to thank K. Riley for her help in
preparing the manuscript and P. Young for drawing the fig-
ures. The author has also benefited from discussions with
C. R. Dyer and A. Rosenfeld.

REFERENCES

[1} C. R. Dyer, A. Rosenfeld, and H. Samet, “Region representation:
Boundary codes from quadtrees,” Commun. Ass. Comput. Mach.,
vol. 23, pp. 171-179, Mar. 1980.

[2] G. M. Hunter and K. Steiglitz, *“Operations on images using
quadtrees,” IEEE Trans, Pattern Anal. Machine Intell., vol.
PAMI-1, pp. 145-153, Apr. 1979.

[3] A. Klinger and C. R. Dyer, “Experiments in picture representa-
tion using regular decomposition,” Comput. Graphics and Image

Process., vol. 5, pp. 68-105, 1976.

[4] A. Klinger and M. L. Rhodes, “Ozganization and access of image
data by areas,” JEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-1, pp. 50-60, Jan. 1979.

[S] A. Rosenfeld and A. C. Kak, Digital Picture Processing. New
York: Academic, 1976.

{6] H. Samet, *“‘Region representation: Quadtrees from boundary
codes,” Commun. Ass. Comput. Mach., vol. 23, pp. 163-170,

Mar. 1980.
[7] —, “Computing perimetess of images represented by quadtrees,”

Dep. Comput. Sci., Univ, of Maryland, College Park, MD, Tech.
Rep. 755, Apr. 1979,

[8] —, “Connected component labeling using quadtrees,” Dep.
Comput. Sci., Univ. of Maryland, College Park, MD, Tech. Rep.
756, Apr. 1979; also inJ. Ass. Comput. Mach., to be published.

[9] —, “Region representation: Raster-to-quadtree convession,”

Dep. Comput. Sci.,, University of Maryland, College Park, MD,

Tech. Rep. 766, May 1979,

—, “Region representation: Quadtrees from binary arrays,”

(10]
Comput. Graphics Image Process., vol. 13, pp. 88-93, 1980.

