IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-3, NO. 6, NOVEMBER 1981

Computing Perimetets of Regions in Images
Represented by Quadtrees '

HANAN SAMET

Abstract—An algorithm is presented for computing the total perim-
eter of a region in a binary image represented by a quadtree, The algo-
rithm explores each segment of the boundary of the region once and
only once. Analysis of the algorithm shows that its average execufion
time is proportional to the number of leaf nodes in the quadtree.

Index Terms—Image processing, perimeter, quadtrees, region repre-
senfation.

I. INTRODUCTION

Perimeter computation is a basic operation in image pro-
cessing [10]. The standard algorithms use either an array or
a chain code representation [2] for a region in a two-valued
(“‘binary™) image. In this correspondence we present an algo-
rithm for computing the total perimeter (i.e., the length of
the chain codes corresponding to the boundary of the region)
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Fig. 1. An image, its maximal blocks, and the corresponding quadtree.
Blocks in the image are shaded. (a) Sample image. (b) Block decom-
position of the image in (a). {c) Quadtree representation of the
blocks in (b).

of a region in a binary image that is represented by a quadtrec
{11, [31-[81,[11].

We assume that the given image is a 2" X 2" array of unit
square “pixels.”” The quadtree is an approach to image repre-
sentation based on successive subdivision of the array into
quadrants. In essence, we repeatedly subdivide the array into
quadrants, subquadrants, . . . until we obtain blocks (possibly
single pixels) which consist entirely of either 1’s or 0’s. This
process is represented by a tree of oui-degree 4 in which the
root node represents the entire array, the four sons of the root
node represent the quadrants, and the terminal nodes corre-
spond to those blocks of the array for which no further sub-
division is necessary. For example, Fig. 1(b) is a block de-
composition of the region in Fig. 1(a), while Fig. 1(c) is the
corresponding quadtree. In general, BLACK and WHITE square
nodes represent terminal nodes consisting entirely of 1’s and
0’s, respectively. Circular nodes, also termed GRAY nodes,
denote nonterminal nodes,

Sections H-V present and analyze the algorithm. Included
is an informal description of the algorithm along with motivat-
ing considerations. The actual algorithm is given using a vari-
ant of Algol 60 [91.

II. DEFINITIONS AND NOTATION

Let each node in a quadtree be stored as a record contain-
ing six fields. The first five fields contain pointers to the
node’s father and its four sons, ie., quadrants, labeled NW,
NE, SE, and SW. Given a node P and a son I, these fields are
referenced as FATHER(#) and SON(P, I), respectively. We as-
sume that the FATHER of the root of the tree is NULL. We
can determine the specific quadrant in which a node, say P,
lies relative to its father by use of the function SONTYPE(P),
which has a value of I if SON(FATHER(P), I)=P. The sixth
field, named NODETYPE, describes the contents of the block
of the image which the node represents, i.e., WHITE if the
block contains no 1’s, BLACK if the block contains only 1°s,
and GRAY if it contains 0’s and 1’s,
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Fig. 2. Relationship between a block’s four quadrants and its
boundaries.

-Let the four sides of a node’s block be called its N, E, §,
and W sides. They are also termed its boundaries and at times
we speak of them as if they are directions. Fig. 2 shows the
relationship between the quadrants of a node’s block and its
boundaries. A node, say (, is said to be a neighbor of another
node, say P, in direction D if @ corresponds to the smallest
block having a side that is adjacent to all of side D of P’s block
(not just at a corner; also, 2 node corresponding to a bigger
block cannot be returned when an equal adjacent one exists).
For example, in Fig. 1, BLACK node 4 is the neighbor of
BLACK node E in the northern direction; similarly, GRAY
node 4 is the southern neighbor of node A.

The algorithm for the computation of the perimeter makes
use of the spatial relationships between the various sides. This
is accomplished by use of the functions OPSIDE, CSIDE, and
CCSIDE. OPSIDE(B) is a side facing side B} e.g., OPSIDE(E) =
W. cSIDE(B) and CCSIDE(B) correspond to the sides adjacent
to side B in the clockwise and counterclockwise directions re-
spectively, e.g., CSIDE(E) = § and CCSIDE(E) = N,

In order to determine a node’s neighbor in a specified dlrec-
tion, we have to traverse ancestor links until a common an-
cestor of the two nodes is found. Once the common ancestor
is located, we descend along a path that retraces the previous
path with the modification that each step is a reflection of the
corresponding step about the axis formed by the common
boundary between the two nodes, Forexample, when attempt-
ing to locate the northern neighbor of nodes E (i.e., node 4)
in Fig. 1, node 1 is the common ancestor, and the northern
edge of the block corresponding to node E is the common
boundary. During this process we pass through nodes 4, 3, 1,
2, and A in order. The expression of this procedure is facili-
tated by the following predicates and functions. ADJ(B,T)is
true if and only if quadrant F is adjacent to boundary B of
the node’s block, e.g., ADJ(N, NW) is true. REFLECT(B,I)
yields the SONTYPE value of the block of equal size that is
adjacent to side B of a block having SONTYPE value J, e.g.,
REFLECT(W, NW) = NE, REFLECT(E, NW)=NE, REFLECT(¥,
NW)=SW, and REFLECT{(S, NW)=SW. QUAD(B,C) is the
quadrant which is bounded by boundaries B and C (if B and
C are not adjacent boundaries, then the value of QUAD(B, C)
is undefined); e.g., QUAD(N, W) = NW.

Given a quadtree corresponding to a 2 X 2® array, we say
that the root node is at level n, and that a node at level { is
at a distance of n - i from the root of the tree. In other
words, for a node at level i, we must ascend n» - { FATHER
links to reach the root of the tree. Note that the farthest node
from the root of the tree is at level 220. A node at level 0 cor-
responds to a si ge pixel in the image. Also, we say that a
node-is of size 2 1f it is found at level S in the tree, i.e., it
has a side length of 25

III. ALGORITHM

The perimeter computation algorithm traverses the quad-
tree in postorder (i.e., the sons of a 'node are visited first).
Each segment of the boundary of the region is visited once
and only once, For each BLACK terminal node, say P, visit
all of the nodes whose corresponding blocks have a boundaiy
in common with P’s block. These are termed P’s northern,
eastern, southern, and western adjacencies. For edch of the
visited nodes that is WHITE, the length of the common bound-
ary is included in the value of the perimeter. For example,
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given BLACK node A4 in Fig. 1(b), nodes I, H, B, E, and D are
visited. Of these nodes, only I and H are WHITE and thus the
only contribution to the value of the perimeter is the length
of the boundary segments between node A andJand A and
{denoted by AT and AH, respectively).

The main procedure is termed PERIMETER and is invoked
with a pointer to the root of the quadtree representing
the region and an integer corresponding to the resolution of
the image (e.g., n for a 27 X 2" image array). PERIMETER
traverses the tree and controls the exploration of the adjacen-
cies of each BLACK node. For each BLACK node, say P,
GTEQUAL __ADJ_.NEIGHBOR locates a neighboring node, say
0, of greater or equal size along a specified direction, say D.
If Q is WHITE, then the contribution to the perimeter is the
size of P. If Q is BLACK, then no contribution is made to the
perimeter. If the boundary of P in direction D is on the border
of the image, then no neighbor exists in the specified direction
and NULL is returned. In such a case the contribution to the
perimeter of the boundary of P in direction D is equal to the
size of P, For example, in Fig, 1(b), the neighbors of node C
in the western and southern directions are NULL and contribute
the length of the sides of C that are adjacent to the border of
the image, i.e., CO and CN, respectively. If the boundary of
P in direction D is not on the border of the image, and no
neighboring BLACK or WHITE node exists satisfying our size
criteria, then a pointer to a GRAY node of equal size is re-
turned [e.g., the eastern neighbor of node C in Fig. 1(b)]. In
such a case procedure SUM __ADJACENT continues the search
by examining all nodes of smaller size that are adjacent to P’s
boundary in direction D and accumulating the sizes of all such
nodes that are WHITE [e.g., block M for the eastern border of
node C in Fig. 1(b)].

An alternative method of computing the perimeter is to
apply the algorithm in [1] which converts a quadtree repre-
sentation to a four direction chain code and then simply sum
the lengths of the segments.! The algorithm of this corre-
spondence is simpler since it does not require the segments to
be traversed in sequence around the boundary of the region,
We need only ensure that each boundary segment is visited
once and only once. This is clearly true since during the tree
traversal, the adjacencies of each BLACK node are explored
at least once; on the other hand, each boundary segment is
only explored once since it must adjoin a WHITE node and our
algorithm does not explore adjacencies of WHITE nodes.

As an example of the application of the algorithm, consider
the region given in Fig. 1(a). Fig. 1(b) is the corresponding
block decomposition and Fig. 1(c) is its quadiree representa-
tion. ~All of the BLACK nodes have labels ranging between 4
and G, while the WHITE nodes have labels ranging between H
and §. The BLACK nodes are labeled in the orderin which their
adjacencies are explored by PERIMETER. WHITE nodes H-Q
are labeled in the order in which they are first visited by the
combination of GTEQUAL _ADJ_NEIGHBOR and SUM__ADIJA-
CENT. Thus, the adjacencies of node A have been explored be-
fore those of nodes B, C, etc, The value of the perimeter is ob-
tained by visiting the boundary segments in the order AH, Af,
BJ, BK,BL, CI, CM, CN, CO, EL, EP, FP, GQ, and GM. As-
suming n =3 (i.e., blocks D,E, F,G,M, P, Q, and R are single
pixels), the perimeter is 28. Note that nodes D, R, and § do
not contribute to the value of the perimeter since none of
their sides adjoin the boundary of the region. Table I contains

node-by-node trace of the perimeter computation process.

The actual algorithm is given below using a variant of Algol.

11f we were attempting to estimate the perimeter of the original ob-
ject from the lengths of the border of the digital object, a higher order
chain code such as eight-neighbor imight be more accurate, but our aim
in this correspondence is simply to measure the border of the digital
object 1tself which is by definition a set of honzontal and vertical
cracks
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integer procedure PERIMETER (P, LEVEL };
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[* Find the perimeter of a region represented by a quadtree
rooted at node P that spans a 21 LEVEL by 27LEVEL space */

begin

value node P;

node Q;

value integer LEVEL ;

integer LEN ;

quadrant J;

direction D;

LEN<Q;

if GRAY(P) then
begin

fO!.'I in {“NW,” “NE,” “SW,” “SEH} do
LEN<LEN-+PERIMETER (SON(P, [}, LEVEL- 1);

end
else if BLACK(P) then
begin

fOl'D ill {“N,” ‘fE,” “S,” “W”}.dO

begin

(< GTEQUAL _ADJ_NEIGHBOR{P, D);
LEN<LEN + if NULL(Q) or WHITE{() then 2{LEVEL
else if GRAY (Q) then
SUM —ADJACENT{Q, QUAD(OPSIDE(D), CSIDE(D)),

else 0;
end;
end;
return (LEN);
end;

QUAD(OPSIDE (D}, cCSIDE(D)),
LEVEL)

_ node procedure GTEQUAL._ADJ__ NE[GHBOR(P D),
/* Return the neighbor of node P in horizontal or vertical di-
rection D which is greater than or equal in size to P. If such
a node does not exist, then a GRAY node of equal size is

returned.

If this is also impossible, then the node is adja-

cent to the border of the image and NULL is returned */

begin
value node P;
node 2;
value direction D;

if not NULL(FATHER(P)) and ADJ(D, SONTYPE(P)) then

/* Find a2 common ancestor */

Q< GTEQUAL __ADJ_NEIGHBOR (FATHER P), D)

else Q< FATHER(P);

[* Follow the reflected path to locate the neighbor */
return (if not NULL (Q) and GRAY (Q) then SON(Q REFLECT(D, SONTYPE{P)))

else 2);

end;

integer procedure SUM _ADJACENT(P, Q1, @2, LEVEL);
/* Find all wHITE leaves in quadrants Q1 and @2 of the sub-
quadtree rooted at node P of size 2TLEVEL */

begin
value node P;
value guadrant Q1, 02;
value integer LEVEL ;

return (if GRAY(P) then SUM _ADJACENT(SON(P, @1}, O1, @2,LEVEL-1)
+ SUM _ADJACENT{SON(P, 02), 01, 02, LEVEL- 1)

else if WHITE(P) then 21LEVEL

else 0);
end; '

IV. ANALYSIS

The running time of the perimeter computation algorithm,
measured by the number of nodes visited, depends on the time
spent locating adjacent WHITE nodes and on the size of the
quadtree. Adjacent WHITE nodes are located by procedures
GTEQUAL _ADJ_NEIGHBOR and SUM _ADJACENT. They
invoked four times. for each BLACK node. The amount pf

‘ it

i

work performed by these procedures is obtained by consider-
ing the number of nodes that are visited when an adjacency is
being explored. Recall that we must find the neighbor, and
if it is GRAY, then visit all adjacent WHITE nodes of smaller
size, In the worst case- we are at level n - 1, with a GRAY
neighbor, and all adjacént nodes are at level 0 In such a case
we must visit 2" nodes. For example, consider Fig. 1 where
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TABLE 1
TRACE OF THE PERIMETER COMPUTATION FOR FIG. 1
Contribution
nede gids neighbor seqment to Perimeter Perimeter
1
I 4 g
2
H a a
J e g
A N H AH 2 2
a E : AR g 2
A B3 4
A s - D AD g 2
A s E AE ) 2
A 1} I AT 2 4
B N J BJ 2 6
B E K BK 2 ]
B s L BL 2 10
B W A AB g 10
C N b3 c1 4 14
< E 3
c E 5
< E o CH 1 15
c E G <G g 15
c E 4
C E F 2 15
c E D g 15
c s N CH 4 19
[ o [} co 4 23
3 -
4
D N A AD g 23
D E E DE g 23
D E] F DF -] 23
D W < cD i) 23
E ] A AE g 23
E E L EL 1 24
E s P EP 1 25
-] W o DE é 25
F N D DF g 25
F E P FP 1 26
F S G FG g 26
F W c Ccr -] 26
bl g 26
L a 26
5
G N F G a 26
G E Q GQ 1 27
G s H GM 1 28
G W < cG A 28
Q 2 28
b1 g 28
R i) 28
s B 28

n=3 and we wish to visit the nodes adjacent to the node
labeled C (i.e., nodes D, F, G, and M). We must visit the root
of the quadtree as well as s neighboring GRAY node 3 and
all of its NW and SW sons, ie., a complete binary tree of

height 2. In total, 23 = 8 nodes are visited (nodes 1, 3, 4, D,

F.5,G,and M). :

Our analysis assumes a 2% X 2" random image in the sense
that a node is equally likely to appear in any position and
level in the quadtree. This means that we assume that ail con-
figurations of adjacent nodes of varying sizes have equal
probability, This is different from the more conventional

noticn of a random image which implies that every block at

level O (i.e., pixel) has an equal probability of being BLACK
or WHITE. Such an assumption would lead to a very low
probability of any node corresponding to blocks of size

“ larger than 1. Clearly, for such an image the quadtree is the
wrong representation.

Theorem 1: The average of the maximum number of nodes
visited by each invocation of GTEQUAL __ADJ_NEIGHBOR
and SUM _ADJACENT is 5. ; :

Proof: Given a node P at level i and a direction S, there
are 277277 - 1) neighbor pairs. 27~7-2° have their near-
est common ancestor at level n, 2%~7-21 at leveln-1,---
.and 2771 -2R-1-1 ot level i+ 1. For each node at level {
having a common ancestor at level j, the maximum number
of nodes that will be visited by GTEQUAL _.ADJ__NEIGHBOR
and SUM _ADJACENT is , |

i d ' :
G-DHG-i- D+ 3 28 =2(- - 1)+ 2i*1,
i k=0

This is obtained by observing that the common ancestor is at a
distance of j - i and that a node at level / has a maximum of 2*
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adjacent nodes (all appearing at level 0). Assuming that node
P is equally likely to occur at any level i and at any of the
2n=lan=i- 1) positions at level i, then the average of the maxi-
mum number of nodes visited by GTEQUAL _ADJ__NEIGH-
BOR and SUM _ADJACENT is

Hf f: 2n=d . n=i(2(j - 1 - 1)+ 2i*1)

i=0 f=i+1

. $))
Z 2n—i(2n—i -1
i=u

Making use of the following identities in the numerator of (1)
leads to (2):

n

> =2 (1_2n1+_1)

i=0

[~

N

L_z_n+2 -
2l on

Ma

f=0

0 8
g3y 2).gner oS
3 Gr+2) 3

TS

2

The denominator of (1) can be manipulated in a similar
manner to yield

% C(2IN42 L3 .04l 4 2). &)
Substituting (2) and (3) into (1) results in
3:(3n+7)- 271 418
5- 22n+2 _ 3. gn+l 49
~5 as n gets large
<5. Q.E.D.

Lemma 1: The number of nodes in a quadtree having B
and W BLACK and WHITE, respectively, nodes is bounded by
4/3 - (B + W).

Proof: Let G denote the number of nonterminal nodes.
Given G nonterminal nodes and B+ W terminal nodes, we
have G+ B+ W~ 1 edges (since the tree is an acyclic graph).
Counting another way, by the number of sons, we find that
there are 4G edges. Thus, 4G=G+B+W-1 or G = (B +
W - 1){3. Therefore, the {otal number of nodes in the quad-
tree (i.e.,, G+B+W)is(B+W- 1)/3+B+W=(4-(B+ W)-
1}/3 and our result follows. Q.E.D.

We can now prove the following.

Theorem 2: The average execution time of the perimeter
computation algorithm is of order B + W.

FProof: [From Theorem 1 we have that for each adjacency
involving :J BLACK node, GTEQUAL ._ADJ_NEIGHBOR and
SUM _ADJACENT ftesult in an average maximum of 5 nodes
being visitéd. There are four adjacencies for each BLACK
node, Th%, these two procedures contribute 48+ 5. From
Lemma 1 we have that the number of nodes in the quadtree
is bounded by 4/3 - (B + W). This quantity correlates with the
work performed by procedure PERIMETER since each node in
the quadtree is visited by the traversal. Summing ip these
values we have 4B - 5+4/3 - (B+ W)=4/3 - (16 - B + W).

- Q.E.D.

V. CONCLUDING REMARKS

An algorithm has been presented for computing the total
perimeter of a region in a binary image represented by a
quadtree. The algorithm has been shown to have an average
execution time proportional to the number of blocks com-
prising the region and its background. Note that the number
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image

image

Fig. 3. Altered image for the alternative perimeter computation
method.

of BLACK blocks (i.e., the image complexity) dominates the
execution time of the algorithm. It should be clear that if the
image contains more than one region, then the algorithm will
return the total perimeter of all the regions. Similarly, if
holes are present, their boundaries are also included in the
value of the perimeter obtained by this algorithm. Note that
if we first labeled the connected components (i.e., regions)
of the image [12], then the perimeter of each region could
be separately computed.

Our algorithm examines the four adjacencies of each BLACK
node (i.e., in the N, E, §, and W directions). An alternative
is to only examine for each BLACK node the adjacent WHITE
nodes in the E and § directions. The difficulty with such an
approach is that it ignores the contributions of the ¥ and W
segments of the region’s boundary (e.g., CO,CI, AI, AH,BJ in
Fig. 1). This can be overcome by surrounding the image by six
WHITE blocks, as shown in Fig. 3, and for each BLACK node
examine the adjacent WHITE nodes in the E and § directions
and for each WHITE node examine the adjacent BLACK nodes
in the F and S directions. These BLACK-WHITE and WHITE-
BLACK pairs make a contribution to the perimeter of the image.
It should be clear that the two methods are equivalent. How-
ever, depending on the particular configuration of BLACK and
WHITE blocks in the image, one method may be superior to
the other. In particular, if there are considerably more BLACK
nodes than WHITE nodes, then the second method may be
preferable since less adjacencies need to be explored.

The algorithm demonstrates the uiility of the quadtree as
a desirable data structure for image representation. Computa-
tion of perimeter is generally achieved by use of a chain code
representation. We have shown that it can be computed with
reasonable efficiency when the quadiree is used as the data
structure. ’
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