298

Distance Transform for Images Represented by Quadtrees

HANAN SAMET

Abstract—The concept of distance used in binary array representa-
tions of images is adapted to a quadtree represenfation. The chessboard
distance metric is shown to be particularly suitable for the quadtree.
A chessboard distance transform for a quadtree is defined as the mini-
mum distance in the plane from each BLACK node to the border of a
wHITE node. An algorithm is presented which computes this transform
by only examining the BLACK node’s adjacent and abutting neighbors
and their progeny. However, unlike prior work with quadtrees, compu-
tation of the distance transform requires a capability of finding neigh-
bors in the diagonal direction rather than merely in the horizontal and
vertical directions, The algorithm’s average execution time is propor-
tional to the number of leaf nodes in the quadtree.

Index Terms-Distance transforms, image processing, pattern recogni-
tion, quadtrees.

I. INTRODUCTION

The quadiree [2]-[8], [10]-[14] is a compact hierarchical
representation which is spacewise efficient and also serves to
facilitate search. In this correspondence we investigate the
concept of distance [1], {9] and formulate a definition and
metric which are applicable to guadtrees. The notion of dis-
tance is important in image processing applications for com-
puting properties of an image such as its skeleton as well as
for applying operations such as propagation and shrinking {9].
We show that the chessboard distance metric is particularly
suitable for the quadtree. This leads us to develop an entity
which we term the chessboard distance transform of a guad-
tree. An algorithm for its computation is presented.

Our algorithm requires a capability of locating adjacent
nodes. One of the key differences between our work on quad-
trees [2], [10]1-[12] and earlier work of others [3]1-[5], [8]
is in the way in which we locate adjacent nodes. We do not
use position (i.e., coordinates) or size information [8]. We
also do not assume the existence of links (and the amount of
extra space that they require) from a node to its adjacent
nodes [3]-[5]. Instead, our technigues only make use of the
existing structure of the tree. However, unlike our prior work,
we now must find adjacent nodes in the diagonal direction as
well rather than merely in the horizontal and-vertical direc-
tions. We demonstrate how such diagonally adjacent nodes are
found and discuss its relationship to the method of deter-
mining adjacent nodes in the horizontal and vertical directions.

II. DEFINITIONS AND NOTATION

Assume that the given image is a 27 X 2" array of unit
square “pixels.” The quadtree is an approach fo image repre-
sentation based on a successive subdivision of the array into
quadrants. In essence, we repeatedly subdivide the array into

Manuscript received July 18, 1979; revised July 27, 1981. This work
-was supported by the Defense Advanced Research Projects Agency and
the U.8. Army Night Vision Laboratory under Contract DAAG-53-76C-
0138 (DARPA Order 3206).
The author is with the Department of Computer Science, University
of Maryland, College Park, MD 20742,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI4, NO. 3, MAY 1982

quadrants, subguadrants, . . . , until we obtain blocks (possibly
single pixels) which consist entirely of 1’s or @’s. This process
is represented by a tree of out-degree 4 in which the root node
represents the entire array, the four sons of the root node
represent in order the NW, NE, §¥, and SE quadrants, and the
terminal nodes correspond to those blocks of the array for
which no further subdivision is necessary. For example,
Fig. 1(b) is a block decomposition of the region in Fig. 1(a),
while Fig. 1(c) is the corresponding quadtree. In general,
BLACK and WHITE square nodes represent blocks consisting
entirely of 1’s and @’s, respectively. Circular nodes, also
termed GRAY nodes, denote nonterminal nodes.

Each node in a quadtree is stored as a record containing
seven fields. The first five fields contain pointers to the node’s
father and its four sons, labeled NW, NE, SE, and SW. Given a
node P and a son [, these fields are referenced as FATHER (P)
and SON (P, I), respectively. Attimesitisuseful to use the func-
tion SONTYPE(P) where SONTYPE(P) = @ iff SON(FATHER (P),
Q) = P. The sixth field NODETYPE describes the contents of
the block of the image which the node represents, i.e., BLACK,
WHITE, or GRAY. The seventh field DIST indicates the dis-
tance to the ncarest WHITE node according to the specified
distance metric. This field is only meaningful for BLACK
nodes, A WHITE node is said to have distance zero,

Let the four sides of a node’s block be called its NV, E, §,
and W sides. They are also termed its boundaries and at
times we speak of them as if they are directions. Fig. 2 shows
the relationship between the quadrants of a node’s block and
its boundaries. The specification of the spatial relationships
between the various sides is facilitated by use of the functions
OPSIDE, CSIDE, CCSIDE, and QUAD. OPSIDE(R) is a side facing
side B, e.g., OPSIDE(N) = §. CSIDE(B) and CCSIDE(B) corre-
spond to the sides adjacent to side B in the clockwise and
counterclockwise directions, respectively, e.g., CSIDE(N) = E
and cCSIDE(N) = W. QUAD(S1, §2) is the quadrant bounded
by boundaries §1 and $2 (if §1 and S§2 are not adjacent
boundaries, then QUAD(S1, §2) is undefined), e.g., QUAD(S,
E) = SE, while QUAD(S, NV} is undefined. Similarly, OPQUAD
(QUAD(S1, 52) = QUAD(OPSIDE{S1), OPSIDE{S2)).

For a quadtree corresponding to a 2" X 27 array we say that
the root is at level #, and that a node at level { is at a distance
of n - { from the root of the tree. In other words, for a node
at level i, we must ascend r - { FATHER links to reach the root
of the tree, Note that the farthest node from the root of the
tree is at level 2 @. A node at level ¢ corresponds to a single
pixel in the image. Also, we say that a node is of size 2% if
it is found at level § in the tree, i.¢., it has a side of length 25,

III. DISTANCE

For an image represented by a binary array, we can define a
function dJ that takes pairs of points into nonnegative num-
bers, It is called a metric or a distance function if for all
points p, g, and r the following relations are satisfied:

D) d{p,q)=0,and d(p, q) = @ if and only if p = g (positive

_definiteness),

2)d(g, p)=d(p, q) (symmetry),

3)d(p,r)<d(p,q)+d{g,r) (triangle inequality).

Given the points p = (p,, py) and g = (g, 9,) We now ex-
amine some of the more common metrics. The most com- .
monly used metric is the Euclidean distance

dg(p, @) =V(px - 4x)* +(py - ay)*.

0162-8828/82/0500-02983%00.75 © 1982 IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSES AND MACHINE INTELLIGENCE, VOL. PAMI-4, NO. 3, MAY 1982

299

B | e
M FF 6
/ op {cE 144
// / W
o
n / . g
7 it
JJ KK
L M 00 [
(a)
(b)
ol
o fo
0 ¢ 0
s
24 34 qD o /*ﬁ]ﬂ“ "5//
A0]
[} 60 15 30 OO} g ML) (104 //
i FF 66 0 I GILF RBNGPP 0 /
A 0
0 g u] Ia[n oo
B h B CAGN LHN TP 3K
0 0 0 o
n []
DWMEF EI 4K
© @)

Fig. 1. An image, its maximal blocks, the corresponding quadtree, and the chessboard distance transform. Blocks in the
image are shaded. (a) Sample image. (b) Block decomposition of the image in (a). (c) Quadiree representation of the

blocks in (b). (d) Chessboard distance transform of (b).

HW | NE

SW | SE
S

Fig. 2. Relationship between a block’s four quadrants and its boundaries.

Two other metrics which are used in image processing are the
absolute value metric, or the city block distance

dg(p, @)= Py~ axl +1py - gyl

and the maximum value metric, or the chessboard distance

dy(p, q)=max {Ip - q,l, Ip, - a,1}.

The set of points ¢ having dg(p, g) < t are those points con-
tained in a circle centered at p having radius #. Similarly,
d4(p, g) < ¢t yields a diamond, centered at p, with side length
/2, and dp;(p, g) < ¢ yields a square, centered at p, with
side length 2¢.

For an image represented by a quadtree we use the same
metrics, The only difference is that the points for which the
metrics are defined are centers of blocks. We also define the
distance transform T for a quadtree to be a function that
yields for each BLACK block in the quadtree the distance (in
the chosen metric) from the center of the block to the nearest
point which is on a BLACK-WHITE border. More formally,
lettinig x be the center of a BLACK block B, z be a point on the
border of a WHITE block W, and only using F intermediately
as the distance to a particular WHITE block’s border, we have

FB,W)=mind(x,z)
z

T(B) = min F{B, W).
W

We say that 7 of a WHITE block is zero and that the border of
the space represented by the quadtree of the image is BLACK.
Notice that the distance transform is not defined in terms of
a center to center distance. This is done to avoid a bias
against large size WHITE adjacent blocks, and moreover it will
be seen to enable us to restrict the number of nodes visited
while computing it,

Given blocks P and @, we say that Q is a neighbor of P when
both of the following conditions are satisfied:

1) P and @ share a common border, even if only a corner,

2)if @ is a BLACK or WHITE block, then its size is greater
than or equal to that of P, while if it is a GRAY -block, then it
and P are of equal size.

For example, block R in Fig. 1(b) and (c) has neighbors O,
NN, 00, @, HH, PP, MM, and 8. A block has a maximum of
eight neighbors, in which case they are all of equal size [e.g.,
block O in Fig. 1(b)], and a minimum of five neighbors. The
minimum is obtained by observing that a node cannot be adja-
cent to two nodes of greater size on opposite sides (e.g., given
node P, and nodes @ and R adjacent to ifs east and west sides,
respectively, then nodes @ and R cannot be both greater in
size than P). Thus, a node can have at most {wo larger sized
neighbors adjacent to its nonopposite sides and two of these
neighbors can subsume at most three additional neighbors,
thereby requiring at least three more neighbors. For example, -
for riode D in Fig. 1{(b), A4 subsumes the NW, N, and NFE
neighbois; C subsumes the W and SW neighbors; the remaining
neighbors are £, F, and DD in directions §, SE, and F, respec-
tively. We can now prove the following theorem which aids
in understanding the amount of work involved in computing

. the distance transform for any metric.

Theorem 1: For any BLACK block in the image, its neigh-
bors cannot all be BLACK.
Proof: One of the neighbors of the block, say P, must be

GRAY or WHITE since otherwise merging would have taken

300

P 11T

i

Aﬁlf}ﬁ

I
R
B Eiﬁl’éﬁ'ﬁ

ofo]o

o
=]
[=]
=)
=)
B

RN L)
§\§§
AN
ﬁ
HREE

Y=y

e

§

N4

~

R

S ‘._ .

=i
VT

;_-,F =1 53 ml::lc‘lw

=1 =B Y

NN

R

3 TQ
NN
N

[=x

oy

TN
Y
S

\\\
A
SIS
iy ™.
N N
\
o~
g

RN RAE
R & N -

aoclcoeccc!elcc

i
@ £
in
=
=)

(b)

Fig. 3. An image illustrating the maximum number of nodes that need
to be visited when computing the chessboard distance transform value
for node 1. {a) Image. (b) Chessboard distance transform of the
image in (a).

place and P would not be in the image (i.e., P would be part of
a bigger BLACK block). Recall that neighbors are adjacent or
abutting blocks of greater than or equal size. Q.E.D.

Theorem 1 makes the chessboard distance metric especially
attractive. It means that for a BLACK block of size 29, say P,
the center of the WHITE block whose border is nearest to P
(hereinafter referred to as the nearest WHITE biock) must be
found at a distance of <3 - 257! ie., within a square centered
at P of side length 3 - 25, In fact, the worst case arises when
the nearest WHITE block is a block of minimum size (i.e.; a
single pixel) adjacent to the furthest boundary of P’s neighbor-
ing GRAY block [e.g., WHITE block EE with respect to BLACK
block & in Fig. 1(b)]. Notice that none of P’s neighboring
BLACK blocks need be taken into consideration in computing
P’s chessboard distance transform since the value would have
to be at least 3 - 2571 (e.g., BLACK blocks O, @, and R with
respect to BLACK block N in Fig. 1(b). Thus, Theorem 1
means that when computing the chessboard distance transform
of a quadtree, for each node corresponding to a BLACK block
we only need to consider its GRAY nejghboring nodes. Fig.
3(a) illustrates the worst case in terms of the number of blocks
that need to be examined, i.e., BLACK block 1 is surrounded
by rings of BLACK blocks of decreasing size,

Theorem 1 can also be used to constrain the amount of work
needed to compute other distance transforms. In the case of
the Euclidean distance transform given BLACK node P of size
25 the nearest WHITE block is at a distance <3 2571 - /2.
Similarly, when a city block distance transform is used the
maximum distance is <3 - 25, These values are all derived
analogously. -

Unfortunately, we cannot say that larger sized neighbors
need not be taken into consideration when computing the
Euclidean and city block distance transforms, That this is frue
can be seen by examining Fig. 4 which iilustrates the regions

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-4, NO. 3, MAY 1982

Lo
[
B
C \
A S 031
i 4~dy=[3-2
Mg = 325 vz
oS
dy = 3.2
—]

Fig. 4. Regions within which the closest WHITE node to BLACK node 4
must lie for several metrics.

within which Theorem 1 stipulates that the nearest WHITE
block be found. For example, given BLACK block A of size
25 in the case of both the Euclidean and city block distance,
block B may be the nearest WHITE block to block A. This
may require visiting an eastern neighbor of block A of size
251 On the other hand, when chessboard distance is used,
block C is the nearest to block 4 and, in fact, no neighboring
blocks of greater size ever need to be visited. Thus, we see
that the Euclidean and city block distances may lead to more
than eight neighboring blocks of equal size being visited or
even to blocks of greater size.

Note that our definition of distance treats nonexistent
neighbors (i.e., on the other side of the border of the space
represented by the quadtree) as BLACK and of equal size. This
is consistent with the definition of the chessboard distance
transform as yielding for each BLACK node in the guadtree
the distance from the center of the block to the nearest point
which is on the border between a BLACK and a WHITE node.

In the remainder of this correspondence we focus our atten-
tion on the chesshoard distance transform due to its computa-
tional simplicity. This simplicity arises from the property of
the chessboard distance metric that the set of points ¢ such
that d(p, g} < t is a square, rather than a circle or a2 diamond
.as is true for the Euclidean and city block distance metrics,
respectively.

IV. LOCATING ' NEIGHBORS

The chessboard distance transform computation algorithm
requires us to be able to examine the eight neighbors of each
BLACK node. Thus, we must be able to locate these neighbors.
This is different from our own earlier work on guadirees [2],
[10]-[12] since there we were only concerned with determin-
ing nodes in the horizontal and vertical direction (i.e., N, E, S,
and W), whereas now we must aiso be able to locate neighbor-
ing nodes in the diagonal direction (i.e., NE, SE, SW, and NW),
However, unlike earlier work of others on quadtrees, we do
not use position (i.e., coordinates) or size information [8]. We
also do not assume the existence of links {and the amount of
extra space that they require) from a node to its adjacent
nodes [3]-[5]. Instead, we only make use of the existing
structure of the tree. In the following, we first review how
neighbors in the horizontal and vertical direction are found.
Next, we show how these methods can be extended to enable
the determination of neighbors in the diagonal direction.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-4, NO. 3, MAY 1982 301

Finding a node’s neighbor in a specified horizontal or verti-
cal direction requires us to traverse ancestor links until a
common ancestor of the two nodes is found. Once the
common ancestor is located, we descend along a path that re-
traces the previous path with the modification that each step is
a reflection of the corresponding prior step about the axis
formed by the common boundary between the two nodes.
For example, when attempting to iocate the eastern neighbor
of node L (i.e., node 0) in Fig. 1, node 1 is the common ances-
tor, and the ¢astern edge of the block corresponding to node L
is the common boundary. During this process, encoded by
procedure GTEQUAL — ADJ_NEIGHBOR, we pass through nodes
8, 2,1, 3, and 0 in order. The expression of this procedure is
facilitatéd by the predicate ADJ and the function REFLECT.
ADJ(B, [} is true if and only if quadrant [.is adjacent to
boundary B of the node’s block, e.g., ADJ(W, SW) is true,
REFLECT(B, I) yields the SONTYPE value of the block of
equal size that is adjacent to side B of a block having SON-
TYPE value [, e.g., REFLECT(N, SW)} = NW,K REFLECT(F, SW)}=
SE, REFLECT(S, SW) = NW, and REFLECT(W, SW) = SE.

Finding neighbors in a diagonal direction is more compli-
cated. Once again, we must traverse ancestor links until a
common ancestor of the two nodes is found. We require a
three-step process. - First, we locate the given node’s nearest
ancestor, say P, who is also adjacent (horizontally or verti-
cally) to an ancestor of the sought neighbor, say Q. Next, we
make use of GTEQUAL - ADJ_NEIGHBOR to iocate Q. Finally,
we retrace the remainder of the path while making directly
opposite moves (e.g., a SW move becomes a NE move). The
nearest ancestor of the first step is the first ancestor which
is not reached by a link equal to the direction of the desired
neighbor, e.g., to find a AW neighbor, the nearest such ances-
tor is the first ancestor node which is not reached via its son in
the VW direction. For example, the NE neighbor of node F
in Fig. 1 is EF. It is located by ascending the iree until the
nearest ancestor 10, which is also adjacent horizontally (in
this case) to an ancestor of EE, ie., 11, is found. This re-
quires going through a SE link to reach 10. Node 11 is now
reached by applying GTEQUAL _ ADJ_NEIGHBOR in the direc-
tion of the adjacency (i.e., east). This forces us to go through
a NE link to reach 7 and a SW link to reach 2. Backtracking
results in descending a SE link to reach 8 and a NW link to
reach 11. Finally, we backtrack along the remainder of the
path making 180" moves, i.e., we descend a AW link to reach
EE. The expression of this is aided by the function COMMON -
SIDE (@I, Q2) which indicates the boundary of the block
containing quadranis Q1 and @2 that is common to them
(if Q1 and Q2 are not adjacent brother quadrants, then the
value of COMMONSIDE is undefined). For example, COMMON -
SIDE (SE, SW) = §, while COMMONSIDE (NW, SF) is undefined,

V. ALGORITHM

The chessboard distance transform algorithm traverses the
quadtree in postorder (i.e., the sons of a node are visited first).
Recalling the definition of a neighbor given in Section III, we
have that for each BLACK node of size 29 its eight neighbors
in the N, NE, E, SE, §, SW, W, and NW directions may have to
be explored in determining the nearest WHITE node. If any of
the neighbors is WHITE, then the minimum distance is 25!
and we cease further processing. Neighboring BLACK nodes
do not affect the value of the chessboard distance transform
since they result in a minimum transform value of 3 - 25-1
which exceeds the theoretical maximum. Thus, the heart of
the algorithm lies in processing GRAY nodes,

The main procedure jis termed CHESSBOARD _DIST and is
invoked with a pointer to the root of the quadtree represent-
ing the image and an integer corresponding to the log of the
diameter of the image (e.g., n for a 2" X 27 image array),
CHESSBOARD_DIST traverses the tree in postorder and con-

trols the exploration of the eight neighbors of each BLACK
node.

GTEQUAL — ADJ_NEIGHBOR locates a neighbor along a speci-
fied horizontal or vertical direction (e.g., N, E, 8, or W). If the
node is on the edge of the image, then no neighbor exisis in
the specified direction and NULL is returned [e.g., the western
neighbor of node C is Fig. 1(b)]. If the node is not on the
edge of the image and no neighboring BLACK or WHITE node
exists, then a pointer to a GRAY node of equal size is returned
{e.g., the eastern neighbor of node 1 in Fig. 3(a)]. In such a
case, procedure DIST-.ADJACENT continues the search by
examining the subguadrants of the adjacent GRAY node. We
first examine the nodes corresponding to the subguadrants
adjacent to the side of the node being processed [e.g., sub-
quadrants NW and SW of the eastern neighbor of node 1 in
Fig. 3(a)]. If either node is WHITE, then a closest WHITE node
in the specified direction has been found, If both nodes are
GRAY, then we recursively apply DIST_ADJACENT to the
corresponding subquadrants. If both nodes are BLACK, then
we examine the remaining two subquadrants in a similar
manner [e.g., subquadrants NE and SF of the eastern neighbor
of node 1 in Fig. 3(a)].

GTEQUAL —CORNER _NEIGHBOR locates a neighbor adjacent
to a specified corner (e.g., NE, SE, SW, or NW). If the node is
on the edge of the image, then no neighbor exists in the speci-
fied corner and NULL is returned [e.g., the NW neighbor of
node C in Fig. 1{b}]. If the node is not on the edge of the
image and no neighboring BLACK or WHITE node exists, then a
pointer to a GRAY node of equal size is returned [e.g., the NE
neighbor of node 1 in Fig. 3(a)]. In such a case, procedure
DIST_CORNER continues the search by examining the sub-
quadrants of the adjacent GRAY node. We first examine the
nodes corresponding to the subquadrant which is adjacent to
the corner of the node being processed [e.g., subquadrant SW
of the NE neighbor of node 1 in Fig. 3(a)]. If the node is
WHITE, then a closest node in the specified direction has been
found. If the node is GRAY, then we recursively apply DIST_
CORNER to the subquadrant. If the node is BLACK, then we
recursively examine the three remaining subquadrants in the
following manner. We apply DIST_ADJACENT to the BLACK
node’s adjacent subquadrants in a direction which is adjacent
to the BLACK node [e.g., DIST—ADJACENT is applied to the
NW and SE subquadrants of the NE neighbor of node 1 in
Fig. 3(a)]. We also apply DIST_CORNER to the nonadjacent
subguadrant [e.g., the NF subquadrant of the NE neighbor
of node 1 in Fig, 3(a)].

As an example of the application of the algorithm, consider
the region given in Fig. 1(a). Fig. 1(b) is the corresponding
block decomposition, while Fig. 1{c} is its quadtree represenia-
tion. All of the BLACK nodes have labels ranging from A4 to R,
while the WHITE nodes have labels ranging between A4 and
PP. The GRAY nodes have labels ranging between 1 and 11,
The BLACK nodes are labeled in the order in which their adja-
cencies are explored by CHESSBOARD_DIST. Fig. 1(d} con-
tains the chessboard distance transform corresponding to
Fig. 1({b). :

procedure CHESSBOARD _ DIST (P, LEVEL);

[* Given a quadtree rooted at node P spanning a 2T LEVEL by
2T LEVEL space, find the Chessboard distance of each BLACK
node to its closest WHITE node. WHITE nodes are assigned
distance @ */

begin
value node P,
node Q;
value integer LEVEL;
integer C;
quadrant [;
direction D;
if GRAY (P) then

302

begin -
for Fin {“NW,” “NE,” “SW,” “SE”} do
CHESSBOARD _DIST(SON(P,7),LEVEL-1);
end
else if BLACK(P) then
begin
D(_G‘N,,;
C<2TLEVEL;
do
begin
Q<GTEQUAL _ADJ_NEIGHBOR (P,D);
D<if NULL(Q) or BLACK(Q) then C
else if WHITE(Q) then @
else DIST - ADJACENT(Q,QUAD(COPSIDE(D),
CCSIDE(D)), QUAD{OPSIDE (D),
CSIDE(D)),21(LEVEL-1),8 ,C);
if C5£0 then
begin
Q< GTEQUAL _CORNER —NEIGHBOR (P,
QUAD (D,CSIDE(D)));
D<if NULL{Q) or BLACK{(Q) then C
else if WHITE{Q) then ¢
else DIST_CORNER{Q,D,CSIDE(D),
2t (LEVEL-1),4,C);
D+csIDE(D);
end;
end
untit C=¢ or D=“N";
DIST(P)<C+21(LEVEL —1);
end
else DIST(P)< & ; /* a WHITE node */
end;

node procedure GTEQUAL — ADJ_NEIGHBOR (P,D);

/* Return the neighbor of node P in horizontal or vertical
direction D. If such a node does not exist, then return
NULL */

begin
value node P;
node Q;
value direction D;
if not NULL(FATHER (P)) and ADI(D,SONTYPE(P)) then

/* Find a common ancestor */
< GTEQUAL _ADJ]__NEIGHBOR(FATHER (P),D)
else O < FATHER (P); .
{* Follow the reflected path to locate the neighbor */
return (if not NULL(Q) and GRAY (Q) then SON (0,
REFLECT(D,SONTYPE(P))) '
else Q);
end;

integer procedure DIST _ADJACENT(P,01,02,W,B,C);

/* Given a subquadtree rooted at node P spanninga 2 + W X
2+ W space, the distance of the closest WHITE node to the
border formed by guadrants @1 and Q2 of P. Bis a lower
bound for the distance. C is the minimum distance ob-
tained so far */

begin
value node P;
value quadrant 01,02,
value integer B,C, W,
return (if B=C then C /* The minimum has already been

: found */
else if WHITE(P) then B
else if BLACK(P) then C .
else if BLACK(SON{P,Q1)) and BLACK (SON (P,(2)) then

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-4, NO. 3, MAY 1982

DIST . ADJACENT (SON {Pﬁ?PQUAD (Q1»,01,02,
2,B+W,

DIST .. ADJACENT(SON (P,
OPQUAD((Q2)),01,02,
Wj2,B+W,.C))

else DIST . ADJACENT(SON (P,Q2),01,02,W/2,B,

DIST _ ADJACENT(SON (P,Q1),

Q1,02,W(2,B,C)));
end;

node procedure GTEQUAL — CORNER . NEIGHBOR {,C);
/* Return the neighbor of node P in diagonal direction C. If
such a node does not exist, then return NULL */
begin
value node P;
node @;
value quadrant C; ‘
if not NULL(FATHER (P)) and SONTYPE (PY#0PQUAD(C)
then if SONTYPE{(P)=C then Q< GTEQUAL .CORNER _
NEIGHBOR{FATHER (P),C) else 0+ GTEQUAL _ADj_
NEIGHBOR (FATHER (P},COMMONSIDE (SONTYPE(P),C))
else < FATHER (P),
[* Follow the opposite path to locate the neighbor */
return (if not NULL(Q) and GRAY (Q) then SON(Q,
OPQUAD (SONTYPE(P)))
else 0);

end;

integer procedure DIST _CORNER(P,D1,D2,W,B,C);

/* Given a subquadiree rooted at node P spanning a 2 - W X
2+ W space, return the distance of the closest WHITE node
to the corner formed by quadrant OPQUAD(QUAD(D1,D2))
of P. B is a lower bound for the distance, € is the mini-
mum distance obtained so far, */

begin
value node P;
value direction D1,D2;
value integer B,C, W;
integer TEMP;
if C 2 D then return (C) /* The minimum has already been

found */
else if WHITE (P} then return (B)
else if BLACK(P) then return (C)
else
begin
TEMP<DIST . CORNER (SON{P,0PQUAD(QUAD(D1,
D2))),D1,D2,W[2,B,C);
TEMP<DIST_ ADJACENT{SON (P,QuaD(D]1,
OPSIDE(D2))),
OPQUAD(QUAD(D1,D2)),
QUAD(OPSIDE(D1),D2),
W2, B+W, TEMP);
TEMP<DIST — ADJACENT (SON (P,QUAD (OPSIDE(D1),
D2y,
QUAD{D1,0pPSIDE(D2)),
OPQUAD{QUAD(D1,D2)),
W/{2,B+W, TEMP),
TEMP+DIST _CORNER (SON(P,QUAD(D1,D2},D1,D2,
W{2,B+W TEMP);
return (TEMP);
end;
end;

VI. CONCLUDING REMARKS

The concept of distance has been applied to images repra-
sented by quadtrees, A related concept, termed a chessboard
distance transform, has been defined and an algorithm has

