1IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 6, NOVEMBER 1985

A Model for the Analysis of Neighbor Finding in
Pointer-Based Quadtrees

HANAN SAMET anp CLIFFORD A. SHAFFER

Abstract—A natural byproduct of the tree-like nature of the quad-
tree is that many basic image processing operations can be imple-
mented as tree traversals which differ in the nature of the computation
that is performed at each node. Some of these computations involve the
inspection of a node’s adjacent neighbors (termed neighbor finding).
_A new model is developed for images represented by quadtrees, and it
is used to analyze various neighbor-finding techniques. The model’s
predicted costs for neighbor finding correlate very closely with empir-
ical results and it is superior to the model that was used previously,

Index Terms—Cartography, computer graphics, hierarchical data
structures, image processing, neighbor finding, guadtrees.

I. INTRODUCTION

In recent years, the region quadtree representation [6], [12] has
gained use as a data structure for applications in image processing,
computer graphics, cartography, and other areas. A natural byprod-
uct of the tree-like nature of the quadtree is that many basic oper-
ations can be implemented as tree traversals (¢.g., connected com-
ponent labeling [9], etc.). The difference between them lies in the
nature of the computation that is performed at the node. Often,
these computations involve the examination of nodes whose corre-
sponding blocks are adjacent to the block whose node is being pro-
cessed. We call such nodes neighbors, and the process of locating
them is termed neighbor finding. Neighbor finding is also crucial
‘to algorithms for converting between representations {e.g., to con-
_struct a quadtree from a boundary code [8] and vice versa [3], etc.).

Manuscript received September 14, 1984; revised May 28, 1985. Rec-
ommended for acceptance by 8. L. Tamimoto. This work was supported by
the National Science Foundation under Grant MCS-83-02118,

The authors are with the Department of Computer Science and the Cen-
ter for Automation Research, University of Maryland, College Park, MD
20742.)

7

In {10], algorithms are described and analyzed for locating dif-
ferent kinds of neighbors. The analysis of the execution time of the
algorithms was done in terms of the average number of nodes (using
a particular image generation model) that needed to be traversed in
order to locate the desired neighbor. The contributions of this cor-
respondence are an improved model and empirical results that are
in very close correlation with the model. For our new model, the
observed values are within 6 percent of the predicted values,
whereas for the old model, the predicted values were larger than
the observed values by between 21 and 37 percent.

H. DEFINITIONS

The quadtree is an approach to region representation that is based
on the successive subdivision of an image array into quadrants. If
the array does not consist entirely of 1°s or entirely of ’s (i.e., the
region does not cover the entire array), then we subdivide it into
quadrants, subquadrants, until we obtain square blocks (possibly
single pixels) that consist entirely of 1’s or entirely of 0's; i.e., each
block is entirely contained in the region or entirely disjoint from it.
As an example, consider the region shown in Fig. 1(a) which is
represented by the 2* x 27 binary array in Fig. 1(b). The resulting
blocks for the array of Fig. 1(b) are shown in Fig. l{c) and the
corresponding quadtree is shown in Fig. 1(d). All examples cited
in this correspondence refer to Fig. 1. Fora 2* X 2" image. we say
that the root is at level 7, and that a node at level 7 is at a distance
of n — i from the root of the tree. Nodes corresponding to pixels
are at level 0.

Each node of a quadtree corresponds to a block in the original
image. We use the terms block and node interchangeably. The term
that' will be used depends on whether we are referring to a block
decomposition [i.e., Fig. 1{c)] ora tree [i.c., Fig. 1(d)]. Each block
has four sides and four corners. At times we speak of sides and
corners collectively as directions. Let the four sides of a node’s
block be called its N, E, S, and W sides. The four corners of a
node’s block are labeled NW, NE, SW, and SE. Given two nodes P
and @ whose corresponding blocks do not overlap, and a direction
D, we define a predicate adjacent such that adjacent (P, Q, D) is
true if there exist two pixels p and g contained in P and Q, respec-
tively, such that either g is adjacent to side D of p, or corner D of
p is adjacent to the opposite corner of g. In such a case, we say that
rnodes P and Q are neighbors. For example, nodes J and 39 in
Fig. 1 are neighbors since J is to the west of 39; similarly, for nodes
38 and H since H is to the northeast of 38. In this correspondence,
we are interested in the following four types of neighbors. In the
construction of names we use the following correspondence: G for
“greater than or equal,” C for **corner,” § for “side,” and N for
“neighbor.”

1) GSN(P, D) = @: Node @ corresponds to the smallest block
(it may be gray) adjacent to side D of node P of size greater than
or equal to the block corresponding to P.

2) CSN(P, D, C) = @: Node Q corresponds to the smallest
block that is adjacent to the D side of the C corner of node P.

3) GCN(P, C) = @: Node Q corresponds to the smallest block
(it may be gray) opposite to C corner of node P of size greater than
or equal to the block corresponding to P.

4y CCN(P, C) = (: Node @ corresponds to the smallest block
that is opposite to the C corner of node P.

For cxample, in Fig. 1, GSN(J, E) = K, GSN(J, §) = L, CSN(J,
E, SEY = 39, GCN(H, NE} = G, GCN(H, SW) = K, and CCN(H,
SW) = 38.

[II. NEeIGHBOR FINDING

The relations GSN, CSN, GCN, and CCN are implemented in
[10] using a quadtree implementation where each node has four links
from a node to its four sons and one link to its father for a nonroot
node. For example, to compute GSN(P, D), the basic idea is to
ascend the tree until a common ancestor of both P and GSN(P, D)
is located, and then descend the tree in search of GSN(P, D).

~ (1162-8828/85/1100-0717$01.00 © 1985 IEEE

1IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 6. NOVEMBER 1985

718
ClOJC|0E0|a] 00
0]ol0]o[cjojofo
olojojoj it
Olojo|C|EjIfi]t
[l AR ERREL
CIOI gl
Qjoplif1]1]of0
OIOfHEI{1]{OIC[O
(a))} (c)
37 38 39 40 57 58 59 60
(d)
Fig. 1. A region (a), its binary array (b). and its maximal blocks |block

decomposition of the region in (a)]—blocks in the region are shaded.
(d) Corresponding quadtree representation of the blocks in (c).

Clearly, we can always ascend as far as the root of the tree and then
start our descent. However, our goal is to find the nearest common
ancestor as this minimizes the number of nodes that must be vis-
ited. In order to see how this process works, suppose that we wish
to determine GSN(M, F) in Fig. 1. The nearest common ancestor
is the first ancestor node which is reached via its NW or SW son
(i.e., the first ancestor node of which M is not an eastern descen-
dant). Next, we retrace the path used to locate the nearest common
ancestor, except that we make mirror image moves about an axis
formed by the common boundary between the nodes. Ini the case of
an eastern neighbor, the mirror images of NE and SE are NW and
SW, respectively, Therefore GSN(M, E) = P. It is located by as-
cending the tree until the nearest common ancestor A has been
reached. This requires going through an SE link to reach node D,
and an SW link to reach node A. Node P is subsequently located by
backtracking along the previous path with the appropriate mirror
image moves (i.e., following an SE link to reach node E, and an
SW link to reach node P). Similar techniques are described in [10]
to compute CSN, GCN, and CCN.

IV. ANALYSIS

The average execution time of the functions GSN, CSN, GCN,
and CCN is analyzed in [10] in terms of the number of nodes that
must be visited in locating the desired neighbor. The analysis of
each function can be decomposed into two stages corresponding to
the process of locating the nearest common ancestor, and then
locating the desired neighbor. A random image model was used un-
der which each node is assumed to be equally likely to appear at
any g:osmon and level in the quadtree. An equivalent statement is
that 3 + (§) of the nodes are at level i, Observe that our notion of a
random image differs from the conventional one which implies that
every pixel has an equal probability of being black or white. Such
an assumption leads to a very low probability of aggregation (i.e.,
nodes corresponding to blocks of size greater than 1 pixel). Clearly,
for such an image the quadtree is the wrong representation (e.g., a
checkerboard). The problem with the conventional random image
model is-that it assumes independence which is clearly not the case
{i.e., a pixel’s value is typically related to that of its neighbors). To
:see -this more vividly, consider Fable I which tabulates the distri-
bution of blocks of varying size for five images that are described
in Section V. Nevertheless, there is room for a better theoretical
justification for our model.

In order to analyze the second stage, we must also model the

TABLE I
NODE $1ZE (PERCENT) DISTRIBUTION

Leal Node Size Model % Flood Topo Land Stone Pebble
1byt T75.00 | 2,468 (47.4) | 14,832 (69.3) | 156,112 (56.4) | 19.732({61.7) | 27,316 (60.8}
2by 2 18.76 §.659 (29.9) 7,336 (20.3) 8,484 (29.7) 8,219 {96.7) 11,995 {28.T)
4by4 4.69 560 (12.7) 2,175 (B.76) 2,984 (10 5) 2,784 {871) 4,418 (9.83)
&by B LT 263 (5.05) 470 (1.88) 784 (2.62) 974 {3.05) E,095 (3.44)
18 by 18 293 175 (3.36} 138 (652) 176 (.613) 213 {.668) 108 {.240}
32 by 32 073 57T {1.09} 61 (.204) 38 (.133) 47 {.147) 18 {040}
54 by 64 018 22 {.423) 8 (.0a2) & (.028) 9 {0 00} 0 {0.00)
128 b[128 046 2 {038 2 {.008) 0 {0.00) Q (O.QL 1] pm)t

‘Total 5.206 26,012 28,649 31,960 44,950

distribution of neighbor pairs (i.c., the possible configurations of
adjacent nodes of varying nodes of varying sizes). There is a num-
ber of models to choose from. In this correspondence, we present
a new model and show how it correlates very closely with empirical
results (see Section V). For example, suppose that we wish to de-
termine GSN(59, W) (i.e., M). In theory, there are three possible
neighbors—i.e., one each of size | X 1,2 X 2, and 4 X 4 at node
distances of 6, 5, and 4, respectively. To compute the average value
of GSN, the model employed in [10] termed the old model, treats
each of these cases individually and as equally probable—i.e., a
node in the same position as 59 makes three contributions to the
average value. In contrast, the model which we introduce and use
in this correspondence, termed the new model, only includes the
average contribution of these three cases. This change is justified
by the fact that, although the neighbor of a large node may appear
at any -of several possible levels, only one ncighbor will actually
exist. While this modification of the model seems trivial, tests on
complex images show that its use leads to a very close correlation
between theory and practice.

We first present an analysis of stage one (i.e., the number of
nodes that must be visited in locating the nearest common ancestor
for side and corner directions) as it is common to GSN, GCN, CSN,
and CCN. This analysis is identical to that performed in [10]. Next,
we analyze stage two. It is here that we employ the new model for
the distribution of neighbor pairs.

Theorem I: The average number of nodes that must be visited
in locating the nearest common ancestor when seeking a neighbor
in a side direction is bounded from above by 2.

Proof: Given a node P at level i and 4 direction toward side D,
there are 2"~ - (2*~1 - 1) poss:ble positions where P might be
located. Of these positions, 2° 7' - 2° have their nearest common
ancestor at level n, 277 - 2 atleveln — 1, - -+, and 2" % -
2"~ ~Tatievel i + 1. The same analysis is repeated for each level
and all the possible cases are treated as equally likely. Starting at a
node at level i, to reach a nearest common ancestor at level j, j — §
nodes must be visited. Therefore, the average as n(n = 1) gets large
is
n-1" n

Z Z n—i , nan—j , -_7-
i=0j=i+12 2 (j l)
-1
Z 2;1—&' . (zn—i -D
i=0
=2_6'(n—l)'2"+6S
22"+2__6.2ﬂ+2

Theorem 2: The average number of nodes that must be visited
in locating the nearest common ancestor when seeking a neighbor
in a corner direction is bounded from above by §.

Proof: Given a node P at level { and a direction toward quadrant
C, there are (2" ¥ — 1)* possible positions where P might be lo-
cated. In [10] it is shown that of these positions L .2 -2 =
1) —1) have neighbors in direction C such that the nearest common
ancestor is at level #, 4" . Q@' — 1y ~1)at level n —
I, +--,and4""" V-2 ,(2""'“""'*” —) —Datlevel f + L.
The same analysis is repeated for each level and all the possible
cases are treated as equally likely. Starting at a noede at level /i, to
rcach a nearcst common ancestor at level j. j = § nodes must be
visited. Therefore, the average as #(n = 1) gets large is

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAML7. NO. 6. NOVEMBER 1985

n—1 n

DI INPLE

i=0 j=i+1

@ @ - = G-)
n—1

Z (zrr——l _ 1)2
i=0

3 + 51 + 40
3 243 3. 0443 4 6p 4 16

8 (6n— 10) - 2"*2%

8
= -.
3

The results of theorems 1 and 2 can be used to compute the
average number of nodes visited in locating neighbors in a check-
erboard image or any image represented by a full quadtree since
each neighbor is found at the same level as the starting node. In
particular, the average number of nodes visited in locating a vertical
or horizontal neighbor is 4 while it is ' for a neighbor in the direction
of a corner. When the analysis performed above for theorem 1 is
restricted to one row, then we have analyzed the average cost of
accessing adjacent elements in a two-dimensional array that has been
embedded in a binary tree [2] (although there it is analyzed by
techniques that make use of recurrence relations). To determine the
average cost of finding neighbors of greater than or equal size in
the horizontal and vertical directions (i.e., GSN) we use theorem 3
given below. Theorem 3 reflects the cost of the first and second
stages. The cost of the second stage is obtained by subtracting the
result of theorem 1 from that of theorem 3.

Theorem 3: The average number of nodes visited by GSN is
bounded from above by 1.

Proof: Using similar reasoning as in theorem 1, given a node P
at level i, a direction D, and having a nearest common ancestor at
level j, there are j ~ i possible neighbors of size greater than or
cqual to that of P. Therefore, the average number of nodes that will
be visited in the process of locating such a neighbor is j — i +
V(j — iy » Z42; (j — k). This is obtained by observing that the
nearest common ancestor is at a distance of j — i, while each of
the possible neighbors is at level & where & ranges between i and
J — 1, and at a distance of j — & from the nearest common ances-
tor. Therefore, the average number of nodes visited by GSN as
n(n = 1) gets large is

n . . . , 1 izl .
Z 5 2""2"-’~(j—t+——‘k§i(_l‘*k))

j-i

n—1

_ZO 2n—i . (2n—i -1

9-n—-—1)-2 +9<7

22"+2"6'2n+2 -2

7
2

Theorems 4, 5, and 6 yield the average number of nodes visited
by GCN, CSN, and CCN, respectively, and are derived in a manner
analogous to theorem 3. '

Theorem 4: The average number of nodes visited by GCN is
bounded from above by 3.

Theorem 5: The average number of nodes visited by CSN is
bounded from above by 4.

Theorem 6. The average number of nodes visited by CCN is
bounded from above by %.

In order to complete the comparison to [10], we also recompute
the average number of nodes visited by GSN in a roped quadiree
[4] and by procedure ALIGNED. Recall that in a roped quadiree,
there exist explicit links between adjacent nodes in the horizontal
and vertical directions. In particular, a rope is a link between two
adjacent nodes of equal size where at least one of the nodes is a leaf
node, Procedure ALIGNED (see [10]). is.used to detcrmine if edges
of adjacent nodes extend past each other or are aligned. Theorems
7 and 8 are derived in a manner analogous to the second stage of
theorem 3. The difference between the results of thecorems 7 and 8
is that for ALIGNED there is no need to traverse a link correspond-

719

ing to a rope. For morc detailed proofs of all the thcorems, see [13].
Theorem 7: The average number of nodes visited by GSN in a
roped quadtree is bounded from above by 3.
Theorem 8: The average number of nodes visited by ALIGNED
is bounded from above by 1,

V. EmpPIRICAL RESuLTS

In order to test the validity of the model, we conducted a number
of experiments with images corresponding to a cartographic data-
base as well as some standard textures. In particular, we used five
512 X 512 images which were readily available. Threc of them cor-
respond to a land-use map, and a floodplain map of a region in
Northern California [11]. We also selected two binary images hav-
ing sufficient complexity to make them of interest. They correspond
to a pebble texture (D23) and a stone texture (D7) {1]. All of the
images were represented using quadtrees and each of the ncighbor
finding functions described above was applied in all four directions
at cach leaf node in the images. In the rables that follow, the maps
are arranged in ascending order of complexity where complexity is
the number of nodes in the image. All references to model values
arc for a depth of n = 9. Table Il summarizes the observed values
for the individual images, the average value over all five images.
the value predicted by the new model, and the value predicted by
the old model.

From Table I we sec that values predicted by the old model were
between 21 and 37 percent above the observed values. In contrast.
values predicted by the new model are within 6 percent of the ob-
served values. We can get a more accurate evaluation of the new
model by recalling that the neighbor finding process can be decom-
posed into two stages. The first stage locates the nearest common
ancestor. The old and new models do not differ in the analysis of
this stage. There arc two cases depending on whether we are seek-
ing a neighbor in the side or corner direction. Table III shows the
empirical results. It is interesting to notc how close the model cor-
relates with the observed values.

Table IV gives the cost of the second stage of the neighbor find-
ing process. This stage reflects use of our new model and a com-
parison with the old model reveals the improvement. In particular,
we see that for the second stage the values predicted by the old
model were between 50 and 89 percent above the observed values
whereas the observed values are within 10 percent of that predicted
by the new model. This is much more reasonable and reinforces use
of the new model. Perhaps the most important feature of the new
model is the intuitively correct prediction that locating neighbors
that arc of greater than or equal size is cheaper than finding neigh-
bors of equal size. The cost of the latter is simply twice the cost of
locating a nearest common ancestor. The reason for the poor per-
formance of the old model was that all of a node's possible neigh-
bors were individually taken into account when computing the av-
erage, whereas the new model only included the average con-
tribution of the possible neighbors (see Section EV).

In order to improve our understanding of the difference between
the predicted and observed values of the first and second stages of
the neighbor finding process, we tabulate in Tables V and VI the
average cost of CSN in all four directions as a function of the dis-
tance to and from, respectively. the nearest common ancestor. We
use CSN because it provides the greatest range of values for testing
the model used in the second stage. Remember that our model as-
sumes that 3 + (})" of the nodes are at level i. For each node at level
£, its nearest common ancestor is at level j(n = j > i) with prob-
ability (5)/ ', This is relevant to the analysis of the first stage. The
average number of nodes visited in locating the neighbor when
starting at the nearest common ancestor is (j + [}/2. This is rele-
vant to the analysis of the second stage. The final row of the tabie
accounts for the nodes that are adjacent to the border of the image
and so have no 'neighbor in the trec.)

“Table V shows the obscrved distribution of the nodes that arc at
a distance from their nearest common ancestor for the first stage.
The obscrved values are in close agreement with the predicted val-

720

TABLE II
AVERAGE C0ST OF NEIGHBOR FINDING OPERATIONS

o " Observed Mew Obd
peratlon | riood | Topo | Land | Stone | Pebble | Average | Model | Model
GSN 3.50 3.60 3.50 3.58 3.56 3.57 3.48 4.79
CSN 3.68 3.75 3.73 3.73 3.71 3.72 3.83 4.80%
GCN 4.47 4.868 4.83 4.04 4.60 4.60 4.44 5.77
CCM 4.64 4.83 4.70 41.79 4.75 4.78 4.80 5.85

“In {10}, the limit value is erroneously computed to be '{.

TABLE IIL
AVERAGE COST OF LOCATING THE NEAREST COMMON ANCESTOR
Type of Observed
Neighbor | Flood | Topo | Land | Stone | Pebble | Average Model
side 2.0F 200 2.00 2.00 1.9% 2.00 1.06
corner 2.60 2.67 2.86 2.06 2.65 2.87 2.82
TABLE 1V

AVERAGE COST OF LOCATING THE NEIGHBOR STARTING AT THE NEAREST
COMMON ANCESTOR

Observed New oM
Operathan Flood | Fopo | Land | Stone § Pebble | Average | Model | Model
GSN 1.49 180 1.59 1.58 1.57 1.57 1.48 281
CSN 1.64 174 173 1.73 1.72 1.71 1.85 2.01
GCN LT 2.0¢ Le7 1.08 1.85 1.94 1.82 3.15
CCN 1.08 2.15 233 2.13 2.10 2.00 1.08 3.23
TABLE V

NobE Si1ZE {PERCENT) DISTRIBUTION FOR STAGE ONE OF THE NEIGHBOR
FINDING PROCESS

Distance from

Model Observed
node to nce € Flood Topo Land Stone Pebble Average
1 50.00 $0.00 50.00 50.00 50.00 50.00 50.00
2 25.00 25.48 25.17 26.02 25.00 24.05 25.12
3 12.50 11.81 12.23 12.42 12.54 12.52 12268
4 6.25 6.08 6.10 8.37 8.10 6.43 68.23
3 3.13 288 3.00 200 3.07 3.11 a.01
[} 1.56 2.41 172 1.62 1.58 151 1.97
7 0.78 0.80 0.04 .83 0.0 0.8z 0.84
8 039 0.54 0.58 .51 Q.48 G.40 .50
'} 020 .23 0.22 0.20 0.21 o.18 0.21
On Edge Q.20 G.10 9.08 0.03 0.4 G.08 0.08
Expected Cost 2.00 2.01 2.00 2.00 2.00 1.09 2.00
TABLE VI

AVERAGE COST OF STAGE TWO OF THE NEIGHRBOR FINDING PROCESS

Mot Obaerved
Depr " Flooa Topo Laxd Swone Fevtir Aveesar
Comy &K Cost % | Cost % _| Coe % Cot % Cont % Cont %
1 L 780 Lrea nes 100 2085 (1) 2822 103 30.85 108 2038 1.00 28.66
2 16 8% | 120 m7e | 131 209 | L33 3807 | 133 3829 | 134 2864 | 132 84k
E] 2 1841 1.68 §0.03 [14 wor L3 1910 183 PLE T} L74 0.7 173 9.2k
+ 2.6 439 202 1238 248 o4 234 11.3% 236 10.78 23 1080 28 a2
s 3 ese {231 7Tee|ss s3 | sie ees | 3w ses|anm sez | 3ma se2
L] 26 130 290 438 417 217 03 288 384 9 49 287 . 112
T + 110§ 200 288 | 509 1os | s0r 188 | 508 x40 [&3 ws0 | e 12
L3 1.8 o.88 49 i.64 583 o0 590 &0 a.12 oss 0.3% 0T 572 100
* & o 822 oTa T.38 040 1.32 A48 pAH) 048 TaT osr 700 080
On Bége 039 0.60 022 o2 B2l 03 022
Expected -|
Cost 185 st Ix]l] 113 173 77 172

ues. In fact, for a distance of I the predicted and observed per-
centages are exactly the same. This is not surprising because we
tabulated CSN in all four directions and each node has two brothers
at a distance of 1. For all of the images the average distance to the
nearest common ancestor is within two percent of the predicted
value.

Table VI shows the average number of nodes that must be de-
scended from a nearest common ancestor at level { in the second
stage before encountering the desired neighbor for CSN as well as
the distribution of the nodes having a nearest common ancestor at
level i. Again, the observed values are in close agreement with the
predicted values. The observed values are in general slightly higher
than the predicted values because there is a greater percentage of
nodes whose distance from the nearest common ancestor exceeds
the predicted distance. Thus, their contribution is weighted more

1EEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7. NO. 6. NOVEMBER 1985

heavily thereby increasing the average cost. Notice that the flood-
plain image has an observed cost which is lower than the predicted
cost. This is not surprising because it has a greater preponderance
of large blocks than the other images (sec Table I) as well as that
predicted by the model. The latter can be seen by noting that the
average distances shown in Table VI are almost always less than
those predicted by our model. The remaining images have more
smaller blocks and the average distance to the neighbor from the
nearest common ancestor often exceeds the average used in the
model.

VI. CONCLUDING REMARKS

A new analysis has been presented of the costs of neighbor find-
ing methods in pointer-based quadtree representations. It correlates
strongly with empirical observations. It reinforces our prior con-
clusion that use of neighbor finding is preferable to using links be-
tween neighbors [4} which has a higher storage requirement al-
though its expected execution time is lower. In addition, we have
shown that quadtrec images can be modeled in a way that permits
the analysis of algorithms that operate on them. Although we have
attempted to explain why our model works, a more “‘theoretical™
explanation is still lacking.

Our new results impact previously published analyses of algo-
rithms involving conversion between representations (e.g., quad-
trees and boundary codes [3], [8]. etc.) as well as basic image op-
erations (c.g., connected component labeling [9]). In the case of
the former, neighbor finding is crucial to the performance of the
task while in the latter there also exist implementations that do not
require neighbor finding (e.g., transmitting the neighbors as an ar-
gument {5], [14]). Nevertheless, the orders of the expected execu-
tion times of the algorithms remain the same.

ACKNOWLEDGMENT
We have benefited greatly from the comments of R. E. Webber.
REFERENCES

[1] P. Brodatz, Textures. New York: Dover, 1966.

[2] R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton, “*Preservng average
proximity in arrays,” Commun. Ass. Comput. Mach., vol. 21, no. 3,
pp. 228-231, Mar. 1978.

C. R. Dyer. A. Rosenfeld, and H. Samet. *Region representation:
Boundary codes from quadtrees.” Conmnun. Ass. Comput. Mach. , vol.
23, no. 3, pp. 171-179, Mar. 1980

G. M. Hunter and K. Steiglitz, **Operations en images using quad-
trecs,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-1, pp.
145-153, Apr. 1979.

C. Jackins and S. L. Tanimoto, *'Quad-trees, oct-trees, and k-trees—
A generalized approach to recursive decomposition of Euclidean
space,” JIEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-S, pp.
533-539, Sept. 1983.

A. Klinger, “*Pattcrns and search statistics,” in Optimicing Methods
in Statistics, J. S. Rustagi, Ed. New York: Academic. 1971, pp. 303~
337

A. Klinger and M. L. Rhodes, “Organization and access of image
data by areas,” IEEE Trans. Pattern Anal. Machine Intell. | vol. PAMI-
I, pp. 50-60, June 1979.

H. Samet, **Region representation: Quadtrees from boundary codes.™
Cemmun. Ass. Comput. Much., vol. 23, no. 3, pp. 163-170. Mar. 1980.
——. “Connected component tabeling using quadtrees.™ J Asy, Com-
put. Mach., vol. 28, no. 3, pp. 487-501, July I981.

———, “Neighbor finding technigues for images represented by quad-
trees,” Comput. Graph. Image Processing, vol. 18, no. |, pp. 37-57,
Jan. 1982.

H. Samet, A. Rosenfeld, C. Shalfer, and R. E. Webber, " Quadtree
region representation in cartography: Experimental results,” JEEE
Trans. Syst., Man. Cyvbern., vol. SMC-13, pp. 1148-1154, Nov. 1983.
H. Samet. “The quadtree and related hierarchical data structures,™
ACM Compuat. Survevs, vol. 16, no. 2. pp. 187-260, Junc 1984.

H. Samet and C. A. Shaffer, **A model for the analysis of neighbor
finding in pointer-based quadtrees,” Dep. Comput. Sci.. Univ. Mary-
land, College Park, Tech. Rep. TR-1432, Aug. 1984.

H. Samet, A top-down quadtree traversal algorithm,” [EEE Trans.
Pattern Anal. Machine Intefl., vol. PAMI-T, pp. 94-98, Jan. [985.

14]

15

16

17]

18]
19]

[10]

(1]

112]

[13

[14]

