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A Top-Down Quadtree Traversal Algorithm

HANAN SAMET

Abstract—Many standard image processing operations can be imple-
mented using quadtrees as a simple tree traversal where, at each terminal
nede, a computation is performed involving some of that node’s neigh-
bors, Most of this work has involved the use of bottom-up neighbor-
finding techniques which search for a nearest common ancestor. Re-
cently, top-down techniques have been proposed which make use of a
neighbor vector as the tree is traversed. A simplified version of the top-
down method for a quadtree in the context of a general-purpose tree
traversal afgorithm js presented. It differs, in part, from prior work in
its ability to compute diagonally adjacent neighbors rather than just
horizontally and vertically adjacent neighbors. It builds a neighbor vec-
tor for each node using a minimal amount of information. Analysis of
the algorithm shows that its execution time is directly proportional to
the number of nodes in the tree. However, it does require some extra
storage. Use of the algorithm leads to lower execution time bounds for
some common quadtree image processing operations such as connected
component labeling,

Index Terms—Connected component labeling, image processing, image
representation, perimeter, quadirees.

I. INTRODUCTION

The quadtree [7] (e.g., Fig. 1) is a hierarchical representation
which has been the subject of much research in recent years
[15]. It has been found to be useful in such applications as
image processing, computer graphics, pattern recognition, and
cartography. Many algorithms for standard operations in these
domains can be expressed as simple tree traversals where at
each node a computation is performed involving the use of
“bottom-up” neighbor-finding techniques [11]. Recently,
“top-down” methods which build a neighbor vector as the tree
is traversed have been independently proposed [5], [8], [13].
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{a) A region and its block decomposition. Blocks

in the région are shaded.
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(b} Quadtree representation of the region in (b).
Fig. 1. A region and its corresponding quadtree.

In this paper, we present a simplified formulation of the top-
down method for a quadtree in the context of a general-pur-
pose tree traversal algorithm, It differs, in part, from prior
workin its ability ‘to compute diagonally adjacent neighbors
rather than just horizontally and vertically adjacent neighbors.
The execution time and storage cost associated with the top-
down technique are analyzed. We also show how it can be used
to speed up a number of common quadiree operations. In
particular, for-¥ BLACK blocks, connected component labeling
is shown to be O(N - loghN}, whereas using boftom-up tech-
nigues, it has a worst case of at least O(N?). The conclusion
contains a comparison of our method to that of [5].

II. ALGORITHM

A natural byproduct of the tree-like nature of the quadiree
representation is that many basic operations are implemented
as tree traversals. - The difference between them is in the nature
of the computation that is performed at the node. Often,
these computations involve the examination of some nodes
that are adjacent to the node being processed. We shail speak
of these adjacent nodes as neighbors. In order to be more
precise, given node P, corresponding to block P, and a direc-
tion D, we say that node @, corresponding to block @, is the
neighbor of node P in direction D (i.e., neighbor (P, DY=0Q)
when both of the following conditions are satisfied.

1) Pand .Q share a common border, even if only a corner.

2) The block corresponding to @ is the smallest bilock (it
may be GRAY) of size greater than or equal to the block corre-
sponding to P.

For example, block & in Fig. 1 has neighbors H, I, O, G, P,
M, K, and B in the directions N, NE, E, SE, §, SW, W, and NW,
respectively. -Note that the neighboring nodes need not be
distinct, i.e., a node may serve as a neighbor in more than one
direction. For example, for node 37 in Fig. 1, node B overlaps

™ the NW, N, and NE neighboring directions; node J overlaps the

W and SW directions; while the remaining neighbors are nodes
38, 40, and 39 in the E, SE, and S directions, respectively.

As mentioned above, most operations are implemented as
tree traversals with the operation being performed by examin-
ing the neighbors of selected nodes in the tree. In order for
the operation to be performed in the most general manner, we
must be able to locate neighbors in a way that is independent
of both position (i.e., the coordinates) and the size of the node.
We also do not want to use any additional links to adjacent
nodes, In other words, only the structure of the iree should
be used, and no pointers in excess of the four links from a
node to its four sons and one link to its father for a nonroot
node. This is in confrast to the methods of Klinger and
Rhodes [7] which make use of size and position information,
and those of Hunter and Steiglitz [4] which locate neighbors
through the use of explicit links (termed ropes and nefs).

In {11], neighbors are located by ascending the tree untila
common ancestor is located, and then descending down the
tree in search of the neighboring node. This technique, termed
bottom-up, has an average worst case of four nodes being visited
for each neighbor that is sought. The worst case fora 2" X 2F
image is 2+ n. An alternative method, termed fop-down and
presented below, is one that transmits a neighbor vector, as
an actual parameter, containing the eight neighbors of each
node in the eight directions as the tree is traversed. A one-
dimensional variant of this technique for horizontal and verti-
cal neighbors is used by Jackins and Tanimoto [5] in the
computation of perimeter for K-dimensional objects, It has
also been used in [8] in an empirical comparative study of
neighbor-finding techniques, and in [ 13 ] forsuperposing polyg-
onal maps. Such techniques are termed “top-down” in con-
trast to the “bottom-up” method which works by locating the
nearest common ancestor.

Procedure TRAVERSAL, given below using a variant of Algol
60, incorporates the top-down method in enabling the applica-
tion of an arbitrary function F to every terminal node in the
quadtree. Weassume a quadtree implementation using pointers,
i.e,, a nonterminal node contains four pointers to its four sons
and accessed by the field SON. For each son, say Q, of a non-
terminal node, say P, TRAVERSAL computes a neighbor vector
consisting of the eight neighbors of Q. H is interesting to ob-
serve that given a direction or side D, we compute all of the
neighbors by the appropriate application of the functions
OPSIDE, CSIDE, CCSIDE, and QUAD. In particular, OPSIDE{D)
yields the side facing D, CSIDE(D) and CCSIDE(P) correspond
to the sides adjacent to D in the clockwise and counterclock-
wise directions, respectively, and QUAD(S1, S2) isthe quadrant
bounded by sides 51 and S?2 of a block. Note the use of the
function SONI instead of SON when computing the elements of
the neighbor vector that do not correspond to brothers (e.g.,
the northern neighbor of node X in Fig. I when attempting to
compute the neighbor vector for node 38, the NE son of K).

As an example of the execution of TRAVERSAL, consider
the quadtree of Fig. I. Initially, TRAVERSAL must be invoked
with a neighbor vector consisting of all NIL entries since we
are dealing with a root node, i.e.,, 4. Recursively, applying
TRAVERSAL to node A4 leads us first to the computation of
the neighbor vector of node C (i.e., node 4’s NE son) which
consists of NIL, NIL, NIL, NIL, £, D, B, and NIL in the direc-
tions N, NE, E, SE, §, SW, W, and NW, respectively. Since C is
a nonterminal node, we recursively apply TRAVERSAL to the
four sons of C. For example, the resulting neighbor vector for
H the SWsonof C,is F, G, I, O, N, X, B, and Bin the directions
N, NE, E, SE, S, SW, W, and NW, respectively. At thispoint, we
can apply function Fto node H and its appropriate neighbors.

procedure TRAVERSAL (P, L, A, F);
[* Given a quadtree rooted at node P spanning a 2& X 2L
space, apply function F to each of its terminal nodes. 4
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contains the adjacent neighbors of P of greater than or
equal size in the directions N, NE, E, SE, §, SW, W, and
NW. Initially, A contains 8 NIL pointers for the neigh-
bors of the root of the quadiree. GRAY(P) is false when
Pis NIL.*/

begin
value node P;
value integer I ;
reference node array 4;
function F;
direction D;
node array T;
if GRAY(P) then /* Descend a level in the tree*/

begin
for D in {“N,” “E;” “8,” “W"} do
begin
T[D] < soNi(4[D], QuAD(OPSIDE(D),
CSIDE(D)));
TiQuaD(D, CSIDE(D))] < soNi(4[QuAaD -
(D, csIDE(D))],
QUAD (OFSIDE(D), ccsIDE(D)));
TlcsIpE(D)] < SONI(A[CSIDE(D)], QUAD
(D, ccsIDE(D)));
TTQUAD(OPSIDE(D), CSIDE(D))] < soNi(4
[CcSIDE(D}],
QUAD(OPSIDE(D), CCSIDE(D)));
T{OoPSIDE(D)] <+ SON(P, QUAD(OPSIDE (D),
- CSIDE(D)));
T{QUAD(OPSIDE(D), CCSIDE{D))] < SON(Z,
QUAD(OPSIDE(D), CCSIDE(D)));
TIcCcsIDE(D)] < SON{P, QUAD(D, CCSIDE
ONy;
T[QUAD(D, cCSIDE(D))] < soNI{A4[D],
QUAD(OPSIDE(D), CCSIDE(D))),
TRAVERSAL(SON(P, QUAD(D, cSIDE(D))),
L1, T, F);
end;
end
else APPLY(F, P, L, A); [* Apply F to terminal node
P*/
end;

node procedure SONI(P, Q);
/* Return a pointer to the son of node P in quadrant Q. If
node P is a terminal node, then return P.*/
begin
value node P;
value quadrant O,
return (if GRAY (P} then SON(P, Q)
else P);
end;

III. ANALYSIS

The execution time of the traversal algorithm can be obtained
by counfing the number of nodes that are visited or accessed
during the tree traversal and neighbor vector computation
respectively. First, let us prove the following lemma.

Lemma I: For a quadtree with N nodes of which G are GRAY,
N=4-G+1.

Proof: Each GRAY node has an out degree of 4. The quad-
tree has 4 - G edges. It is well known that a tree with 4+ G
edges has 4 - G + 1 nodes. Clearly, N=4-G+1.

We now come to the main result.

Theorem I: The number of nodes visited or accessed by pro-
cedure TRAVERSAL is bounded by 9 - V.

Proof: For each GRAY node, procedure TRAVERSAL con-
structs four neighbor vectors, each of which involves the access
of eight nodes. This yields a total of 8 - 4 - & nodes. But from
Lemma 1, N=4- G+ 1. Therefore, 8 - (N - 1) nodes are ac-

cessed. Procedure TRAVERSAL also visits each of the & nodes

in the tree in the process of constructing the neighbor vectors.
Therefore, the total number of nodes that are visited or ac-
cessedis 8- (N- 1)+N=9-N- 8. .

The maximum amount of storage required by procedure
TRAVERSAL is obtained as follows.

Theorem 2: For a 2" X 27 image represented by a quadiree,
procedure TRAVERSAL requires at most 8 - (n + 1) storage
units.

Proof: Starting at the root of the quadtree, assumed to be
at level n, it takes i recursive calls of TRAVERSAL to reach a
node at level n-i. Each recursive invocation of TRAVERSAL
requires eight storage units for the neighbor vector. Since we
also need an initial neighbor vector, a node at level n-i needs
8 - (i + 1) storage units, A 27 X 27 image may have a terminal
node at level O (i.e., a pixel) which requires n recursive invo-
cations of TRAVERSAL. Thus, we need 8- (n + 1) storage
units. .

IV. APPLICATIONS

The top-down neighbor compuiation method, in conjunction
with the traversal algorithm, can be uvsed to implement a num-
ber of quadtree operations. Jackins and Tanimoto [5] used a
variant of it to compute the perimeter for K-dimensional ob-
jects. Their method works by performing K tree traversals (i.e.,
one for each dimension). Depending on the way the perimeter
problem is posed, this involves two or four neighbors. Using
cur technique, the perimeter can be computed by simply using
the southern and eastern components of the neighbor vector
and searching for BLACK-WHITE and WHITE-BLACK adja-
cencies {10]. This approach was used in [8]. Of course, once
the neighbor has been located, if it corresponds to a GRAY
node, then all nodes adjacent to the common border must be
visited (i.e., the adjacency tree). This process is bounded since
the total number of nodes in all the adjacency trees for a given
quadtree is bounded by four times the number of leaf nodes in
the quadtree [3]. Connected component labeling [9] can be
performed the same way, except that now we are searching for
BLACK-BLACK adjacencies. On the other hand, all eight com-
ponents of the neighbor vector are necessary for the computa-
tion of the Chessboard distance transform for quadtrees [12],
the construction of a quadtree medial axis transform (QMAT)
from a quadtree [14], and the reverse process of reconstructing
a quadtree from its QMAT [16].

Use of the top-down neighbor computation method in con-
junction with the traversal algorithm of Section III leads to
lower execution time bounds for a number of quadtree opera-
tions which involve neighbor finding. In these cases, the cost
of neighbor finding is part of the overall cost of the operation,
and speeding it up may result in achieving a lower execution
time. The bottom-up neighbor-finding process is analyzed in
[11] where for each BLACK node, the average number of nodes
visited while seeking a neighbor in a given direction is shown
to be constant. However, the worst case for an image contain-
ing & BLACK blocks may be O(N?) as shown below.

Theorem 3: The worst case for bottom-up neighbor finding
for an image containing N BLACK blocks is at least O(N?*).

Proof: Consider a 2% X 2% image of the form of Fig. 2
(N = 4 in this case) that contains N BLACK blocks.! Computing
the eastern neighbor of the BLACK blocks requires

N
Slitl=1-N-(W+3)
i=1

nodes to be visited. .
Knowing that the worst case of bottom-up neighbor finding
is at least O(N?), while top-down neighbor finding is O@Y),

'Note that this example is different from that of {5] which exhibits
N logN behavior in an & X & image with N BLACK blocks.
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Fig. 2. A guadtree corrésponding to an image which leads to the worst
case behavior of the quadtree-connected component labeling algo-
rithm’s first phase.

enables us to obtain a lower bound for the connected com-
ponent labeling algorithm for images represented by quadtrees.
Recall that in:[9], it was shown that the average execution
time for connected component labeling is O(N + N - loghN).
The algorithm was shown to have three steps. The first step
involved examination of the southern and eastern neighbors of
each BLACK node, i.e., an O(N) process on the average which,
at times, can be O(N?). The second step involved propagation
of equivalence classes which can be done in O(N - logh) time.
In fact, almost linear behavior can be obtained by combining
the first and second steps using the UNION-FIND algorithm
[17]. The third step requires updating equivalences, which is
an O(N) process. Thus, we see that the bottleneck is the first
step which, by use of the top-down method, is O(N), There-
fore, the worst case for connected component labeling is now
almost O(N) instead of at least O(N'?2).

A similar analysis can be applied to the perimeter computa-
tion algorithm of {10], and also to the Euler number compu-
tation method of [2]. Both of these algorithms perform tree
traversals where at each BLACK terminal node, a number of
adjacent neighbors are examined. In essence, they are analo-
gous to the first step of the connected component labeling of
[9]. Using the top-down algorithm of Section III results in an
O(N) algorithm instead of an average O(N) algorithm. Note
that Jackins and Tanimoto [5] obtain the same time bound
for computing the perimeter, although their algorithm works
by performing X tree traversals (i.e., one for each dimension or
two for a quadiree). However, their technique only works for
horizontally or vertically adjacent neighbors, and thus cannot
be used for corner or diagonally adjacent neighbors.

The order of the execution time of the Chessboard distance
transform algorithm of [12] cannot be lowered by use of the
top-down method since its computation time is not dominated

by the cost of neighbor finding. Similarly, the order of the
execution time of the process of reconstructing a guadtree
from its QMAT {16] cannot be lowered for the same reason.
Nevertheless, the use of the top-down method may lead to an
actual reduction in theabsolute execution time since the neigh-
bor-finding component is still faster. However, once the dis-
tance transform of a quadiree is known, the QMAT can be
computed in O(V) time since its computation only requires
that for each BLACK block, all eight adjacent neighbors be
examined.

V. CONCLUDING REMARKS

Our method is different from that of Jackins and Tanimoto
[5] in that it is a generalization for all possible neighbors in a
quadtree. They show how to compute the perimeter of a K-
dimensional objeci through the use of top-down neighbor-find-
ing techniques. They present a general solution for K dimen-
sions which requires K passes over the data where each pass
transmits two neighbors as parameters. Using their technique,
only horizontally or vertically adjacent neighbors can be ob-
tained, whereas our method requires only one pass, and most
importantly, it also yields the diagonal neighbors. However,
our technique is only presented for two-dimensional data. Our
method differs from [8] and [13] in the generality of the
computation of the neighbor vector for a node of arbitrary
type (i.e., it can be a NW, NE, SW, or.SE son), and again, in
the ability to handle diagonally adjacent neighbors.

As was seen in Sections III and IV, the use of top-down neigh-
bor-finding methods results in the execution time of the neigh-
bor-seeking phase of a number of quadtiree algorithms being
proportional to the number of nodes in the tree instead of just
so on the average. Nevertheless, the bottom-up methods may
still be superior at times for a number of reasons. First, less
overhead is associated with them since the neighbors may be
very close (in a node distance sense). Second, there is no need
to compute neighbors of GRAY nodes as is the case for the top-
down method. Third, some quadtree operations are inherently
bottom-up, such as obtaining a boundary code from a quadtree
[1]. Recall that this procedure outputs the chain code as it
wandaers along the boundary of each region. Bottom-up meth-
ods are superior for such a task. Finally, less storageis required
by the bottom-up method since there is no need for the neigh-
bor vectors at each level of the tree.
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