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ABSTRACT

A new data structure termed a line quadtree is presented that encodes
both a region and its boundary in a hierarchical manner. It is similar to the
quadtree with the modification that with each node information is stored as to
which of its sides are adjacent to a beundary. The information is available for
both terminal and non-terminal nodes. Use of such a data structure is
claimed to facilitate a number of basic region processing algorithms including
boundary following and map superposition.

L. Introduction

Region Tepresentation piays an important role in image processing and
geographic information systems. Data representations in use include point by
point representations such ag binary arrays and run length coding, vector
representations such as chain codes [4]. and hierarchical fepresentations such
as quadtrees [7] and strip trees [| ].

In this paper, we address the issue of hierarchically representing images
which are segmented into a number of different regions rather than two (fore-
ground and background) as is done in work relating to quadirees, We intro-
duce a new data structure termed 4 “line quadtree” that encodes bath the
region and its border in a hierarchical manner, ‘This is in contrast (o the con-
ventional quadtree which only encodes area’sinua Ahicrarchical way and to the
strip tree [i} which only encodes curves in a hierarchical manner. Our
presentation is an iterative one that demonstrates the various design decisions
which led 10 our adoption of a particular definition for the*data structure.

2. Line Quadirees

Geometry populates the plane with three distinct entities - the point, the’
line, and the region. Finkel and Bentley {3] apply the quadtree data structure
to the problem of storing a set of points. Klinger [7} (also {8.,9]) used quad-
trees to store regions (henceforth called region quadtrees). Subsequent work
included applications to graphics [5,6] as well as interconversions with other
representations such as chain codes [2.11], rasters {12,13] and binary arrays
[14]. Herein, we apply the quadtree data structure to the problem of storing
line segments that partition a plane.

We represent the partition of a plane as a two color quadtree where the
boundary lines become narrow BLACK tegions and the remainder of the map
is colored WHITE. This ig awkward for two reasons: (1) narrow regions are
costly in terms of the number of nodes in the quadtree, and {2} it commits
the user lo a specific thickness of the boundary line which may be unfor-
tunate when outputting the map,

The bottom-up definition of a region quadtree starts with planar frag-
ments of uniform coler, called pixels. The bottom-up definition of z line
quadtree, the data struchyre proposed herein, starts with pixels that record the
presence or absence of an edge on each of the four sides of a pixel. The line
quadtree is subsequently built by merging the nodes of a complete 4-ary tree
where each leaf node corresponds to a pixel. )
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In order to complete the bottom-up definition of a lfine quadtree. we
must give a compatibility criteria for merging. The schcmf: tha_t we propose
is cafled the propagated critcria of weuk-formedness. This eriteria and its
immplementation are described as the end result in a successive pattern of
refinement from the criteria of identicality {alporithm 1) to the criteria of
strong-formedness (algorithm 2) to the criteria of weak—fnrnmdncss'Eulggrithm
3) to the propagated criteria of weak-formedness (algorithm 4). The imple-
mentations can be found in [16].

The intuitions involved in line quadtrees are best motivaced graphically.
Figure 1 shows the standard arrangement of boundaries and quadrums. _Thc
four boundaries/ sides/ directions/ edges are labeled N. E. §, W. A predicate
EDGE( node, side) is true (hence marked SET as opposed to0 CLEAR) iff :_hc
specified side of the node is adjacent to the boundary of the rcgio.n of which
the node is a member, In Figure 2, the bold lines indicate the region’s boun-
daries and the light lincs indicate the digitization. All maps are surounded
by a border 10 maintain the separation of regions when the maps underpo
linear transformations. In Figure 3, the complete d-ary tree that encodes the
map M is shown. Each square represents a node in the tree. The four largest
squares inside a given square represent the four sons of that node. Arf emmy
square represents a leaf. The outermost square represents ll’.l(: tree’s root.
The EDGE information for a node is stored in the picture by using a bold ?:ne
on any side whose EDGE value is marked SET and otherwise using _a'. light
line. Note that algorithms ! through 3, below, do not use the EDGE infor-
mation of interior nodes and thus the interior nodes are drawn under the
assumption that 2l] EDGE information is marked CLEAR,

Algorithm 1, embodies the criteria ol identicality, i.c.., four bmthc'rs
are merged (and their father is replaced by one of his sons) iff th:?y contain
identical information in their corresponding EDGE fields. Application of
algorithm 1 to the 4-ary tree in Figure 3 produces the quadtree of Figure 4.
Note that only two 4-tuples of brothers were merged.

Although the criteria of identicality is adequate for region quadtrees. it

is inadequate for line quadtrees. Nodes that border edges tend to have as
brothers nodes that do not border edges on the same comresponding side.
This can be seen by observing the example map in Figure 3.

Idealty, the merging criteria should maxirmize the probability that it will
be met by many nodes of the tree representation of a "typical” image. On the
other hand, the allowable merging criteria must permit the reconstruction of
the original digitized image from the resulting tree.

We will not prove the optimality of our criteria with respect 1o the
above restrictions, Instead, we will compare our criteria 1o a region quadiree
where each region is given a separate color and borders are represented impli-
citly by the two squares of different color that the border separates. For Fig-
ure 2, such a region quadtree would use six colors as is shown in Figure 8.

Next we consider the criteria of strong-formedness (implemented by
algorithm-2) stated as follows. If the submap represented by a given subtree
cofresponds to a square with zero or more entire sides missing, then that sub-
trec can be replaced by =z single leaf. Since there are no lines crossing the
interior of a drawn square, it follows that a single leaf can never represent a
submap that contains more than one region. Figure 5 presents the quadtree
resuiting from applying this merging condition to the 4-ary tree in Figure 3.
Node alpha in Figures 3 and 5 shows the result of the patterns of four broth-
ers being merged to form one patiern. “In the NW son of the root of Figure




3, we see the result of this merging process having been performed on two
separate levels. Node beta in Figures 3. 4, and § illustrates four sons that
could not be merged hecause they had edges interior to their non-square pat-
temn (although they were merged in algorithm 1). Node gamma of Figure 5
shows four sons that could not be merged because the § border of gamma's
SW son is marked SET but that of gamma’s SE son is marked CLEAR; so
that together, they form only a partial border.

Although the number of nodes in Figure 5 is considerably smaller than
in Figure 4, we still have not merged all nodes that would be merged by the
six color region quadteees of Figure 2. In particular, note that the SE son of
the roat in Figure 5 resides entirely inside region M6 of Figure 2 (and hence
represented by one node of color M6), whereas in Figure 5 this node has four
offspring.

In order to be able to merge the above mentioned regions, we weaken
the criteria of strong-formedness to atlow two different edge values to be
combined but still to provide for reconstruction of the original map. This
criteria of weak-formedness (implemented by algorithm 3) states that four
brothers are merged if there are no “inner” edges in the resulting submap and
the resulting node has the "logical and” of the EDGE information.

Figure 6 shows the resuht of applying algorithm 3 to the complete 4-ary
tree of Figure 3. Note that the SE son of the roat is now a leaf and also that
merging occurred in both the NW son and the SE son of the SW son of the
rool. Indeed alfl the hoped-for mergers occurred.

Two items are worthy of further note. First, that if four nodes fail to
meet the criteria of weak-formedness, then they must encode at least two dif--
ferent regions. In such a case. the region quadtree would not have merged
these brathers either. Therefore, the number of nodes in the line quadtree is
bounded from above by the number of nodes in the corresponding region
quadtree.  Analogous reasoning about the significance of the absence of inner
edges leads to the conclusion that the number of nodes in the line quadtree is
equal to the number of nodes in the comesponding region quadtred. Second,
it can be shown [16] that it is fairly simple 1o reconstruct the digitized image
from its line quadtree using the weak-formedness criteria.

Until now. we have been silent as 1o what information is stored in
internal (i.e., GRAY) nodes. By propagating edge information upward in the
tree we can speed up edge-following algorithms (i.e., the quadtree to boun-
dary code transformation). In particular, an edge is propagated upward as
marked SET iff at the higher level, it could be followed without reference to
‘the lower nodes that form i, e.g., the south side of M6 in Figure 2. Hence
we propagale the "logical and” of The sybtended edges of the sons (o be the
value of the interior node's edpes. Figure ‘—?"lilus;rﬁtes the result of deing this
to the quadtree of Figure 6. This is termed the “ptopagated criteria of weak-
formedness” (encoded by algorithm 4).

The edge-following algorithms are straight forwdrd extensions of the
quadtree-to-boundary-code algorithm. They run stightly faster because they
can sometimes move onward on the basis of information stored at an interior
node and do not have to examine all the terminal nodes along the path. For
example, an edge following aigorithm processing the bottom edge of the map
of Figure 2, with the aid of the quadtree of Figure 7, would be able to use
the: fact that the S side of the root is solid and thereby never have to descend
"to the SE son of the SW son of the SW son of the root to verify the presence
of that segment of the edge.

3. Concluding Remarks

We have presented 2 data structure for storing maps and their boun-
daries in a hierarchical manner without excessive waste of storage or having
to solve the messy problem of graph coloring. Such coloring would be
necessary in order to use region quadtree aigorithms of corhparable storage
fregality. The coloring could be achieved by use of connected component
iabeling algorithms [15) followed by the linear-time five coloring algorithm
of [10] (hence minimizing the number of bits needed for colors). However,
this entails a substantial loss. of information stored in the intemal nodes that
<an be used by line-following algorithms. o '
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Our approach is predicated on the desire to be able to determine and
represent in a hierarchical manner both the areas and the borders of the
regions comprising the maps. Thus our techniques are more applicable to a
decomposition of a map into counties, states, etc. rather than contour lines,
point data such as cities, or roads and rivers, which could be better
vepresented by use of other data structures such as point space quadtrees [3)
for cities and strip trees {1] for roads and rivers.

We have seen how the line quadtree is used to facilitate border follow-
ing algorithms. In [16] it is shown that the line quadtree can also be used to
speed up the more traditional postorder tree traversal algorthms such as super-
position of one map on another.
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Figure 1. Quadranis and Boundaries Labeled

Figure 2. Picture (Map) M on 8 x 8 array of pixels
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Figure 3. Complete 4-ary tree for Map M
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Figure 4. The quadtree produced by Algorithm |
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-Figure 5. The quadiree produced by Algorithm 2
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Figure 6. The quadtree produced by Algorithm 3
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Figure 7. The quadtree produced by Algorithm 4
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Figure 8. The 6 color quadtree for M
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