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ABSTRACT -
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the collection of empirical results to indicate the utility of the software and justify the
design decisions. Tasks reported on include: Attribute attachment, DMA SLF compati-
~bility, memory management improvements, and database enkancements. '
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SUMMARY

This document is the final report for Phase III of an investigation of the applica-
tion of hierarchical data structures to geographical information systems, conducted
under Department of the Army Contract DAAK70-81-C-0059/P00007. The purposes of
this investigation were twofold: (1) to construct a geographic information system based
on the quadtree hierarchical data structure, and (2} to gather statistics to allow the
evaluation of the usefulness of this approach to geographic information system organiza-
tion.

To accomplish the above objectives, in Phase I of the project a database was
built that contained three maps supplied under the terms of the contract. These maps
described the flood plain, elevation contours, and landuse classes of a region in Califor-
nia. The map regions were represented in quadtree form, and algorithms were developed
for basic operations on quadtree-represented regions {set-theoretic operations, point-in-
region determination, region property computation, and submap generation). The
efficiency of these algorithms was studied theoretically and experimentally.

In Phase II of the project, a quadtree based Geographic Information System was
partially implemented, allowing manipulation of images storing area, point and line data.
This system included a memory management system to allow manipulaiion of images
too large to fit into main memory, a soitware package to allow users to edit and update
images, database management and map manipulation functions, and an English-like
query language with which to access the database.

Phase III of this project primarily dealt with enhancements and alterations to
this information system package, an evaluation of some of the design decisions, and the
collection of empirical results to indicate the utility of the software and to justify the
indicated design decisions. Included with this report is a survey of appropriate data
structures for future investigation vis-a-vis the current system.

The particular tasks reported on in this document are:

{a) Attribute attachment. Complete support for arbitrarily associating attributes to
image classes or polygons is now provided.

(b) DMA Standard Lineal Format compatibility. Map images include a header capable of
maintaining all information described by the DMA Standard Lineal Format.

(¢) Memory management improvements. The memory management software has been
optimized, resulting in significant speedup of all operations reported in Phase
II. Design decisions for such parameters as page size and number of pages
allocated per operation are analyzed and empirical results reported. A new
B-tree page splitting algorithm is analyzed.

(d) Database enhancements. Additional functions are reported, in particular, a function
which allows the user to specify 2 region within a given distance of a set of
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polygons contained in an image. Improved algorithms for some functions
reported in Phases I and II are also given.
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1. Introduction

This paper reports on the current status of an ongoing effort to determine the
suitability of applying a class of hierarchical data structures known as quadtrees [Klin71,
Same84b] to the representation of cartographic data. Previocus project reports are
presented in [Rose82, Rose83]. '

Section 2 describes new work done on the quadtree memory management system.
Section 3 describes new work done on the quadtree database system. Section 4 describes
the attribute attachment capabilities developed for the quadtree database system. Sec-
tion 5 discusses theoretical considerations for some of the data structures used in this
project, as well as theoretical and empirical analysis of some potential alternatives. Sec-
tion 8 surveys hierarchical data structures for representing point data. Section 7 surveys
hierarchical data structures for represemting curvilinear data. Section 8 presents our
conclusions and plans for future work. '




2. Enhancements to the quadtree memory management system

The quadtree memory management system, as reported in Phase Il of this pro-
ject, is based on a structure termed the linear quadtree. The leaf nodes making up the
quadtree of an image are stored in a list. Each leaf is sorted on a 32 bit key correspond-
ing to the lower left corner and the depth (size) of the node in the tree. The binary
representation of the lower left x and y coordinates are bit interleaved, thus creating a
key which sorts the node list in the same order in which the leaves would have been
visited by a preorder traversal of the original tree, as detailed in Phase II. Each leaf also
contains a 32 bit value field. This technique allows for a reduction in storage over
pointer based quadtrees which require each node to store 4 pointers to the children and a
pointer to the father, in addition to the value field. The linear quadtree technique can
be. easily implemented in conjunction Wlth a disk based memory management system
which maintains only a small part of the image in core at one time. In our system, the
sorted. list of quadtree leaves had originally been stored in a B*-tree [Come79] with a
page size of 512 bytes, capable of holding up to 60 leaves in a page. For complete
detalls see the Phase I report.

: 'In addmon to specific topics described below, son'\e‘wownrk was devoted to optimi-
zations and small algorithm modifications to improve the efficiency of the memory
management system. Some of these were in the form of code tuning and language
dependent optimizations, but some of the most effective were alterations to the address
manipulation functions. In particular, the functions which convert coordinate pairs to
and from node address keys are frequently used; these have now been optimized by
extensive use of table lookup functions. The node insert algorithm has also been optim-
ized. Taken together, these changes to the memory management system have resulted
in a reduction by approximately 20% of the time necessary to run most database
queries. This is reflected in the timing results presented in Section 3.

In the remainder of this section we report on major modifications and extensions
to the memory management system (known henceforth as the kernel). Additiounally, a
new page splitting algorithm for the B-tree was tested, and empirical results used to
determine the optimal B-tree page size are presented.

2.1. GRAY nodes

The B-tree based data structure employed by the memory management system
represents a quadtree as a linear sequence of leaf nodes. However, in some proposed
applications (e.g., line quadtrees [Same84a] and the multi-resolution approximations
reported on in Phase I of this project), it is advantageous to associate information with
the internal or GRAY nodes of the quadtree. Fortunately, storing these GRAY nodes in
our file structure is easily done. The order of the nodes in the node list corresponds to a
preorder traversal of the quadtree. Thus the structure can be naturally modified to
include GRAY nodes by inserting them as they would occcur in such a traversal. This
preserves the relative order of the original leaf nodes, and comsequently, most of the
algorithms used in processing leaf-only trees can be used on the corresponding GRAY-
node trees with only minor modification.



The kernel has been adapted to permit processing of GRAY-node trees. The user
callable routines involved in the insertion and merging of quadtree nodes were modified,
and a new field was created in the quadtree file header specifying the type of tree con-
tained in the file. Currently, 3 GRAY-node tree can be built by calling the quadtree
building program with an appropriate parameter, and can be displayed. No further
development of GRAY-node capabilities has yet been undertaken. '

2.2, Optimal B-tree page and buffer pool sizes

The kernel manipulates a buffer pool in which a queue of several B-tree pages is
maintained. The most recently referenced page is always at the head of this queue..
When the queue is full and a page is needed which is not in the buffer pool, the informa-'
tion on the least recently used page (i.e., the page at the end of the quene) is copied out
to disk and replaced by that of the new page, which is then placed. at the head of the
queue. Since such swapping is a relatively expensive operation, the number of pages in
the buffer pool would be expected to have an effect on the run-time efficiency of the
database system. - ‘ o :

The size of a B-tree page is also an important factor in system performance. The
UNIX operating system transfers a minimum of a block of 1024 bytes of information
with each read/write request, regardless of the amount actually requested. It is therefore
desirable to make the page size a multiple of this transfer size. With a larger page size,
however, more time is required to search the list of nodes. on the page for the requested
key. For this operation, a small page size is desirable. :

In order to investigate the effects of page and buffer pool size, four versions of the
kernel were produced to use page sizes of 256, 512, 1024, and 2048 bytes, respectively.
The quadtree builder program (which creates a quadtree file from a digital raster image)
was then run with buffer pool sizes of 5, 8, 10, 12, 18, and 20 pages for each of the four
page sizes. For each test rum, the execution time and number of page swaps was col-
lected. The number of page swaps indicates the amount of time used ‘reading and writ-
ing to disk, as opposed to the amount of time devoted to quadtree manipulation func-
tions. The results of these experiments are presented in Tables 2.1 and 2.2,

As can be seen from Table 2.1, the effect of the page size on the algorithm run-
time is present, but not particularly dramatic. There is a general tendency for the times
to increase both with the smallest and the largest page sizes, but this increase is gen-
erally less than 30%. The increase for small page sizes is primarily because more page
swaps are being done without a proportional decrease in the time needed for each sw ap,
as the machine transfer size is a block of 1024 bytes. For large page sizes the time
needed to search for a node in the page has become significant, even though the search
algorithm was optimized for each page size. The effect on execution time of the number
of pages in the buffer pool is generally minor and without any obvious regularity, once a
certain minimum value is exceeded. This minimum is apparent only in the results for
the 256 byte page size. For the larger page sizes it is evidently less than 5 pages. Since
- the kernel's B-tree manipulating functions require 3 minimum buffer pool size of 4 pages,
the pool size does not have a major effect on run-time efficiency.




As was expected, the total number of page swaps decreases when either the page
size or the number of pages in the buffer pool increases. This makes sense, for as each
increases, more core memory is available to the memory management system. If the
object is to minimize disk transfers, then it appears to be more efficient to utilize extra
space to increase the page size rather than to increase the size of the buffer pool. These
results seem to imply that there is a limited locality of reference to quadtree nodes (at
least during the execution of the builder program), i.e., beyond the nodes in the immedi-
ate neighborhood of the last node fetched, there is little correlation between the proba-
bility of finding a sought-after node in a particular page, and that page’s position in the
most-recently-accessed hierarchy.  This explains the leveling off of disk swaps with
increasing pool size, which is apparent in Table 2.2. The abrupt decrease in disk
accesses which reappears for very large pages with large buffer pools is due to the fact
that enough core has been allocated to contain most of the pages in the B-tree structure.

We conclude from these results that our original choice of a B-tree page size of
512 bytes containing 80 nodes was acceptable. A page size of 1024 bytes containing 120
nodes is equally acceptable, and has now been adopted so that our page size matches the
natural page size of the UNIX operating system.



Number Page Size (in bytes)
of Pages | 256 512 1024 2048
5 782 568 569 642
8 690 544 5356 626
10 718 562 535 508
12 684 578 533 582
16 702 553 527 609
20 694 558 520 602

Table 2.1. Execution times for building the floodplain map. Times are reported in
- seconds.

Number Page Size (in Bytes)
of Pages 256 512 1024 2048
5 52397 17745 7191 3940
8 278865 12272 6241 2838
10 27094 12141 5963 1399
o 12 26677 11988 5393 258
16 25941 11587 2864 0
20 25419 10723 503 0

Table 2.2, .Number of page swaps performed while building the floodplain map.




2.3. A new B-tree page splitting algortthm.

The original B-tree based storage system utilized a 3 for 4 page splitting algo-
rithm which considers only the linear structure in the ordered sequence of nodes, and
takes no account of the underlying quadtree. A new paging algorithm was proposed
which would split pages along boundaries corresponding to quadtree quadrants. It was
hoped that by thus introducing some of the structure of the original quadtree into the
B-tree storage scheme, a higher locality of reference would be maintained, reducing the
amount of time spent searching for nodes contained in pages of the B-tree not currently
in core memory. Particularly, execution times for functions linked closely to the strue-
ture of the underlying quadtree, such as merging leaf nodes, would be substantially
decreased. It was recognized that implementation of the new scheme would increase the
size of the quadtree files, but it was hoped that this would be tolerable when weighed
against the increased efficiency. .

-....implementation- of -the new paging algorithm required replacing the kernel pou=-

tines for splitting and merging B-tree pages, and a number of minor modifications to the
remainder of the kernel. The same paging tests that had been performed on the original
kernel were then performed using the new paging algorithm. The floodplain map was
chosen for the building test since its construction involves the most merging. The
results of these experiments are summarized in Tables 2.3 to 2.5 below.

In terms of improving the performance of the database system, the results from
this experiment were generally disappointing. The execution times in the best cases are
slightly lower with the new algorithm, though considerably higher for the worst cases.
This can be seen by comparing the timings from this section with those from Section 2.2.
Where some improvement does result, it is not significant, and is offset by the enormous
increase in the size of the file. As can be seen from Table 2.5, the files produced using
the new page splitting algorithm were approximately three times the size of those pro-

duced using the original algorithm. The explanation for this increase is the fact that
quadrants in a quadtree containing any sizable blobs are very irregularly filled. This is,
in fact, the very means by which a quadtree achieves data compression. The inevitable
consequence, however, is that when a page overflows and is split along quadrant boun-
daries, the contents are apt to be very unevenly distributed among the four new pages.
The magnitude of the problem can be appreciated by observing that in the floodplain
map produced using the quadrant based paging algorithm, out of a total of 384 pages,
166 contained only one node. The rest were, on the average, less than half full. As a
result of the great size of the file and the accompanying increase in the number of pages
containing node data, disk activity is increased rather than reduced. In the best cases,
approximately twice as many page swaps are performed while building the floodplain
map with the new paging algorithm as with the original, as can be seen by comparing
Tables 2.2 and 2.4. The fact that the execution times are generally comparable indicates
that some activities are being performed more efficiently; unfortunately, the gain is not
nearly great enough to offset the negative effect of the large file size. Tests with other
maps show similar behavior for the builder.



Number Page Size (in bytes)
of Pages | 256 512 1024 2048
5 911 731 633 570
. 8 618 509 507 573
10 633 503 501 556
12 609 501 496 550
18 633 512 494 537
e ' 20 631 513 471 524

Table 2.3. Total execution time while building the floodplain map using a quadrant
based page-splitting algorithm. Times are reported in seconds.

Number Page Size (in bytes)

of Pages 256 512 1024 2048
5 193702 125437 61427 5188
8 81633 24352 11038 4781
10 45094 21886 10177 4085
12 42504 21231 9943 2997
16 40918 20766 8463 1156
20 40012 - 20470 8725 247

Table 2.4. Number of page swaps while building the floodplain map using a
quadrant-based page-splitting algorithm.

Page Size Size of File (in bytes)
bytes) Original  Quadrant-based
258 91362 297948
N . 512 79360 228864
. - 1024 78848 205824
' 2048 90112 176128

Table 2.5. Comparison of file sizes for floodplain maps using the original and
quadrant-based page-splitting algorithms. ' T :




3. Enhancements to the Quadtree Database System

Work dorne on the quadtree database system during this phase of the project falls
into two categories. The first includes new functions and capabilities given to the sys-
tem. Included here are functions to maintain the information described by the DMA
Standard Lineal Format, and a new function to allow a user to isolate the area of an
image within a certain distance of a set of polygons; they are described in this section.
The greatest enhancement is the ability to attach arbitrary attributes to polygons and
classes of a region image. This is described separately in Section 4. The second
‘category, also covered in this section, deals with enhancements to already existing func-
tions through code optimizations and implementation of improved algorithms. A
pumber of these are described.

The quadtree database system as a whole has been restructured into three
“modes.” Most functions are in the standard or default mode. Querying a help function
will describe all functions of this mode. The second mode is named “Map-edit.” All
functions described in the Phase Il report as part of the Quadtree Editor are part of this
mode. Additionally, those functions which access the DMA Standard Lineal Format
header are part of this mode. A user may not access any of these functions without first
indicating that he wishes to edit a map. Upon entering the Map-edit mode, the user
may not access functions belonging to the other modes until the editing session is
finished. A query to the help function while in Map-edit mode will describe only Map-
edit mode functions.

The third mode is named “Table-edit.” This mode is used to alter an attribute
table, as detailed in Section 4. Once again, these functions are available to the user only
when he has indicated that he wishes to edit an attribute table, and when in Table-edit
" mode, only Table-edit mode functions are available.

During this phase of the project, the English-like query language described in
Phase II has been temporarily abandoned. It was decided that more work needs to be
dove in order to produce a truly effective query language, and that resources would be
better devoted to expanding the database system at presenmt. Future plans include a
reworking of the query language. For now, the user accesses the database system
directly through a series of LISP function calls.

LISP allows for a very flexible query language based on the composition of a set
of simple functions. The naive user needs no knowledge of LISP to use the database sys-
tem; he needs only the names and required parameters of the database functions. For
the experienced user, our implementation allows the use of a powerful programming
language. Queries can easily be generated using the list processing functions of LISP
which calculate properties over several maps. Future users will be able to easily extend
the present system by writting “intelligent” queries; as an example, such queries could
generate formatted tables of data from a set of maps.

Database functions available to each mode are listed in Tables 3.1 to 3.3. Those
functions not described in detail in Sections 3.1.1 and 4 are described in the Phase II

report.



Name Description
area Compute area of a map
build Build an area map
classof Return class of an object
colordepth Label each quadtree node by its depth
comp Return complement of map
concom Connected component labelling
cursor Return the position of the cursor
describe Describe object
display Display map
forget Make variable name reusable
handw Compute enclosing rectangle
help Help the user
intersect Intersect maps
istree Enter map into the database
Inbuild Build a line map
name Give an object a name

| numbernodes  Label each quadtree node uniquely
pbuild Build a point map
perimeter Calculate the perimeter of a map
polyat Polygon at a point
pointat Position cursor at a point
pointof Return a point from a polygon descriptor
pt2poly Unique name for polygon at a point
regionsearch  Return all points within a radius
width Average width of polygons

| subset Return a subset of the polygons in a map
tableof Return attribute table of a map
treeof Return map-name containing a polygon
typeof Return type of map (area, etc.)
union Union of maps
valueat Value at a given position
window Return window of map
within Expand polygons of a map

Table and map edit manipulation functions

buildtable Build an attribute table
class== Generate set of classes matching a condition
cptable Copy attribute table
edit Edit a map (enter Map-edit mode)
edittable Edit attribute table (enter Table-edit mode)
istable Enter attribute table into database

Table 3.1. Database functions in standard mode.




Name Description

abort Abort editing session

change Change value of a polygon
comment Add comment to map header
describe  Describe object

display Display map

head_ed Edit quadtree header

help Help the user

insert Insert point or line

quit Finish editing

remove Remove point or line

replace Replace value of all polygons in class

slf_init . Initialize SLF header

sif _alter Alter SLF header
sif_view Display SLF header
split Split polygon into pieces

Table 3.2. Database functions in Map-edit mode,

Name Description
abort Abort the editing session
addclass Add a new class
cpclass Copy attributes of a class
delclass Delete a class
describe Describe object
editclass Edit a class
help Help the user
printclass  Print attributes of a class
quit Finish editing

Table 3.3. Database functions in Table-edit mode.
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3.1. New functions

3.1.1. DMA Standard Lineal Format

One design requirement. of this project is that map images must preserve the
information content of the DMA Standard Lineal Format (SLF) [DMAS83]. The official
description of the SLF is divided into four “record” types: the Data Set Identifier (DSI)
record, the Segment record, the Feature record, and the Text record. In our system,
information contained in the Segment Record is stored by the quadtree. Information
contained in the Feature Record is maintained by our Attribute Attachment system
(described 'in Section 4). The Text Record corresponds to the comments which a user
may store with an. image by use of the COMMENT command, a member of the Map-
edit mode functions. The DSI record contains a list of standard information fields which’
the user may wish to access. The header format described in Phase II of the project con-
tained only'a tiny fraction of this information, so a mew header system has been
developed along with a set of commands to manipulate it. The structure of this header
is nearly identical to the structure described in [DMA83], with many of the field names
remaining the same. Where names were “altered, such alterations were necessary to
maintain uniqueness of the field names, o

Associated with each map image is a file containing that map’s SLF header. The
name of this header file is stored in a new field added to the quadtree header, which is
part of the image file. Whenever the SLF header is to be accessed, the database system
first locates this file name. The description of the SLF provides for 637 bytes of storage
for fixed length fields. Following this is a section with a variable number of fixed length
records (the Registration Point records), followed by a section containing a variable
number of variable length records (the Accuracy Subset records). Our SLF header pack-
age manages the file space in the most compact manner possible. However, there is no
restriction imposed on how much information may be contained in the variable length
portions of the header '

The names and sizes of the fields stored in the SLF header are listed in Table 3.4,
The entire header is treated as a simple character file, and an offset from the beginning
of the file is associated with each field name. The number of Registration Point records
is stored in the number_of_registration_points field. As these records are added or
deleted, the remainder of the SLF header following the requested record is moved for-
ward or back as necessary. Finding the beginning of a given record N of this set is easily .
done by adding N+51 (since each record contains 51 bytes of information) to the value of
the registration_points_address field. '

The beginning of the Accuracy Subset Group 1is stored in the
accuracy_subset_address field, allowing for easy access to the beginning of the list of
Multiple Accuracy Outlines. Unfortunately, as each record is of variable length, to find
- the beginning of the record N it is necessary to recaleulate the address for each access.
This is done by examining the length of each Accuracy Outline record in sequence, and
calculating the address for the beginning of the next record. Cumbersome as this system
. may appear, an interactive user should see quick response to header queries.
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The user is provided with three functions with which to manipulate the SLF
.header.

1. slf_init
FORMAT: (slf_init <map> <file-name>)

This function initializes the SLF header for a map image. The name of the map
is spec:ﬁed as well as the name of the file which is to be used to store the SLF header.

Initially, most fields are set to be empty.

2. sif _alter :
FORMAT: (slf_alter <map>> < attribute-name>>)

This function is used for all alterations to the SLF header. Most fields are of
fixed size. For these fields, the old value will be printed, then the user will be prompted
to type the new value. If a carriage return is typed with no value, no change will be
made. If the attribute name given is registration_point_record, then the user will be
asked if he wishes to add, delete, or alter a record. If delete or alter, then he will be
asked which record. The record will then either be deleted, or the user will be prompted
for the field to be altered and the new value, as appropriate. If the user wishes to add a
record, then he will be prompted for each field’s value. The new record will be added at
the end of the list of registration_point_records.

Likewise, if the attribute-name given is registration_point_record, then the user
will be prompted for details on adding, deleting, or altering the record.

3. slf_view FORMAT: (slf_view <map> [<attribute_name>>])

This function allows the user to view the SLF header of map <map>. If no
attribute name is given, then the entire record will be displayed. For most attribute
names, the value will simply be displayed. If the attribute queried is
registration_point_record or accuracy_subset_record, then the user will be prompted to
indicate which record he wishes to view. If the user specifies “zall,” then all such records
will be displayed. Otherwise, the uger specifies a particular record and this record alone

is displayed.
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Table 3.4. The list of SLF header ﬁeliis.’ Size refers to the number of characters stored.

Name Size

DSIG

product_type :
data_set_ID 2
edition

compilation_date

maintenance_date

DSIG_reserve 4

O b WO O

DSSG

security_classification
security_release
downgrading_declassification_date
security_handling

SG_reserve

TS
(== R T

DSPG
data_type
horizontal_units_of_measure
horizontal_resolution_units
geodetic_datum

~ellipsoid
vertical_units_of_measure
vertical_resolution_units
vertical_reference_system
sounding_datum
latitude_of _origin
longitude_of_origin
x_coordinate_of_origin
y_coordinate_of_origin
z_coordinate_of_origin
latitude_of SW_corner
longitude_of_SW _corner
latitude_of _NE_corner
longitude_of _NE_corner
total_number_of_features

— s bt ot ok :
GD@O@OOOOG.&&MWQ’Q&MC@&:A

number_of_point_features 8
number_of linear features 6

- number_of_area_features 6
total_number_of_segments 8
40

DSPG_reserve
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Table 3.4 (continued)

Name

DSMP

projection
projection_parameter_1
projection_parameter_2
projection_parameter_3
projection_parameter_4

scale
MPG_reserve

DSHG

edition_code
product_specification
specification_date
specification_amendment_number
producer

. digitizing_system
processing_system
grid_system
absolute_horizontal_accuracy
absolute_vertical_accuracy
relative_horizontal_accuracy
relative_vertical_accuracy
height_accuracy
data_generalization
north_match/merge_number
east_match/merge_number
south_match/merge_number
west_match/merge_number
north_match/merge_date
 east_match/merge_date
south_match/merge_date
west_match/merge_date
HG_reserve

bSVG
registration_points_address
accuracy_subset_address
VFAG_reserve
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Table 3.4 (continued)

Registration Points Group header and records
Name . Size

DSRG
number_of_registration_points

< -

DSRG_point_id

DSRG_latitude

DSRG_longitude 1
DSRG_elevation

DSRG_x_coordinate

DSRG_y_coordinate

DSRG_z_coordinate

PRI O O

Accuracy Subset Group header and records

DSAG : 4.
maultiple_accuracy_outliné_count

(3

DSAG_absolute_horizontal_accuracy
DSAG_absolute_vertical_accuracy
DSAG_relational_horizontal_accuracy
DSAG_relational _vertical_accuracy
DSAG_number_of_coordinates
DSAG_latitude

DSAG_longitude S |

TR - R R Y
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3.1.2. The WITHIN function

The WITHIN function allows the user to create a new map from a map contain-
ing a collection of polygons. This new map expands the border of all polygons by R
units where R is a radius value specified by the user. This function is an important step
for answering queries such as “What is the area of all wheat fields within 5 units of the
river!” To answer this query, the user would apply the WITHIN function to the map
containing only the river polygon (which can be obtained from the landuse map by using
the subset function) along with a radius value of 5 units. The resulting map would then
be intersected with the wheatfield map, followed by an area query. In LISP the entire
query would appear as :

(area (intersect wheatfield (within river 5)))
where wheatfield and river are the appropriate maps.

The current algorithm is as follows. Each node of the input map is examined in
sequence. WHITE nodes are ignored. Non-WHITE nodes are processed by a helper
function which does the actual work of inserting the appropriate nodes into the output
tree. This helper function works as follows. First, the square resulting from expanding
the current {non-WHITE) node by R pixels in all directions is calculated. Second, the
positions of nodes whose size is the same as that of the current node, and which occur
within this square, are calculated. They are then inserted into the output tree. The ori-
ginal node is of course inserted during this process. Finally, the edges of the caleculated
square are filled in by smaller nodes until all pixels of the square have been inserted.
The kernel automatically handles the merging of four sibling nodes which have the same
value. This algorithm is admittedly inefficient; better algorithms are being designed and
will be implemented in the next phase of the project.

Figures 3.1 and 3.2 show the central region of the floodplain and the map of all
ACC polygons from the landuse map, along with the extension resulting by calling the
WITHIN function with a radius of 8. Table 3.5 shows timing results for the WITHIN
function on these two maps extended by radii taking on values from 1 to 8. An Algol-
like description of the algorithm follows:

procedure WITHIN(INMAP,OUTMAP,R);
/* Create a map OUTMAP which is BLACK at all pixels within R units of a BLACK
pixel of INMAP. */
begin
reference map INMAP, OUTMAP;

value integer R;
node ND;

for ND in INMAP do
if QD_VALUE(ND) ¢ WHITE then
whelp(ND, OUTMAP, R, SIZE_OF(INMAP));

end;
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/* In the following algorithm, QD_X and QD_Y calculate the X and Y coordinates of
the node. QD_XY builds a node from the given X and Y values, ~and the WIDTH.
QD_SET sets the value of a node. */

procedure WHELP(ND,OUTMAP,R,INSIZE)

begin

reference map OUTMAP;

value node ND;

value integer R, INSIZE;

node NODE1;

integer TDIST, X, Y, WIDTH, N, W;

X +« QD_X(ND};
Y < QD_Y(ND);
WIDTH « WIDTH_OF(ND);
TDIST « R;
if WIDTH < TDIST then
begin [+ insert nodes of the same size as the original node */
N « TDIST/WIDTH;
W «— (2+N+1)*WIDTH;
X « X - N¥WIDTH;
Y « Y - N*WIDTH;
TDIST « TDIST - N*WIDTH;
for J «— Y step WIDTH until J > Y + 2«*N+WIDTH do
for I — X step WIDTH untilI > X + 2*N+WIDTH do
if1 2 0andJ > 0 and I+WIDTH < INSIZE
o and J+WIDTH < INSIZE then
QD__INSERT(OUTMAP,QD_SET(QD_XY(NODEI,I,J,WIDTH),BLACK));
end;
else  /* original node is the largest node to be inserted */
begin
QD_INSERT(QD _SET(QD_ XY(NODEI X,Y,WIDTH),BLACK);
W +~ WIDTH;
end;
while TDIST £ 0 do
if TDIST < WIDTH then
WIDTH — WIDTH/2;
else :
~ begin
" Y- WIDTH > 0 then
for I — X - WIDTH step WIDTH until I > X+ Wdo
if 1 > 0and I + WIDTH < INSIZE then
QD_INSERT(OUTMAP,QD__ SET(QD_XY(NODELLY-WIDTH,WIDTH),
BLACK)); .
if Y+W-+WIDTH < INSIZE then
for [ «— X - WIDTH step WIDTH untill > X + W do
if] > 0and I + WIDTH < INSIZE then
QD_INSERT(OUTMAP,QD_SET(QD XY(NODEI LY+W,WIDTH),BLACK));
if X - WIDTH > 0 then
for I — Y - WIDTH step WIDTH untill > Y + W do

17




if] > 0and I + WIDTH < INSIZE then
QD INSERT(OUTMAP QD_SET{QD_XY(NODE! X-WIDTH,],WIDTH),
BLACK));
if X4+W+WIDTH < INSIZE then
for I +— Y - WIDTH step WIDTH untilI > Y + W do
if ] > 0and [ + WIDTH < INSIZE then
QD _INSERT(OUTMAP,QD_SET{QD W(NODEI X+W,,WIDTH), BLACK))
TDIST « TDIST - WIDTH,;
X «~ X - WIDTH;
Y «~ Y - WIDTH;
W~ W+ 2 + WIDTH;
WIDTH — WIDTH /[ 2;
end;
end;
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Figure 3.1. The central region of the floodplain with an 8 pixel extension.
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- Figure 3.2. The ACC class polygons with an 8 pixel extension.
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Distance | Flood time | ACC time
1 1:02.5 1:13.0
2 0:54.5 1:00.9
3 1:53.2 2:17.0 -
4 - 1:346 1:51.2
5 . 3:05.2 3:37.3
6 3:05.3 3:37.2
7 4:45.1 5:32.7
8 4:23.1 5:01.0

Table 3.5. Timing results for the WITHIN function calculated on the floodplain center
image and the ACC landuse class image for distances ranging from 1 to 8 pixels. The
floodplain center image contains 2235 BLACK nodes and 2452 WHITE nodes. The ACC
landuse class image contains 1394 BLACK nodes and 1886 WHITE nodes. Times are in

minutes. '
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3.2. Imgproved algorithms

A number of functions reported in previous phases of this project have been
significantly improved by the development of new algorithms. Such results are described
in this section.

3.2.1. Table driven traversal

Many functions visit every node in the tree in either a pre-order traversal of the
image or an arbitrary order. As each node is visited, some local operation is computed.
In some cases it is necessary to determine the postition of the node. One such function
- is the display function. Each node must be visited, and the block represented by that
node is placed on an output device in the appropriate position.

Given a quadtree node, the lower left corner and size of the node can be calcu-
lated from the address. The size is of course directly calculated by the depth value,
which is easily accessed as it is contained in the fourth byte of the address field. How-
ever, the X and Y coordinates of the node are bit interleaved in order to form the
address key used in storing the node in the B-tree. Retreiving these coordinates requires
a series of arithmetic operations on the address, with the number of these operations
related to the depth of the node in the tree. '

This time consuming set of operations can be avoided, since the position of the

next block of the guadtree in a preorder traversal can be determined knowing the size

_and position of the previous block. The algorithm used currently by the database sys-
tem to determine the position of the next block utilizes a two dimensional table with 12

rows (the maximum depth of a quadtree in our database) and three columns correspond-

ing to an X position, a Y position, and a sontype {i.e. a quadrant). This table maintains

information on the position of the current nede in the traversal, updating this informa-

tion as each node is visited.

Through use of the table-driven traversal algorithm, the time spent calculating
" the coordinate positions of the nodes has been cut by more than half. The algorithm is

presented below.

/* definition and initialization of TRAVTAB #/
integer array TRAVTAB(3,2]| = {1,0,-1,1,1,0}

- procedure DISPLAY(INMAP);
/* Display INMAP by passing a description of each block to a display function. */
begin .
reference map INMAP;
‘node ND;
global integer array TRAVARR([12,3};
integer I; '
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for I « 0 step 1 until I = 12 do

begin /* initialize array */
/* x and y values seen at each depth */
TRAVARR(L,0] « TRAVARR[L,1] = 0;
/* son most recently seen at each depth +/
TRAVARR({L,2] « SW;

- end;

for ND in INMAP do

DISP_ALL(ND);

end;

Procedure DISP_ALL{ND)
/* calculate coordinates of ND and pass position to display function #*/
begin

value node ND;

global integer array TRAVARR[12,3];

integer DEPTH, WIDTH, X, Y:

DEPTH «— QD_DEPTH(ND);
WIDTH «— WIDTH_OF(ND);
‘X «— TRAVARR|DEPTH,0};
Y « TRAVARR[DEPTH,1];
/* compute local function */
DISPLAY_BLOCK(X,Y,WIDTH);
/* update table for next node */
while TRAVARR[DEPTH,2] = NE do
begin /+ finished quadrant at this depth */
/* set coordinate to be lower left corner of current quadrant */
X «~ X - WIDTH;
Y <Y - WIDTH;
TRAVARR[DEPTH,2] « SW;
/* move up one level */
DEPTH ~ DEPTH - I;
WIDTH «— WIDTH * 2;
end;
- [+ move to lower left corner of next quadrant; TRAVTAB simply gives multlplyer for
shift depending on currernt quadrant */
X « X + WIDTH * TRAVTAB[TRAVARR[DEPTH, 2],0];
Y ~ Y + WIDTH * TRAVTAB[TRAVARR[DEPTH, 2),1};
TRAVARR[DEPTH,?] — TRAVARR[DEPTH,2] + 1;
for I « DEPTH step 1 untill = 12do -
‘begin /* adjust lower levels */
TRAVARR[L0] «
TRAVARRILL] Y
‘end;
end;
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3.2.2. Quadtree traversal and neighbor finding

Many algorithms for standard quadtree operations can be expressed as simple
tree traversals where at each leal a computation is performed involving that leaf and
some or all of its neighbors. Finding the neighbor of a node is somewhat costly as it
involves searching the node list. For some operations, it is possible to maintain tables
which contain the value, size, and position of those neighboring nodes which have been
seen previously during the traversal, as detailed in [Same83b]. To find the value of such
a neighbor, it is necessary only to look in the table. The perimeter of an image and con-
nected component labeling car both be computed in this way.

The algorithm makes use of four tables, each the same size as the width of the
image. At any instant, the state of the traversal (i.e., after processing m leaf nodes) can
be visualized as a staircase (termed an active border ). The tables maintain information
on the value (BLACK or WHITE) of pixels along this active border. An algorithm for
computing the perimeter of an image with no explicit neighbor searching is presented
below. Note that where this algorithm calls for a computation of the X and Y coordi-
nates, the algorithm of the above section could be used instead.

/* New perimeter algorithm; x and y coordinates are computed. QD_TRAVEL executes
a helper function over every node in INTREE. #/

integer procedure PERIMETER{INTREE});

begin
reference map INTREE;
global integer array XEDGE_WID[SIZE_OF(INTREE)];
global integer array XEDGE_COL[SIZE_OF(INTREE)];
global integer array YEDGE_WID[SIZE_OF(INTREE)];
global integer array YEDGE_COL[SIZE_OF(INTREE)};
node ND; ) '
integer [;

for I < 0 step 1 until | = SIZE_OF(INTREE) do
begin
XEDGE_WID|I] «~ YEDGE_WID[I] « 0;
XEDGE_COL[l] « YEDGE_COLI[l} — WHITE;
end;
XEDGE_WID[0] — YEDGE_WID[0] — SIZE_OF(INTREE);
for ND in INTREE do
VALUE — PERIM(ND);
return(VALUE});
end;
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integer procedure PERIM{ND)
begin
value node ND;
integer WIDTH;
integer DEPTH;
integer X, Y, C;
integer TMP; /+ stores the value of the perimeter for current node * /

DEPTH «— QD_DEPTH(ND);
WIDTH «— WIDTH_OF(ND);
C « QD_VALUE(ND);
X — QD_X(ND);
Y — QD_Y(ND};
/* do south edge */
if C 3¢ XEDGE_COLIX] then
/* adjacent nodes have different colors */
" CNT « CNT + MIN(WIDTH XEDGE_WID[X}};
if WIDTH < XEDGE_WID[X] then
begin /* new leafl smaller than neighbor - update remainder of border +f
XEDGE_WID[X + WIDTH] « XEDGE_WID[X] - WIDTH;
XEDGE_COL[X + WIDTH] — XEDGE_COLX];
end;
else if WIDTH > XEDGE_WID[X] then
begin /* new leaf larger than neighbor */
TMP — X + XEDGE_WID[X];
while TMP < (X + WIDTH) do
begin
if C # XEDGE_COL[TMP] then
CNT « CNT + XEDGE_WID[TMP};
TMP «— TMP + XEDGE_WID|TMP};
end;
end;
/* update active border */
XEDGE_COL[X] « C:
XEDGE_WID[X] — WIDTH;
if (X + WIDTH) = SIZE_OF(INTREE) then /* on border of image +f
 if C £ WHITE then
CNT « CNT + WIDTH;
/* do west edge */
if C ¢ EDGE_COL[Y] then
/* adjacent nodes have different colors */
CNT « CNT + MIN(WIDTH,YEDGE_WIDly));
if WIDTH < YEDGE_WID[Y] then
- begin /+ new leaf smaller than neighbor - update remainder of border * /
YEDGE_WID[Y + WIDTH] « YEDGE_WID[Y] - WIDTH; N
" YEDGE_COL[Y + WIDTH} « YEDGE_COL{Y]; o
end;
else if WIDTH > YEDGE_WID[Y] then
begin /+ new leaf larger than neighbor */
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TMP « Y + YEDGE_WID[Y];
while TMP < (Y + WIDTH) do
begin
if C £ YEDGE_COL[TMP] then
CNT « CONT + YEDGE_WID[TMPj;
TMP «— TMP + YEDGE_WID[TMP];
end;
end;
/* update active border */
YEDGE_COL[Y] ~ C;
YEDGE_WID[Y] «~ WIDTH;
if (Y + WIDTH) = SIZE_OF(INTREE) then /# on border of image */
if C % WHITE then .
CNT « CNT + WIDTH;
return(TMP);
end;
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Old New Number of Leaves Number Page Faults |
Map Alg.  Alg. Total Black Pages Old New

center 563 78 4087 2235 124 162 124
flood - 1196 86 5248 48086 102 161 102
acpmap 745 88 5503 _ 2664 147 210 147

Table 3.6 Perimeter timings to compare two algorithms. The ‘“old” algorithm utilizes a
neighbor finding function to locate the South and East neighbors of each node during
the traversal. The “new” algorithm utilizes tables to maintain information om those
neighbors which have been seen during the traversal (i.e., the Southern and Eastern
neighbors). ““Number of Pages” indicates the number of B-tree pages required to store
the tree; “Page Faults” indicates the number of pages read into core during execution of
the algorithm. Since the new algorithm is simply a traversal of the map, each page is
read once. Times are in seconds. ' :
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3.2.3. A new windowing algorithm

A new windowing algorithm has been developed which is significantly faster for
large windows than that described in the Phase Il report. The two algorithms are simi-
lar in that both are top-down algorithms, and both attempt to insert blocks which are as
large as possible into the output tree. For clarity, the algorithm is presented here for
use with pointer-based quadtrees.

The new algorithm takes advantage of the fact that the output tree is always
completely covered by at most four nodes of the input tree whichk are of the same size as
the output tree. First, these (at most) four nodes are found. If the output tree
corresponds to exactly one subtree, then this subtree is copied to the cutput tree and the
algorithm terminates. If all four input tree subtrees are leaves of the same color, then
. the output tree is a leaf node of this color and the algorithm terminates. Otherwise, the
output tree receives a GRAY node and the algorithm is called for each of the four sub
quadrants of the output tree. However, for each of the subquadrants of the output tree,
the four spanning input tree quadrants will be children of the four input subtrees
already found, so very little searching is done. The primary advantage of this algorithm
over that described in Phase II is that many fewer nodes need be inserted into the out-
put tree. This is true becanse many times output nodes that would have been merged
by the old algorithm are partitioned between the four input nodes spanning the output
subquadrant, all of whom have the same color. In this case, only a single rode need be
inserted. :

~ Timing statistics for comparision between the two algorithms are presented in
Table 3.7. The new algorithm is presented below,

node procedure WINDOW(ROOT, INWIDTH, WX, WY, OUTWIDTH);
/* Call WIND, passing in the upper left coordinates and the root of the output tree
along with the four node of same size as the input tree whick span it. +/
begin
value node ROOT;
value integer INWIDTH, WX, WY, OUTWIDTH;
node QOUTROOT;
node array Q[4];

Q[0] «- FINDBLOCK(ROOT, WX, WY INWIDTH,CUTWIDTH);
Q1] < FINDBLOCK(ROOT,0,0,WX+OUTWIDTH-1,WY ,INWIDTH,OUTWIDTH};
Q[2] «~ FINDBLOCK(ROOT,WX,WY+QUTWIDTH-1 INWIDTH,OUTWIDTH};
Q3] «— FINDBLOCK{ROOT ,WX+OUTWIDTH-1,WY+OUTWIDTH-1,

. INWIDTH,OUTWIDTH);
return{WIND(Q,WX-(WX mod WIDTH),WY-(WY mod WIDTH),

WX, WY, WIDTH,NULL,NULL));

end '
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procedure WIND(Q, INX, INY, WX, WY, WID, FATHER, FQD);

/* A top down algorithm which returns, as the QD son of node FATHER, the quadtree
representing the window (WX,WY,OUTWID) taken from the tree rooted at ROOT
described by (INX, INY, INWID). «/

begin

reference node array Qf;

reference node FATHER;

value integer INX, INY, WX, WY, WID;
value quadrant FQD;

node array T[4];

node R;

quadrant QD, SUBQD;

if{(not GRAY(Q[0])) and (NODETYPE(Q[0]) = NODETYPE(Q[1]) =
NODETYPE(Q[2]) = NODETYPE(Q[3])) then
/* Output tree is a single leaf node. */
return(CREATENODE(FATHER,FQD,NODTYPE(Q{0])));
if(Q[0] — Q1] = QI2] = Q)
/* The window coincides with a single input subtree - return a copy. */
return(COPYSUB(Q[0], FATHER,FQD));
{/* Process each quadrant of the window */
P — CREATENODE(FATHER, FQD, GRAY);
for Iin {NW,NE,SW,SE} do
begin
/* Compute which four children of the spanning input tree nodes span the I qua-
drant of the window */
MODWX + if I in {NE,SE} then WID else 0;
MODWY « if I in {SW,SE} then WID else 0;
QD «— GETQUADRANT(WID,WID,WX mod WID+2,WY mod WID*2);
SUBQD «— GETQUADRANT(WID/2,WID/2,WX mod WID,
WY mod WID);
T{0] ~ SON(Q[QD],SUBQD); ‘
QD + GETQUADRANT(WID,WID,WX+WID-1 mod WID*2,WY mod WID#2);
SUBQD « GETQUADRANT(WID/2,WID/2,WX+WID-1 mod WID, '
WY mod WID);
T{1] ~ SON(Q[QD],SUBQD);
QD +- GETQUADRANT(WID,WID,WX mod WID*2,WY+WID-1 mod WID#*2);
SUBQD + GETQUADRANT(WID/2,WID/2,WX mod WID, WY+WID-1 mod
WID); | |
T[2] — SON(QIQD],SUBQD); -
QD « GETQUADRANT(WID,WID,WX-+WID-1 mod WID+2,
' WY+WID-1 mod WID+2);
SUBQD « GETQUADRANT(WID/2,WID/2,WX+WID-1 mod WID,
WY+WID-1 mod WID);
T}3] — SON(Q[QD],SUBQD);
WIND(T,WX+MODWX-(WX+MODWX mod WID/2),
' - WY+MODWY-(WY+MODWY mod WID/2), WX+MODWX, WY +MODWY,
WID/2,P,)); - | |
end;
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R « P;

MERGE(P,2,2);

return{R);
end;
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Size/f Times
Shift Old New
256
1 161.7 845
2 68.5 55.3
4 43.2  41.7
16 36.5 358
64 314 307
128
1 373 183
2 147 112
4 89 87
16 77 80
64 105  10.8
64
1 103 5.2
2 40 34
4 2.5 2.6
18 1.6 1.7
64 286 26
16
1 0.7 04
p) 0.3 02
4 0.2 02
16 0.1 0.1
64 0.1 0.1

Table 3.7. Windowing timings to compare two algorithms. Size indicates the width and
height of the square window. Shift indicates the location of the lower left corner of the
window with respect to the input image - i.e., a shift of 2 means that the lower left
- corner of the window is 2 pixels to the right and above the origin of the input image.
Note that a shift by a multiple of a node size will result in no splitting of nodes that size
or smaller, thus the shift value affects the difficulty of the cperation. Times are meas-

ured in seconds.
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3.2.4. Set query timings

Timing statistics were gathered to evaluate the efficiency of the set query fune-
tions. A list of set queries to be used for gathering empirical results was suggested by
ETL. These are used in compiling Tables 3.9 to 3.16 below. Table 3.8 below duplicates
Table 3 of the Phase II report 1!1ustratmg the improved efﬁmency due to kernel optlmlza-
tions. Table 3.9 presents these queries as they would be given in our system prlor to
attribute attachment capabilities. Table 3.10 presents empirical results prior to
improvements and optimizations performed on the kernel. Table 3.11 presents a slightly
altered set of queries which store intermediate resuits, reducing the need to recalculate
' some maps many times. This second set of queries would be more typical of a user’s
interaction with the database. Tables 3.12 to 3.16 repeat the above experiment while
illustrating the use of the attribute attachment system; they also reflect improvements
to the kernel. :
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Land Center Map Houses Map Road Map

Class | Time Size Time | Size | Time | Size
ace 5.0 6341 | 2.8 9 | 105 30
acp 5.2 26836 2.9 25 10.9 94
ar 5.0 1197 2.2 11 5.4 12
are 4.8 152 { 1.4 0] 45 0
‘avf 12.4 23776 5.5 59 17.0 264
avy 11.9 29685 4.7 50 18.5 341
bbr 34 432 1.9 0 7.2 0
beq 2.5 229 | 1.9 0{ 59 0
bes 4.3 147 1.9 0 4.8 0
bt 6.3 3403 1.8 13 5.9 3
fo 5.9 16952 4.8 4 7.1 30
Ir 5.1 948 3.9 0 5.3 1
r 5.6 23147 1.9 4 11.7 94
uch 2.4 249 1.9 0 6.1 14
uce 5.6 1018 1.9 4 5.7 34
ucr 2.7 1518 1.3 i 5.6 90
ucw 2.5 305 1.5 2 4.4 4
ues 3.7 1628 1.3 1 5.7 33
uil 2.4 422 1.8 0 4.7 13
uis 2.9 1042 14 8 59 18
uiw 2.4 18 | 1.5 4 4.2 6
uoc 2.2 288 1.3 G 4.1 14
uog 2.5 [ 1115 14 2 5.1 30
100 2.5 490 1.4 1 4.3 11
uop 2.4 213 1.5 10 4.3 8
uov 2.4 238 1.5 9 4.0 6
urh 2.8 167 1.3 3 4.3 3
urs 8.5 26752 5.3 577 | 22.7 1098
uus 2.7 261 14 0 4.2 4]
uut 3.6 1928 2.0 2 7.2 18
vy 2.4 - 108 1.4 0 3.8 2
wo 2.9 0 14 0 4.2 0
ws 6.0 3409 1.5 9 9.7 11
wwp | 2.5 206 2.1 0 3.9 0

Table 3.8. Timings for the intersection task. Intersection of each class from the landuse
map with:

1) the center region of the floodplain map (an area map)-

2) the house map (a point map)

3) the road map (a line map)
Size is measured in the number of non-WHITE pixels. Time is measured in seconds.
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Table 3.9. 25 set gueries .

1. (intersect {subset land acp) (subset flood inside})
2. (intersect (subset land acp) {subset flood not inside))
3. (intersect {subset land acp) (subset top not levell level2))
. (intersect (subset land acp) (subset top level3 leveld level5))
. (intersect {subset land acp} (subset top not level3 leveld level5))
. (intersect (subset land acp) {subset top not level5))
. (union (subset flood inside) (subset land not avv))
. {subset land not avv acp)
. (subset land avv acp)
10. (union (subset flood inside)
(intersect (subset land not avv) (subset top levell))}
11. (subset land wcc ucr ucw uil vis uiw uoc wog uwoo uop urh urs uwus)
12a. (intersect (subset land r) top)
b. (intersect {subset land r} (subset top not levell})
¢. (intersect {subset land r) (subset top not levell level2))
d. (intersect {subset land r) (subset top not levell level2 level3})
e. (intersect (subset land r) (subset top not levell level2 level3 leveld))
f. (intersect {subset land r) (subset top not levell level2 level3 leveld level5))
g. (intersect (subset land r) (subset top level7 level8 level9 levell0 levelll))
h. (intersect {subset land r} (subset top level8 level9 levell0 levelll))
i. (intersect (subset land r) (subset top level9 levell0 level1l))
j. (intersect (subset land r) {subset top levell0 levelll))
k. (intersect {subset land r) (subset top levelll))
13. (intersect top (subset flood not inside))
14. {union (subset flood inside)} (subset top level5))
15. (intersect (subset flood inside} (subset top levell))

4
5
6
7
8
9
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Elapsed Time CPU Time
Query Query | Cumulative | Query | Cumulative
Number Area Time Time Time Time
1 152 1:06 1:08 0:54.5 0:54.5
2 26734 1:16 2:22 1:08.2 2:01.7
3 12311 2:27 1 . 449 2:09.7 - 4:12.6
4 9752 1:59 8:48 1:48.4 - 5:89.0
5 16813 |. 2:22 g:10 2:08.1 8:07.1
6 25336 2:52 12:02 2:36.2 10:43.3 .
7 157190 | 3:26 15:28 3:07.4 13:50.7
8 118928 1:32 17:00 1:25.1 15:15.9
9 56571 0:54 17:54 0:49.0 16:04.9
10 50846 4:19 22:13 3:53.2. 19:57.4
11 33777 (:48 23:01 0:43.9 20:41.3
12 a 20752 1:26 24:27 1:17.3 21:58.6
b 20727 2:52 27:19 2:37.5 24:36.2
c 18518 2:36 29:55 2:19.2 26:55.5
d 15591 2:25 32:20 . 1:59.4 28:54.9
e 12211 1:59 34:19 1:46.4 30:41.4
f 9442 1:45 36:04 1:32.2 1 32:13.8
g 7416 1:32 37:36 1:22.8 33:36.3
h 5532 1:26 39:02 1:14.9 34:51.2
i 3198 | 1l:14 40:16 1:05.8 35:57.1
j 1108 1:07 41:23 0:57.4 36:54.6
k 8 1:02 42:95 0:56.8 | 37:498
13 42701 1:57 44:22 1:44.7 39:34.5
14 37194 1:23 45:45 1:12.2 | - 40:46.7
i5 284406 1:08 468:53 0:59.0 41:45.8

- Table 3.10. Timings for 25 set function queries before implementation of attribute
attachment. Times are in minutes. -
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Table 3.11. 25 set queries, storing intermediate results

1. (name 'acpmap (subset land acp))
(name 'inmap (subset flood inside))
{intersect acpmap inmap)
2. (name ‘outside (subset flood not inside))
(intersect acpmap outside) -
3. (intersect acpmap (subset top not levell level2))
4. (intersect acpmap (subset top level3 leveld level5))
5. (intersect acpmap (subset top not level3 leveld level5))
6. (intersect acpmap (subset top not level5)) %
7. (name 'notavv (subset land -not avv))
(union inmap notavv) L .
8. (subset land not avv acp) ‘ f L
9. (subset land avv acp) . ' :
10. (union inmap (intersect notavv (subset top levell)))
11. (subset land ucc uecr uew uil uis viw oc uog uoo uop urh urs- uus)
12a. (name 'landr (subset land r))
(intersect landr top)
b. (intersect landr (subset top not levell))
¢. (intersect landr (subset top not levell level2))
d. (intersect landr (subset top not levell level2 levei3))
e. (intersect landr (subset top not levell level2 level3 level4))
f. (intersect landr (subset top not levell level2 level3 leveld level5))
g. (intersect landr (subset top level7 level8 level9 levell0 levelil))
h. (intersect landr (subset top level8 level9 level10 levelll))
i. (intersect landr (subset top level9 levell0 levelll))
j. (intersect landr (subset top levell0 levelll))
k. (intersect landr (subset top levelll))
13. (intersect top outside)
14, (union inmap (subset top level5)}
15. (intersect inmap (subset top levell))
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Elapsed Time CPU Time
Query Query | Cumulative | Query [ Cumulative
Number Area Time Time Time Time
1 152 1:09 1:09 0:544 | {:54.4
2 26734 0:48 1:57 - 0:36.4 1:30.7
3 12311 2:03 .4:00 1:41.6 3:12.2
4 - 9752 1:33 5:33 1:17.8 4:20.0
5 16813 2:03 - 7:38 1:39.9 6:09.9
4] 25388 2:41 10:17 2:05.1 8:15.1
7 157190 2:29 13:58 2:58.8 11:14.0
B 118928 2:45 15:31 1:29.5 12:43.5
g 56571 1:04 16:35 0:52.0 13:35.2
10 50646 2:41 19:16 2:08.1 15:43.3
11 33777 | 0:54 20:10 0:42.3 . 16:26.2 .
12 a 20752 1:38 21:38 1:20.6 17:46.9
b 20727 2:25 - 24:13 2:07.9 19:54.9
c 18518 1.57 26:10 1:07.2 21:42.1 E
d 15591 1:38 27:46 1:27.5 23:09.7 .
e 12211 1:20 20:08 1:12.9 | 24:228
f 09442 1:13 30:19 1:01.1 25:24.0
g 7416 1:04 31:23 0:50.4 26:14.5
h 5532 0:51 32:14 0:42.2 26:56.7
i 3198 0:38 32:52 0:33.4 27:30.1
] 1108 0:31 33:23 0:25.7 27:55.9
k 3 0:27 - 33:50 0:22.4 28:18.3
13 142701 1:38 35:28 1:29.6 29:48.0
14 37194 1:06 36:34 0:58.5 30:48.5
i5 ' 28446 0:53 37:27 0:46.6 31:33.2

Table 3 12. Timings for 25 set function queries before implementation of attrlbute
attachment. Times are in minutes.
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Table 3.13. 25 set queries with attribute attachment

1. (intersect (subset land (==== class acp)) (subset flood (=== class inside)))

2. (intersect (subset land (=== class acp)) (subset flood (not (== class inside))))

3. (intersect (subset land (== class acp)} (subset top (>> elev 2)})

4. (intersect (subset land (== class acp)) (subset top (and (> > elev 2) (<< elev 8))))
5. (intersect (subset land (=== class acp)) (subset top (or (< < elev 3) (> > elev 5))))
8. {intersect (subset land {=== class acp)) (subset top {(not (=== elev 5))))

7. (union (subset flood (=== class inside)) (subset land (not (== class avv))))

8. (subset land (not (or (== class avv} (=== class acp))))

9. (subset land (or (=== class avv) (== class acp}}))

10. (union (subset flood (=== class inside))
(intersect (subset land {not (== class avv))) (subset top {== elev 1)}))

11. (subset land (== class u#)) .
12a. (intersect (subset land (=== class r)) top)

b. (intersect (subset land (==== class r}) (subset top (> > elev 1)))

c. (intersect (subset land (== class r)) (subset top (>> elev 2)))

d. (intersect (subset land (==== class r)) (subset top (> > elev 3)))

e. (intersect (subset land (=== class r)) (subset top {> > elev 4)))

f. {intersect {subset land (=== class r)) (subset top (>> elev 5)))

g. (intersect (subset land (== class r}) (subset top (> > elev 6}))
- h. {intersect (subset land (=== class r)) (subset top (> > elev 7)))

i. (intersect (subset land (== class r)) (subset top (> > elev 8)))

j- (intersect (subset land {==== class r}) (subset top {>> elev 9)))

k. (intersect (subset land (== class r)) (subset top (> > elev 10)))
13. (intersect top (subset flood (not {=== class inside))))
14. (union (subset flood (== class inside)) (subset top (== elev 5))}
15. (union (subset flood (=== class inside)) (subset top (=== elev 1)))
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Elapsed Time CPU Time
Query Query | Cumulative | Query | Cumulative
Number Area Time Time Time Time
1 152 0:41 0:41 0:32.2 0:32.2
2 26734 0:50 1:31 0:40.0 1:12.2
3 12311 | 1:35 .3:08 1:17.0 2:29.2
4 9752 1:20 4:268 1:02.0 3:31.4
) 16813 1:32 5:58 1 1:16.9 4:48.3
6 25386 1:58 7:568 1:33.4 6:21.7
7 157190 2:11 16:07 1:49.7 8:11.4
8 118928 1:01 11:08 0:52.2 9:03.6
9 565671 0:35 11:43 0:28.6 9:32.2 .
10 50646 2:46 14:29 2:18.5 11:50.7
11 33777 0:35 15:04 0:29.6 12:20.3
12a 20752 0:58 16:00 0:48.8 13:07.1
b 20727 1:51 17:51 1:32.1 14:39.2
c 18518 1:38 19:29 1:21.6 16:00.8 .
d 15591 1:25 20:54 1:10.6 17:11.4
e 12211 1:15 22:09 1:01.7 18:13.1
f 9442 1:09 23:18 0:56.1 19:09.2
g 7416 1:02 24:20 0:50.7 19:59.9
h 5532 0:57 25:17 0:45.2 20:45.1
i 3198 0:51 " 26:08 0:40.1 21:25.2
J 1108 0:47 268.55 0:37.1 22:02.3
k 8 0:43 1 27:38 0:34.8 22:38.9
13 142701 1:09 28:47 0:58.2 23:35.1
14 37194 0:51 29:38 0:41.4 24:18.5
15 28448 | 0:45 30:23 0:35.3 - 24:51.8

Table 3.14. Timings for 25 set function queries with attribute attachment. Times are in
minutes.
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Table 3.15. 25 set queries with attribute attachment
Store intermediate results

1. (name 'acpmap (subset land (== class acp)))
(name 'inmap (subset flood (=== class inside))}
{intersect acpmap inmap) ' '

2. (name 'outside (subset flood {not {==== class inside})})

(intersect acpmap outside)

(intersect acpmap (subset top {> > elev 2)))

{intersect acpmap (subset top (and {>> elev 2) (< < elev 8))))
(intersect acpmap (subset top {or (< < elev 3) (> > elev 5))))
(intersect acpmap (subset top (not {==== elev 5))})

(name 'notavv (subset land (not (=== class avv})))

(union inmap notavv)

8. (subset land (not {or (== class avv) (== class acp))))

9. (subset land {or (== class avv) {== class acp))))

3.
4.
5,
8.
7.

10. (union inmap (intersect notavv (subset top (== elev 1)))}
11. (subset land {==== class u#))
12a. {name landr (subset land (== class r})

(intersect landr top)
b. (intersect landr (subset top (> > elev 1))
¢. (intersect landr (subset top (> > elev 2)))
d. (intersect landr (subset top (> > elev 3)))
e. (intersect landr (subset top {>> elev 4))).
f. (intersect landr (subset top (> > elev 5)))
g. (intersect landr (subset top {> > elev 6)))
h. (intersect landr (subset top (> > elev 7))
i. (intersect landr (subset top (> > elev 8)))
j. (intersect landr (subset top (>>> elev 9)))
k. {intersect landr (subset top (> > elev 10)))
3. (intersect top outside)}
4. {union inmap (subset top (== elev 5)))
S.

1
1
15. (union inmap (subset top (=== elev 1)))
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Elapsed Time CPU Time
Query - Query | Cumulative { Query | Cumulative
Number Area Time Time Time Time
1 152 0:41 0:41 0:31.9 0:31.9
2 26734 0:28 1:07 0:20.7 0:52.6
3 12311 1:10 . .2:17 0:56.9 - 1:49.5
4 9752 0:58 3:15 0:42.8 2:32.1
5 16813 1:10 4:25 0:56.8 3:23.9
4] 25388 1:28 5:51 1:12.3 4:41.2
7 157190 2:03 7:54 1:42.8 6:24.0
8 118928 1:03 8:57 0:52.4 7:18.4
9 568571 0:35 9:32 0:28.9 7:45.3
10 506846 1:34 11:06 [ 1:14.8 9:00.1
i1 33777 0:34 11:40 0:29.1 | 9:290.2
12 a 20752 0:57 12:37 0:46.0 10:16.1
b 20727 | 1:26 14:03 1:12.9 11:29.0
c 18518 1:15 15:12 1:02.6 12:31.8
d 15591 1:02 . 16:20 0:51.4 13:23.0
e 12211 0:51 17:11 0:42.8 14:05.8
f 9442 0:45 17:58 0:35.9 14:41.5
g 7416 0:38 18:34 0:31.6 15:13.1
h 5532 0:33 19:07 0:25.8 15:38.9
i 3198 0:26 19:33 0:20.9 15:59.8
] 1108 0:22 1955 0:17.0 16:16.8
k 8 0:18 20:13 (:14.8 16:31.7
13 142701 0:59 21:12 0:50.4 17:22.1
14 37194 0:42 21:54 0:33.6 17:55.7
15 28448 0:35 22:29 0:27.7 18:23.4

Table 3.18. Timings for 25 set function qﬁeries with attribute attachment saving inter-
mediate results. Times are in minutes.
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4, Attribute Attachment

It is often desirable to associate some information with an object contained in a
~map. The user may also wish to ask queries about collections of map objects which have
-some feature or atiribute in common. Storing such information, and answering such
. queries, is done in our system through the use of the attribute attachment functions
.described below.

Each area map is associated with' what will be referred to as an attribute class
table. This table is actually a separate file which stores information about a collection of
atirtbute classes. An attribute class is simply a list of attributes, and their values. Any
number of maps can share an attribute class table. This allows a user to create a data-
base of many maps, say topographic maps, where polygons belonging to a particular

- attribute class in each map of the set are interpreted in the same way.

Each map image, when created, stores the name of its attribute table file. This
file name can be changed by the user if desired. As part of the preparation of an image
for ‘use in the database system, each quadtree node is given a value indicating to which
class it belongs. This value is an offset into the list of attribute classes, i.e., a node stor-
ing the value 5" would be a member of the fifth attribute class of the attribute table
associated with that map. Information associated with a node or polygon of an image
can be altered by either changing the value of the node so that it becomes a member or

another class, or by changing the information stored in the table.

The implementation and storage of attribute tables makes use of the symbolic
manipulation and list processing abilities available in the LISP programming language.
Attribute classes and attributes are simply arbitrary names picked by the user. The
value of an attribute is also arbitrary, and may be either a string or a mumeric value.
Attribute classes may contain as many attributes as desired.

New attribute tables may be created by use of the function BUILDTABLE. This
function prompts the user for classes and their attributes. When a map image is entered
into the database system through use of the function ISTREE, the associated attribute
table is entered as well. Attribute tables which are not associated witk any maps
currently known to the database system can be entered by use of the function
ISTABLE,; they may then be accessed by the user. The function TABLEQF returns the
name of the attribute table file associated with a map. COPYTABLE copies an attri-
bute table. This may be useful for creating new tables with only a few changes in the

attributes classes.

Attribute tables may be edited through use of the EDITTABLE function. This
function places the database system in Table-edit mode, allowing access to the following
functions:

1. {editclass <class name>>)

Edit class <class name>> in the table. The user is prompted as to which attributes
- are to be altered, added, or deleted.
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- 2. {delclass <class namel > ...
The named class or classes are deleted from the table.

3. (addclass <class namel> ...) .

The named class or classes are added to the table. The editclass function would
then be used to add attributes. '

4. (cpclass [<table name>] <old class name> <new class name>)

Copy a class (possibly from another table). The new class will have all the attri-
butes and values of the old class. This function is useful for creating new classes
which are nearly identical to old classes, with only a few attributes changed.

5. (quit)
Exit Table-edit mode, saving 2ll changes made during the editing session.

6. (abort)

Abort the editing session. The table is restored to its pre-edited state.

7. {help [<function name>>])

A description of Table-edit mode functions can be obtained.
8. (printclass [<table name>] [<class name> ...])

Print out information from a table. This function may alse be used when not in
Table-edit mode. If <table name>> is specified, then the function operates on
<table name>, otherwise the table currently being edited is used {this only applies
when in Table-edit mode). If <class name>> is specified, then all attributes and
their values of the specified classes are printed. If no class is specified, then a list of
all classes in the table will be printed.

Once an attribute tabie has been created, and associated with a map, the
CLASS= function may be used to generate a list of classes from the table which meet
some condition, or set of conditions. The format is as follows:

(class= <table name> <condition clause>)

< condition clause>> ::=
(>> <attribute name> <value>) |
(<< <attribute name> <value>) |
(== <attribute name> <value>) |
(or <condition clause>> <condition clause>) |
(and <condition clause> <condition clause>) |
(not <condition clause>)
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" This command generates a list of all classes in <table name>> which match < condition
clause>. The function would normally be used in conjunction with other database func-
tions such as SUBSET. <value>> can be either a literal or a regular expression as
defined by UNIX. The prefixes “>>" and “<<«” are used only for numeric comparis-
ons, the prefix ===" can be used either for numeric comparison or to match either a
literal string or regular expression pattern against the attribute. The special <attribute
name>> ‘‘class” matches the name of the class. Those classes for which the condition
-clause is true are returned. The SUBSET function has also been modified to accept a
<condition clause>>, returning a map containing those classes matching the specified
conditions. Examples of using the SUBSET function with attribute attachment are
given in Tables 3.12 and 3.14.
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5. Data structure considerations

5.1. Alternative methods for linear quadtree enceding

In the original description of the linear area quadtree, Gargantini [Garg82] sug-
gested that further savings in storage requirements are possible by removing the WHITE
nodes from the list of encoded leaves. This should yield an average reduction of 50% in
the storage requirements. The missing WHITE nodes could be reconstructed, when"
necessary, by noting the size and position of the BLACK node retrieved when the list is
searched for a given key. If the node requested is not in the tree, then it must be a
WHITE node. Likewise, the sequence of WHITE nodes which in the full representation
would occur between two BLACK nodes can be inferred, due to the limitations on block
size and position that are imposed by the quadtree decomposition method.

Lauzon, et al, have pointed out that this scheme is only suitable for binary
images [Lauz84]. A multi-colored image with N node values could be expected to reduce
the storage requirements by 1/N of the total for a typical image by deleting those nodes
of a specified color. As an alternative Lauzon, et al, propose a data structure which
they term a two dimensional runlength encoding (2DRE). In this scheme, where several
nodes appearing in sequence in the list of leaves all contain the same node value (called a
run ), only the first node is retained. The remaining leaves of the run are removed from
the list, and the length of the run is stored with the representative leaf. For a truly ran-
dom image containing N node values, given a node with value C, the next node should
have value C 1/N th of the time. Thus, only slightly more than 1/N of the total storage
would be saved from a random image. However, most images represented by quadtrees
actually exhibit the characteristic of containing many such runs. Empirical results, as
shown in Table 5.1, demonstrate a savings of about 50%% for typical multicolored images
- similar to that experienced by not storing the WHITE nodes of a binary image.

Point and line data images represented by linear quadtrees have characteristics
more like those of binary images than multicolored images. Those nodes which contain
a point or line segment are similar to the BLACK nodes of the binary image, with the
important difference that each of the node values are unique. Those nodes which do not
contain a data point are WHITE. Hence, only WHITE nodes can be removed by the
2DRE scheme. For point and line data representations, 2DRE would not be as efficient
as simply removing all of the WHITE nodes as proposed by Gargantini.

It is our belief that when an integrated system utilizing all three data types is
desired, all leaves of the quadtree should be retained. Assuming that multicolored
images will be stored, removing the WHITE nodes will not result in a significant savings
in storage. Although it is true that removing WHITE nodes from point and line images
will yield some savings, the additional computing time which would be necessary is too
great a penalty. 2DRE encoding will save storage for area images, but not as much sav-
ings will result from 2DRE encoding of point and line data.
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Tree Nodes Runs
Flood 5248 2267
Land 28447 13532
Top 24859 11094

Table 5.1. Comparison of number of nodes in linear quadtree file with rumber of runs
(e.g., 2DRE encoding). '
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5.2. Comparisons of line and area tree storage

The Phase II report describes a line tree implementation, and four sets of data
have been encoded in this fashion. Table 5.2 shows the number of nodes required to
encode each data item with our line implementation. This is compared to the number of
nodes required to store the data item with our region implementation - i.e. with the pix-
els on the line BLACK (foreground) and all other pixels WHITE (background).

The City Border map is a closed curve; therefore, it can be considered as the
border of a polygon or region. If all of the pixels either on the border or within it are
labelled BLACK and all other pixels are labelled WHITE, then 1578 nodes are required.
This is less than the number of nodes required to encode the image where only the
border pixels are BLACK. One would expect this to be true, since when only the border
is BLACK, the image is being divided into three regions - outside, the border, and inside.
Viewing this image as a polygon, the border and the inside area are merged into one -
causing some of the previously separated pixels to merge into a single node.

In either case, the line implementation is more compact than the area implemen-
tation for the same image. However, at this time, algorithms for the database functions
already provided for the area. representation have not been devised for our line imple-
mentation. Algorithms already developed for other known line implementations are not
as efficient as their area tree counterparts. However, the potential savings in storage, as
demonstrated in Table 5.2, does encourage the investigation of new line data structures.
A survey of hierarchical data structures for storing line data is presented in Section 7.

Number of nodes
Map line area
Road 7729 18700
City Border 835 2281
Powerline 228 1399
Railline 301 1900

Table 5.2. Comparison of node requirements to store line data with our line representa-
tion vs. the region quadtree.
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6.3. Storing more than one point in a PR quadtree node

Our implementation of the PR quadtree for storing point data was designed to
be compatible with the kernel implementation and the node definition for area quad-
trees, e.g., one long word for the address field, and one long word for the data field.
However, this may not be the most efficient implementation. One important considera-
tion in efficiency is the number of points in a page or node. Matsuyama, et al. [Mats84]
compare PR quadtrees and K-d tress with differing page sizes.

As the number of points allowed in a node increases, the amount of work
required to search the page for a particular node also increases. However, the average
number of points stored in a page may also increase, i.e., few WHITE nodes will be
stored in the file. Additionally, points within a given node will tend to be near each
other; thus, there may a stronger correlation between the most recently found node and
the next node to be fetched. Hence, the page size may aflect the percent of the time
-which the point being searched for lies in core,.

Space needed to store an image is affected by the tradeofl between overhead for
the address (1 long word per node regardless of the number of points stored) versus the
utilization of the node (i.e., the number of points / the number of nodes in the image).

In future work, we plan to alter the kernel so that a given image file may have
nodes of arbitrary size. The node size for an image will be given when the image is
built, and each node in the map will be of this size. Once this has been implemented, it
will be possible to store more points in a quadtree node if this is desirable.

Time considerations cannot be tested since the kernel as of yet does not allow
variable node sizes. However, empirical results can be obtained for storage requirements.
Table 5.3 shows the results of storing the points from the house map in a PR quadtree
with mode sizes ranging from 1 (as it is now) to 15. Tables 5.4 to 5.7 show similar
results for the average of 10 random images containing 10, 100, 1000, and 10,000 points,
respectively.
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Bin | Number | Number | % of node | File % of 1
Size | of nodes | pts/node Utilized Size | pt/node
1 1908 0.42 42.29 3812 100.0
2 994 - 0.81 o 40,54 2982 78.2
3 703 1.15 - 38.22 2812 73.8
4 559 1.44 36.05 2795 73.3
5 451 1.79 35.74 2708 71.0
6 373 2.16 36.01 2611 68.5
7 318 2.55 36.44 2528 66.3
8 289 2,79 34.86 26061 68.5
9 271 2.97 33.05 2710 71.1
10 244 3.30 33.03 2684 70.4
il 220 3.66 33.31 2640 69.3
12 196 4.11 34.27 2548 66.8
13 187 4.31 . 33.18 2018 63.7
14 169 4.77 34.07 2535 83.5
15 157 5.13 34.23 2512 85.9

Table 5.3. Statistics for House map with 808 points

Bin { Number | Number | % of node { File | % of 1

Size | of nodes | pts/node Utilized Size | pt/node
1 22.0 0.4545 45.45 44.0 100.0
2 12.7 0.7874 - 39.37 38.1 86.6
3 6.1 1.6393 54.64 24 .4 55.5
4 4.8 2.1739 54.35 23.0 52.3
5 4.0 2.5000 50.00 24.0 54.5
8 4.0 2.5000 41 67 28.0 63.6
7 4.0 2.5000 35.71 32.0 72.7
8 4.0 2.5000 31.25 36.0 81.8
9 4.0 2.5000 27.78 40.0 90.0

10 1.0 10.0000 106.90 11.0 25.0

_ Table 5.4. Statistics for average of 10 random images - 10 points
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Bin { Number | Number | % of node | File % of 1
Size | of nodes | pts/node -| Utilized Size | pt/node
i 214.0 0.4673 46.73 428.0 109.0
2 148.1 0.9251 46.25 324.3 75.8
3 69.4 1.4409 48.03 277.6 64.9
4 54.4 1.8382 . 45.98 272.0 63.6
5 47.5 2.1053 42.11 285.0 68.6
6 38.2 2.8178 43.63 267.4 62.5
7 31.3 3.1949 45.64 250.4 58.5
8 24.4 4.0984 51.23 219.6 51.3
9 20.8 4.8077 53.42 208.0 48.6
10~ 175 5.7143 57.14 192.5 45.0
11 16.8 6.0241 54.76 199.2 468.5
12 16.3 6.1350 51.12 2119 49.5
13 16.0 8.2500 " 48.08 224.0 52.3
14 16.0 6.2500 44.84 240.0 56.1
15 16.0 6.2500 41.67 256.0 59.8

Table 5.5. Statistice for average of 10 random images - 100 points

Bin | Number | Number | % of node | File % of 1
Size | of nodes | pts/node | Utilized Size pt/node
1 2138.5 0.4676 48.76 4277.0 100.0
2 1089.7 0.9177 45.88 3269.1 76.4
3 730.0 1.3699 45.66 2020.0 68.3
4 541.6 1.8484 46.16 2708.0 83.3
5 413.8 2.4166 48.33 2482 8 58.1
6 335.5 2.9806 45.68 2348.5 54.9
7 292.3 3.4211 - 48,87 | 23384 54.7
8 267.1 3.7439 48.80 2403.9 56.2
g 255.1 3.9200 43.56 2551.0 59.6
10 245.2 4.0783 40.78 2697.2 63.1
11 233.2 4.2882 3898 2798.4 685.4
12 215.2 4.6468 38.72 2797.6 85.4
13 193.9 5.1573 39.67 27148 63.5
14 1795 5.5710 39.79 2892.5 63.0
15 159.7 6.2617 41.74 2555.2 59.7

Table 5.8. Statistics for average of 10 random images - 1000 points
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Bin { Number { Number | % of node File % of 1
Size | of nodes | pts/node Utilized Size pt/node
1 20375.2 0.4908 49.08 40750.4 100.0
2 10617.7 0.9418 47.09 31853.1 78.2
3 6991.3 1.4303 47.68 27965.2 68.6
4 5184.1 1.9290 .48.22 '25920.5 63.6
5 4307.2 2.3217 46.43. 25843.2 63.4
8 3809.2 2.8522 43.75 26664.4 65.4
7 3418.9 2.9249 41.78 27351.2 67.1
8 3038.8 3.2908 41.13 27349.2 67.1
9 2607.7 3.8348 42.61 26077.0 64.0
10 2200.9 4.5426 45.44 24209.9 59.4
11 1848.1 5.4110 49.19 22177.2 54.4
12 1567.9 6.3780 53.15 20382.7 50.0
13 1366.8 7.3174 56.29 19132.4 47.0
14 1225.3 8.1613 58.29 18379.5 45.1
15 1136.8 8.7966 58%.64 18188.8 44.6

Table 5.7. Statistics for average of 10 random images - 10,000 points
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5.4. Optimal positioning of quadtrees

Given a digitized image with a specified origin, there is a unigue region quadtree
which represents it. However, as an image is shifted withir the plane, the quadtree does
change, typically with a corresponding change in the number of nodes. Li, Grosky, and
Jain [Li82] give an algorithm for determining the optimal pesition of the region quadtree
for an image. While the optimal position is expensive to compute, it need only be done
once for a given image, Conceivably, the savings in storage for a database of maps could
be significant. Dyer [Dyer82] has determined the best, average, and worst case costs for
storing a 2™ by 2™ square in a 2" by 2® plane (n > m). His results indicate that the
difference in storage could be as much as a factor of 2™ nodes in the theoretical worst
case. ; : '

‘Viewed froni the perspective of computing functions on quadtrees, we find that
storing images in register is greatly desired. The union 2nd intersection algorithms, for
example, operate on the assumption that the two trees are in register. Computing union
and intersection on unregistered maps is a problem of difficulty comparable to that of
windowing (see Section 3.2.3). o

In order to determine how much storage optimal pesitioning is likely to save in a
cartographic database system based on quadtrees, empirical results were obtained by
determining the optimal position of the three maps in our test data. The results, shown
in Table 5.8, indicate that for complicated images (such as expected for most map
images), the positioning is likely to have little effect on the storage requirements. The
-greatest difference between the best and worst case maps appeared with the fioodplain
image - the map requiring the least amount of storage in zny case, '

We would therefore recommend that images be stored in such a way as to be in
register whenever possible. This would indicate the desirability of some scheme in which
images are broken into regular cells which are along some power of 2 pixels distant from
the global origin in large databases spanning many maps.

Number of Leaves Position %
Map Optimal Worst Current X Y Case
Floodplain 8197 0811 = 5248 48 62 837
Topography 24859 28093 24859 0 0 130
Landuse . 28237 33202 28447 6 18 175

Table 5.8. Size and position of the optimal quadtree for map images compared to the
current {registered) position. Current leaves, optimal leaves, and worst case columus are
measured in number of leaf nodes. The last column gives the percentage difference
between the worst case position and the optimal position.



5.5. Neighbor finding in peinter-based quadtrees

A natural byproduct of the tree-like nature of the quadtree is that many basic
operations can be implemented as tree traversals (e.g., connected component labeling
[Same81], etc.). The difference between them lies in the nature of the computation that
is performed at the node. Often, these computat',ions involve the examination of nodes
that are adjacent to the node being processed. We call such adjacent nodes nesghbors
and the process of locating them is termed neighbor finding. Neighbor finding is also
crucial to algorithms for converting between representations (e.g., to construct a quad-
tree from a boundary code [Same80a] and vice versa [Dyer80], etc.).

In [Same82) algorithms are described and analyzed to compute different kinds of
neighbors. The analysis of the execution time of the algorithms was done in terms of the
average number of nodes (using a particular image generation model) that needed to be
traversed in order to locate the desired neighbor. The average execution time of various
neighbor finding primitives was analyzed in [Same82] in tetms of the number of nodes
that must be visited in locating the desired neighbor. The analysis of each function can
be decomposed into two stages corresponding to the process. of locating the nearest com-
mon ancestor, and then locating the desired neighbor. A random image model was used
under which each node is assumed to be equally likely to appear at any position and
level in the quadtree. Observe that our notion of a random image differs from the con-
ventional one which implies that every pixel has an equal probability of being BLACK or
WHITE. Use of the conventional assumption leads to a very low probability of aggrega-
tion (i.e., nodes corresponding to blocks of size greater than 1 pixel}. Clearly, for such an
image the quadtree is the wrong representation (e.g., a checkerboard).

In order to analyze the second stage, we must also model the distribution of

neighbor pairs (i.e., the possible configurations of adjacent nodes of varying sizes}. There
are a number of models to choose from. In this phase we tried a new model and verified
that it correlates very closely with empirical results (as shown in Tables 5.9 to 5.11).
For example, suppose that we wish to determine the western neighbor of node 59 in Fig-
ure 5.1 that corresponds to the smallest block (it may be GRAY) adjacent to its western
side that is of size greater than or equal to the block corresponding to 59 (i.e., M in this
case). We term this function GSN. In theory, there are three possible neighbors - i.e.,
one each of size 1 by 1, 2 by 2, and 4 by 4 at node distances of 68, 5, and 4 respectively,
To compute the average value;of GSN, the model employed in [Same82], termed the old
model, treats each of these cases individually and as equally probable - i.e., a node in the
same position as 59 makes three contributions to the average value. In contrast, the
‘model introduced in [Same84c] and used in this phase, termed the new model, only
includes the average contribution of these three cases. Although this modification seems
trivial, tests on complex images show that its use leads to very close correlation between
theory and practice.

Experiments were conducted on five 512 by 512 maps. Three of these correspond
to the overlays furnished by ETL; the remaining two maps are actually thresholded tex-
ture images (Figures 5.2 and 5.3). They are the pebble texture (D23) and the stone tex-
ture (D7) taken from [Brod77]. For each function four different neighbor finding opera-
tions were applied at each leaf node and in all four directions. The operations are
named GSN, CSN, GON, and CCN. GCN is defined analogously to GSN (see above)
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with the difference that the direction is diagonal rather than vertical or horizontal as is
the case for GSN. GCN and CSN correspond to the smallest blocks that are adjacent to
a corner or to a given corner along a side of a node, respectively. For example, for Fig-
ure 5.1, GSN(J,.E) = K, GSN(J,5) = L, CSN(J,E,SE) = 39, GCN(H,NE) = G,
GCN(H,SW) == K, and CCN(H,SW = 38. In the tables that follow the maps are
arranged in ascending order of complexity where complexity is the number of nodes in
the image. Table 5.9 summarizes the observed values for the individual images, the aver-

. age value over all five images, the value predicted by the new model, and the value
predicted by the old model.

Table 5.9. Average cost of neighbor firding operations.
Operation Observed New Old
Flood | Topo | Land | Stone | Pebble | Average | Model | Model
GSN 3.50 3.60 3.59 3.58 3.58 3.57 3.5 o
CSN 3.68 3.75 3.73 3.73 3.71 3.72 3.07 5.05%
GCN 4.47 4.68 4.63 4.64 4.60 4.60 4.5 3]
CCN 4.64 4,83 4.79 4.79 4.75 4,78 4,687 6.07

From Table 5.9 we see that values predicted by the old model were between 25
and 43% above the observed values. In contrast, values predicted by the new model are
within 4% of the observed values. We can get a more accurate evaluation of the pew
model by recalling that the peighbor finding process can be decomposed into two stages.
The first stage locates the nearest common ancestor. The old and new models do not
differ in the analysis of this stage. There are two cases depending on whether we are
seeking a neighbor in the side or cormer direction. Table 5.10 shows the empirical results.
It is interesting to note how close the model correlates with the observed values.

Table 5.10. Average cost of locating the nearest common ancestor.
Type of : Observed Model
Neighbor | Flood | Topo | Land | Stone | Pebble | Average
side 2.01 2.00 2.00 2.00 1.99 2.80 2.00
corner 2.69 2.67 2.68 2.66 265 | 2.67 2.87

Table 5.11 gives the cost of the second stage of the neighbor finding process.
‘This stage reflects use of our new model and a comparison with the old model reveals
~the improvement. In particular, we see that for the second stage the values predicted by
the old model were between 58 and 100% above the observed values whereas the
observed values are within 9% of that predicted by the new model. This is much more
reasonable and reinforces use of the new model. Perhaps the most important feature of
the new model is the correct prediction that locating neighbors that are of greater than
or equal size is cheaper than finding neighbors of equal size. The cost of the latter is sim-
ply twice the cost of locating a nearest common ancestor. The reason for the poor

+In [Same82] this value is erroneously computed to be 14/3.
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performance of the old model was that all of a node’s possible neighbors were individu-
ally taken into account when computing the average whereas the new model only
included the average contribution of the possible neighbors.

Table 5.11. Average cost of locating the neighbor starting at the nearest common ancestor.

o . , Observed New Old
peration Flood | Topo | Land | Stome j Pebble | Average | Model | Model
GSN 1.49 1.60 1.59 1.58 1.57 1.57 1.50 3.00
CSN 1.64 1.74 1.73 1.73 1.72 1.71 1.87 3.05 -
GCN 1.79 2.00 1.97 1.98 1.95 1.94 1.83 3.33
CCN 1.96 2.15 2.13 2.13 2.10 2.09 2.00 3.40
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Figure 5.2. The pebble image.
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Figure 5.3. The stone image.




8. Point data

This section presents a survey of hierarchical structures for storing point data.
The structure used in Phase II of this project is considered in relation with other known
structures for solving similar tasks. Structures to be considered for future work under
this project will be chosen from those preserted in this section.

Multidimensional point data can be represented in a variety of ways. The
representation ultimately chosen for a specific task will be heavily influenced by the type
of operations to be performed or the data. Our focus is on dynamic files (i.e., the
amount of data can grow and shrink at will) and on applications involving search.
Knuth [Knut73] lists three typical queries: {1) a point query which determines if a given
data point is in the data base, and if so, the address corresponding to it; (2) a range
query (i.e., region search) which asks for a set of data points within a given range (this
category includes the partially specified query); (3) a Boolean query which consists of the
previous type combined with the Boolean operations AND, OR, NOT, etec. A related
operation is to find the n nearest neighbors of a given point {Bent75b).

Nievergelt, Hinterberger, and Sevcik [Niev84] group searching techniques into two
categories: those that organize the data to be stored and those that organize the embed-
ding space from which the data is drawn. In a more formal sense, the distinction is
between trees ‘and fries respectively. The binary search tree [Knut73] is an example of
the former since the boundaries of different regions in the search space are determined
by the data being stored. Address computation methods such as radix searching
[Knut73} (also known as digital searching) are examples of the latter, since region boun-
daries are drawn at locations that are fixed regardless of the content of the file. In two
dimensions, the distinction between trees and tries can also be seen by comparing the
point quadtree [Fink74] with the region quadtree [Klin71]. The former splits the region
based on the data while the latter is based on a regular decomposition.

‘The remainder of this section further elaborates on the point quadtree and the
k-d tree [Bent75c]. Next, some representations that are based on the region quadtree
(i.e., on a regular decomposition) are discussed and compared with the point quadtree,
We conclude with a brief overview of methods that replace the hierarchical structure of
quadtrees by address computation. These techniques are aimed, in part, at insuring
efficient access to disk data, and are termed bucket methods. In the same context some
tree-based methods are also discussed. All of the examples are limited to two dimensions
although they can be easily generalized to an arbitrary number of dimensions. It should
be borne in mind that our presentation is very brief - i.e., we do not analyze the perfor-
mance of these methods. Actually, the field of multidimensional data structures is a
rapidly developing one, and this discussiox is necessarily limited to a detailed presenta-
tion of methods that can be viewed as direct applications of a quadtree-like recursive
subdivision approach.
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8.1. Point quadtrees and k-d trees

The point quadtree [Fink74] is a multi-dimensional generalization of a binary
search tree. In two dimensions, each data point is a node in a tree having four sons
which are roots of subtrees corresponding to quadrants labeled in order NW, NE, SW,
and SE. Each data point is assumed to be unique. The process of inserting into point
quadtrees is analogous to that used for binary search trees. In essence, we search for the
desired record based on its z and y coordinates. At each node of the tree a four-way
comparison operation is performed and the appropriate subtree is chosen for the next
test. Reaching the bottom of the tree without finding the record means that it should
be inserted at this position. The shape of the resulting tree depends on the order in
which records are inserted into it. For example, the tree in Figure 6.1 is the point quad-
tree for the sequence Chicago, Mobile, Toronto, Buifalo, Denver, Omaha, Atlanta, and
Miami. Deletion of a node is more complex [Same80b)].

Point quadtrees are especially attractive in applications that involve search. How-
ever, they have also been used to solve a measure problem for rectangular ranges in 3-
space [vanl81]. A typical query is one that requests the determination of all records
within a specified distance of a given record - i.e., all cities within 50 miles of Washing-
ton, DC. The efficiency of the point quadtree lies in its role as a pruning device on the
amount of search that is required. Thus many records will not need to be examined.
For example, suppose that in the hypothetical data base of Figure 8.1 we wish to find all
cities within 8 units of a data point with coordinates (83,10). In such a case, there is no
need to search the NW, NE, and SW quadrants of the root (i.e., Chicago with coordi-
nates (35,40)). Thus we can restrict our search to the SE quadrant of the tree rooted at
Chicago. Similarly, there is no need to search the NW and SW quadrants of the tree
rooted at Mobile (i.e., coordinates (50,10)). Search operations using point quadtrees are
analyzed by Bentley and Stanat {Bent75a] and Lee and Wong {Lee77]. Note that the
search ranges are usually orthogonally defined regions such as rectangles, boxes, etc.
Other shapes are also feasible as the above example demonstrated (i.e., a circle). In order
to handle more complex search regions such as polygons, Willard {Will82] defines a
polygon tree where the z -y plane is subdivided by J lines that need not be orthogonal,
although there are other restrictions on these lines. When J==2 the result is a point
quadtree with non-orthogonal axes.

Qur examples of the use of the point quadtree have been limited to two dimen-
sions. The problem with a large number of dimensions is that the branching factor
" becomes very large (i.e., 2¥ for k dimensions) thereby requiring much storage for each
node as well as many NIL pointers for terminal nodes. The k-d tree of Bentley [Bent75¢]
is an improvement on the point quadtree which avoids the large branching factor. In
principle, it is a binary search tree with the distinction that at each level of the tree a
different coordinate is tested when determining the direction in which a branch is to be
made. Therefore, in the two-dimensional case (i.e., a 2-d tree!), we compare z coordi-
nates at the root and at even levels (assuming the root is at level 0) and y coordinates
at odd levels, Each node has two sons. Figure 6.2 is the k-d tree corresponding to the
point quadtree of Figure 6.1 where the records have been inserted in the same order.
Friedman, Bentley, and Finkel [Frie77] report an improvement on the k-d tree which
relaxes the requirement of alternating tests at the price of storing at each node an indi-
cation of which coordinate is being tested. Using this data structure, termed an adaptive
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k-d tree, we can construct a balanced k-d tree where records are stored only at the ter-
minal nodes. Figure 6.3 is the adaptive k-d tree corresponding to the point quadtree of
Figure 6.1. Prior to constructing such a tree we must know all of the constituent
records. Thus its shape is independent of the order in which the records were encoun-
tered. However, adding a mew record requires rebuilding the tree. Thus it is not a
dynamic data structure. '

In general, k-d trees are superior to point quadtrees, with one exception: the
point quadtree iy an inherently parallel data structure and thus the comparison opera-
tion can be performed in parallei for the & key values, whereas this cannot be done for
the k-d tree. Thus we can characterize the k-d tree as a superior serial data structure
and the point quadtree as a superior parallel data structure. Linn [Linn73)] discusses the
use of point quadtrees in a multiprocessor environment.

8.2. Region-Based quadtrees

Although conceivably there are many ways of adapting the region quadtree to
represent point data, our discussion is limited to two methods. The first method
assumes that the domain of data points is discrete; they are treated as if they are
BLACK pixels in a region quadtree. An alternative characterization is to think of the
data points as non-zero elements in a square matrix. The resulting data structure is
called an MX guadtree (MX for matrix) although the term MX guadtrie would probably
. be more appropriate. The MX quadtree is organized in a similar way to the region quad-

tree. The difference is that leaf nodes are BLACK or empty (i.e., WHITE) corresponding
to the presence or absence, respectively, of a data point in the appropriate position in
the matrix. For example, Figure 6.4 is the 2® by 2° MX quadtree corresponding to the
data of Figure 6.1. It is obtained by applying the mapping f such that f(Z)=Z div
12.5 to both z and y coordinates. The result of the mapping is reflected in the coordi-
nate values in the Figure.

Each data point in an MX quadtree corresponds to a 1 by 1 square. For ease of
notation and operation using modulo and integer division operations, the data point is
associated with the lower left corner of the square. This adheres to the general conven-
tion followed throughout this presentation that the NE and SE quadrants are closed -
with respect to the z coordinate and the NW and NE quadrants are closed with respect
to the y coordinate. Note that nodes corresponding to data points are not merged
whereas this is not the case for empty leaf nodes. For example, the NW and NE sons of
node D in Figure 8.4 are NIL and likewise for the NW son of node A. However, it is
undesirable to merge nodes corresponding to data points as this results in a loss of the
identifying information about the data points. Recall that each data point is different
whereas the empty leaf nodes have the absence of information as their common property
and thus can be safely merged.

Data points are inserted into an MX quadtree by searching for them. This
search is based on the location of the data point in the matrix (e.g., the discretized
values of its z and y coordinate in the example of Figure 6.4). An unsuccessful search
terminates at a leaf node. If this leaf node is NIL, the space spanned by it may have to
be repeatedly subdivided until it is a 1 by 1 square. This process is termed splitting and
for a 2" by 2" MX quadtree, it will have to be performed at most n times. The shape
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of the MX quadtree is independent of the order in which data points are inserted into it.
Deletion of nodes is slightly more complex and may require collapsing of nodes - the
direct counterpart of the node splitting process outlined above.

The MX quadtree is useful in a number of apgplications. It serves as a basis of a
quadtrec matrix manipulation system [Same83c]. It is used by Letelier {Lete83] to
represent silhouettes of hand motions to aid in the telephonic transmission of sign
language for the hearing impaired. DeCoulon and Jchnsen [DeCo78] describe its use in
the coding of black and white facsimile for eflicient transmission.

The MX quadtree is adequate as long as the domain of the data points is discrete
and finite. If this is not the case, then the data points cannot be represented since the
minimum separation between the data points is unknown. This leads us to an alterna-
tive adaptation of the region quadtree to point data which associates data points (that
need not be discrete) with quadrants. We call it a PR quadtree (P for point and R for
region) although again, the term PR quadirie would probably be more appropriate. The
PR quadtree is organized in the same way as the region quadtree. The difference is that
leaf nodes are either empty (i.e., WHITE) or contain a data point {i.e., BLACK) and its
coordinates. A quadrant contains at most one data peint. For example, Figure 8.5 is
the PR quadtree corresponding to the data of Figure 8.1. Orenstein [Oren82] describes
an analogous data structure using binary trees rather than quadtrees. Such a data struc-
ture could be called a k-d PR quadtree or even better simply a k-d trie.

Data points are inserted into PR quadtrees in a manner analogous to that used
to insert in a point quadtree - i.e., a search is made for them. Actually, the search is for -
the quadrant in which the data point, say A, belongs (i.e., a leaf node). If the quadtree
is already occupied by another data point thh different z and y coordinates, say B,
then the quadrant must repeatedly be subdivided (termed splitting) until nodes A and
B no longer occupy the same quadrant. This may result in many subdivisions, espe-
cially if the distance between A and B is very small. The shape of the resulting PR
quadtree is independent of the order in which data points are inserted into it. Deletion
of nodes is more complex and may require collapsing of nodes - i.e., the direct counter-
part of the node splitting process cutlined above.

Matsuyama, Hao, and Nagao [Mats84] discuss the use of a PR quadtree in parti-
tioning a point space into “‘buckets” of a finite capacity. As a bucket overflows, a parti-
tion into four, equal-sized squares is made. Anderson [Ande83) makes use of a PR quad-
tree (termed a uniform quadtree) to store endpoints of line segments to be drawn by a
plotter. The goal i1s to minimize pen plotting time by choosing the line segment to be
. output next whose endpoint is closest to the current pen position. Samet and Webber
[Same83¢] represent polygonal maps, e.g., Voronoi diagrams, using a variant of the PR
quadtree. It has the advantage that edges are represented exactly, thereby avoiding the
edge width problem associated with the methods of Hunter and Steiglitz [Hunt79] for

polygons.

We use the PR quadtree to store point data in our geographic information sys-
tem. It is implemented in the form of a variant of the linear quadtree [Garg82]. The PR
quadtree is represented as a collection of all the leaf nodes comprising it, where each leaf
node is represented by two 32 bit words. The first word contains a pair of numbers -
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corresponding to the level and a locational code. The latter is a base 4 number
corresponding to a sequence of directional codes that locate the leaf along a path from
the root of the quadtree. It is analogous to taking the binary representation of the z and
y coordinates of a designated pixel in the block (e.g., the one at the lower left corner)
and interleaving them (i.e., alternating the bits for each coor dinate). For example, let
the codes 0, 1, 2, and 3 correspond to quadrants NW, NE, SW, and SE, respectively and
assume that Figure 6.4 is a 2° by 2% image. The block contalnmg Atlanta is represented
by the numbers 3 and 60 corresponding to the level (the root is at level 0 in this case)
and the locational code respectively. We also have a value field associated with each PR
quadtree node which indicates the actual coordinates of the data point. The level and
locational code can be combined to form one number that is stored in one word.

83 Comparison of point quadtrees and region-based quadtrees

The. comparison of the MX, PR, and point quadtrees reduces, in part, to a com-
panson of their respectwe decompomt:on methods. A major difference between the three
data structures is in the size of the regions associated with each data point. For the
point quadiree there is no @ priori constraint on the size of the space spanned by the
quadtree (ie., the z and y coordinates of the data points). For both the MX and PR
quadtrees the space spanned by the quadtree is constrained to a maximum width and
height. All three quadtrees result in the association of one rectangular region with each
data point.” The point quadtree produces a rectangle which may, at times, be of infinite
width and height. For the MX quadtree this region must be a square with a particular
size associated with it. This size is fixed at the time the MX quadtree is defined and is’
the minimum permissible separation between two data points in the domain of the MX
quadtree (equivalently, it is the maximum number of elements permitted in each row
‘and column of the corresponding matrix). The PR quadtree also has a square region,
and its size depends on what other data points are currently represented by nodes in the
quadtree. In the case of the MX quadtree there is a fixed discrete coordinate system
associated with the space spanned by the quadtree, whereas no such limitation exists for
the PR quadtree. The advantage of such a fixed coordinate system is that there is no
need to store coordinate information with a data point’s leaf node. The disadvantage is
that the discretization of the domain of the data points limits the differentiation between

data points.

The size and shape of a quadtree are important from the standpoints of efficiency
of both storage and search operations. The size and shape of the point quadtree is
extremely sensitive to the order in which data points are inserted into it during the pro-
cess of building it. This means that for a point quadtree of M records, its maximam
depth is M -1 (i.e., one record is stored at each level in the tree) while its minimum

depth is |log,(3:M)] (i.e., each level in the tree is completely full} where we assume

that the root of the tree has a depth of 0. In contrast, the shape and size of the MX and
PR quadtrees are independent of the insertion order. For the MX quadtree all nodes
corresponding to data points appear at the same depth in the quadtree. The depth of
the MX quadtree depends on the size of the space spanned by the quadtree and the max-
imum number of elements permitted in each row and column of the corresponding
matrix. For example, for a 2* by 2" matrix, all data points will appear as leaf nodes at
a depth of n. The size and shape of the PR quadtree depend on the data points
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currently in the quadtree. The minimum depth of a PR quadtree for M >1 data points
is jloggM-1)} (ie., all the data points are at the same level) while there is no upper

bound on the depth in terms of the number of data peints. In particular, for a square
region of side length s, such that the minimum Euclidean distance separa.tinj two points

is d, the maximum depth of the quadtree can be as high as [ log,((s /d)-v?)

The volume of data also affects the comparison between the three quadirees.
When the volume is very high, the MX quadtree loses some of its advantage since an
array representation may be more economical in terms of space, as there is no need for
links. While the size of the PR quadtree was seen to be affected by clustering of data
points especially when the number of data points is relatively small, this is not a factor
in the size of a point quadtree. However, when the volume of data is large and is uni-
formly distributed, the effect of clustering is lessened and there should not be much
difference in storage efficiency between the point and PR quadtrees.

8.4. Bu_cket methods

All of the data structures discussed above, with the exception of linear quadtree
implementations, are primarily designed for in core applications. The problem is that
when data is stored in external storage the need to follow pointers may lead to page
faults. To overcome this, methods have been designed which collect the points into sets
(termed buckets ) corresponding to the storage unit {i.e., page) of the disk. The remain-
ing task is to organize the access to these buckets; this is often done by replacing the
tree structure with an array, thereby facilitating address computation. We term such
techniques bucket methods and their aim is to insure efficient access to disk data. The
simplest bucket method is the fixed grid {or cell) method [Knut73, p. 554; Bent79b]
which is popular among cartographers. It divides the space into equal-sized cells {i.e.,
squares and cubes for two and three-dimensional data respectively) having width equal
to the search radius. If data is sought using only a fixed search radius, then the fixed
grid is an efficient structure. It is also efficient when points are uniformly distributed (it
corresponds to hashing [Knut73]). For a non-uniform distribution it is less efficient,
becanse buckets may be unevenly filled, leading to nearly empty pages as well as long
overflow chains. The data structure is essentizlly a directory in the form of a k-
dimensional array with one entry per cell. Each cell may be implemented as a linked list
to represent the points within it. Figure 6.6 is an example in which a grid representation
for the data of Figure 6.1 is shown for a search radius consisting of a square of size 20 by
20 - i.e., assuming a 100 by 100 coordinate space, we have 25 squares of equal size. Its
deficiency is that a fixed size for the blocks which results in both overflow and
underflow. The methods presented below are examples of attempts to address this
deficiency from both hierarchical and non-hierarchical viewpoints, concluding with a dis-
cussion of some related work from the hashing area.

The Grid File of Nievergelt, Hinterberger, and Sevcik [Niev84] is a variation of
the grid method which relaxes the requirement that cell division lines be equidistant. Its
goal is to retrieve records with at most two disk accesses. This is done by using a grid
directory consisting of grid blocks which are amalogous to the cells of the grid method.
All records in one grid block are stored in the same bucket. However, several grid blocks
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can share a bucket as long as the unicn of these grid blocks forms a & -dimensional rec-
tangle (i.e., a convex region) in the space of records. Although the regions of the buckets
are piecewise disjoint, together they span the space of records.

The purpose of the grid directory is to maintain a dynamic correspondence
between the grid blocks in the record space and the data buckets. The grid directory
consists of two parts. The first is a dynamic & -dimensional array which contains one
entry for each grid block. The values of the elements are pointers to the relevant data
buckets. Usually buckets will have a capacity of 10 to 1000 records, Thus the entry in
the grid directory is small in comparison to a bucket. We are not concerned with how
records are organized within a bucket (e.g., linked list, tree, etc.). The grid directory
may be kept on disk. The second part of the grid directory is a set of ¥ one-dimensional
arrays called linear scales. These scales define a partition of the domain of each attri-
bute and enable the accessing of the appropriate grid blocks by aiding in the computa-
tion of their address based on the value of the relevant attributes. The linear scales are
kept in core. It should be noted that the linear scales are useful in guiding a range query
by indicating the grid directory elements which overlap the query range.

As an example, consider Figure 8.7 which shows the Grid File representation for
the data in Figure 8.1. The bucket capacity is 2 records. There are k =2 different attri-
butes. The grid directory consists of 9 grid blocks and 6 buckets labeled A-F. We refer
to grid blocks as if they are array elements - i.e., grid block (¢,5 ) is the element in row &
(starting at the bottom) and column j (starting at the ieft) of the grid directory. Grid
blocks (2,2), (3,1), and {3,3) are empty; however, they do share buckets with other grid
blocks. In particular, grid block (3,1) shares bucket D with grid block {2,1), grid blocks
(3,2) and (3,3} share bucket B, while grid blocks (2,2) and (2,3) share bucket E. The
sharing is indicated by the broken lines. Figure 6.8 contains the linear scales for the two
attributes (i.e., the z and y coordinates). For example, executing a FIND command
with z =80 and y=65 causes the access of the bucket associated with the grid block in
row 2 and column 3 of the grid directory of Figure 6.7.

The Grid File is attractive, in part, because of its graceful growth as more and
more records are inserted. As the buckets overflow, a splitting process is applied which
results in the creation of new buckets and a movement of records. Two types of bucket
splits are possible. The first, and most common, is when several grid blocks share a
bucket that has overflowed. For example, suppose Boise 2t (10,80) and Fargo at (15,75)
- are inserted in sequence in Figure 6.7. Boise is inserted in bucket D because it belongs in

~grid block (3,1) which currently shares bucket D with grid block (2,1). Fargo also
belongs to grid block (3,1); however, bucket D is now full. In this case, we merely need
to allocate a new bucket and adjust the mapping between grid blocks and buckets. The
second type of a split arises when we must refine a grid partition. It is triggered by an
“overflowing bucket all of whose records lie in a single grid block (e.g., the overflow of
bucket A upon insertion of Kansas City at (30,30) in Figure 6.7). In this case there
_exists a choice with respect to the dimension (i.e., axis) and the location of the splitting
point (i.e., we don’t have te split at the midpoint of an interval).

The counterpart of splitting is merging. There are two possible instances where

merging is appropriate: (1) bucket merging, the most common instance, arises when a
pair of neighboring buckets are empty or nearly empty and their coalescing has resulted
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in a convex bucket region; (2) directory merging arises when two adjacent cross sections
in the grid directory each have identical bucket values. For example, in the case of the
two-dimensional grid directory of Figure 6.9, where all grid blocks in column 2 are in
bucket C and all grid blocks in column 3 are in bucket D, if the merging threshold is
satisfied, then buckets C and D car be merged and the linear scales modified to reflect
this change. Generally, directory merging is of little practical interest since, even if
merging is allowed to occur, it is probable that splitting will soon have to take place.

Merrett and Otoo describe a technique termed Multipaging |[Merr78, Merr8?2]
which is very similar to the Grid File. It also uses a directory and maintains a set of
linear scales called azial arrays. In fact, the Grid File uses Multipaging as an index to a
paged data structure, A data base that is organized using Multipaging differs from the
Grid File ir requiring bucket overflow areas. This means that it has a different bucket
overflow criterion. Thus it dees not guarantee that every record can be retrieved with
two disk accesses. In particular, Multipaging makes use of a load factor and a probe fac-
tor which are related to the number of overflowing data items. This makes insertion and
deletion {as well as bucket splitting and merging) somewhat more complicated than
when the Grid File is used.

The EXCELL method of Tamminen [Tamm81] is a bintree together with a direc-
tory array providing access by address computation. It car also be viewed as an adapta-
tion of extendible hashing [Fagi79] to multidimensional point data. It implements

- EXHASH, the extendible hashing hash function, by interleaving the most significant bits

of the data (analogous to the locational codes discussed in Section 6.2 ). Similar in spirit
to the Grid File, it is based on a regular decomposition and is useful in providing
~ efficient access to, and an efficient representation of, geometric data. It also makes use
of a grid directory; however, all grid blocks are of the same size. The principal difference
is that grid refinement for the Grid File splits only one interval in two and results in the
insertion of a {k-1)}dimensional cross section. In contrast, s grid refinement for the
EXCELL method splits all intervals in two (thus the partition points are fixed) for the
particular dimension and results in doubling the size of the grid directory. Therefore,
the grid directory grows more gradually when the Grid File is used, whereas use of
EXCELL reduces the need for grid refinement operations at the expense of larger direc-
tories in general due to a semsitivity to the distribution of the data. However, a large
bucket size reduces the effect of non-uniformity unless the data consists entirely of a few
clusters. The fact that all grid blocks define equal sized regions (and convex as well)
means that EXCELL does not require a set of linear scales to access the grid directory as
is needed for the Grid File.

An example of the EXCELL method is considered in Figure 6.10, which shows
the representation for the data in Figure 6.1. Again, the convention is adopted that a
rectangle is open with respect to its upper and right boundaries and closed with respect
to its lower and left boundaries. The capacity of the bucket is two records. There are
k =2 different attributes. The grid directory is implemented as an array and in this case
it consists of 8 grid blocks (labeled in the same way as for the Grid File} and 8 buckets
labeled A-F. Note that grid blocks (2,3) and (2,4) share bucket C while grid blocks (2,1)
and (2,2), despite being empty, share bucket D. The sharing is indicated by the broken
lines. Furthermore, when a bucket size of 1 is used, the partition of space induced by
EXCELL equals that of a PR k-d tree [Oren82]. :
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As a data base represented by the EXCELL method grows, buckets will overflow.,
This leads to the application of a splitting process which results in the creation of new
buckets and a movement of records. As in the case of the Grid file, two types of bucket
splits are possible. The first, and most common, is when several grid blocks share a
bucket that has overflowed. In this case, a new bucket is allocated and the mapping
between grid blocks and buckets is adjusted. The second type of a split arises when a
grid partition must be refined; this causes a doubling of the directory. It is triggered by
an overflowing bucket that is not shared among several grid blocks (e.g., the overflow of
bucket A upon insertion of Kansas City (30,30) in Figure 6.10). The split occurs along
the different attributes in a cyclic fashion (i.e., first split along attribute z, then y, then
z, etc.}. For both types of bucket splits, the situation may arise that none of the ele-
ments in the overflowing buckets belongs to the newly created bucket, with the result
that the directory will have to be doubled more than once. This is because the splitting
points are fixed for EXCELL. For example, this will occur when we attempt to insert
Kansas City at {30,30) in Figure 6.10 since the first directory doubling at y=25 and
y =75 will still have Chicago, Omaha, and Kansas City in the same grid block. Thus we
see that the size of the EXCELL grid directory is sensitive to the distribution of the
data. However, a large bucket size reduces the effect of non-uniformity unless the data
consists entirely of a few clusters,

The counterpart of splitting is merging. However, it is considerably more limited
in scope for EXCELL than for the Grid File. Also, it is less likely to arise because
EXCELL has been designed primarily for use in geometrical applications where deletion
_ of records is not so prevalent. As with the Grid File, however, there are two cases where
merging is appropriate, i.e., bucket merging and directory merging.

Both the Grid File and EXCELL organize space into buckets and use directories
in the form of arrays to access them. The similarity to the quadtree lies in the mappings
induced by the directories (i.e., EXCELL with the region quadtree and the Grid File
‘with the point quadtree). Trees can also be used to access the buckets [Knot71].
Matsuyama, Hao, and Nagao [Mats84] compare a technique of accessing buckets by use
of a PR quadtree with one that uses an adaptive k-d tree. Robinson [Robi81) introduces
the k-d-B-tree which is a generalization of the B-tree to allow multiattribute access.
O'Rourke [ORou81, ORou84] makes use of an adaptive k-d tree which he calls a Dynam-
ically Quantized Space to access buckets of data for use in multidimensional histogram-
ming to aid in the focusing of the Hough transform. Sloan [Sloa81, ORou84] addresses
the same problem as O'Rourke, albeit with a different data structure which he calls a
Dynamically Quantized Pyramid. 1t is based on the pyramid data structure [T'ani75].
Here the number of buckets is fixed. It differs from the conventional pyramid in that
the partition points at the various levels are allowed to vary rather than being fixed and
are adjusted as data is entered. The result is somewhat related to a complete point
quadtree [Knut75, p. 401] with buckets.

There has also been a considerable amount of work on representing multidimen-
sional point data by use of linear hashing. Linear hashing [Litw80] methods are attrac-
tive because they provide for linear growth of the file (i.e, one bucket at a time),
without requiring a directory. In contrast, extendible hashing [Fagi79] {e.g., EXCELL)

- . and the Grid File methods require extra storage in the form of directories. When a

bucket overflows, the directory doubles in size in the case of extendible hashing, while in
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the case of the Grid File it results in the insertion of a (%-1)-dimensional cross-section.
Neither EXCELL nor the Grid File need overflow pages, while methods based on linear
hashing generally do, although this may be unnecessary. Bit interleaving (e.g., attributed
in [Bent75b] to McCreight; also known as a Morton Matrix [Mort66]) is used by a
.number of researchers [Trop81, Burk83, Oren83, Ouks83, Oren84], to create a linear
order on the multidimensional domain of the data. Tropf and Herzog [Trop81} and Oren-
stein and Merrett [Oren84] discuss its use in range searching. Burkhardt [Burk83], terms
it shuffle order, and adapts it to linear hashing, in the same way as EXCELL adapts it
to extendible hashing, and uses it to evaluate range queries. Quksel and Scheuermann
[Ouks83] call it z order. Orenstein [Oren83)] discusses the problems associated with such
an approach. He points out that the resulting file may contain a number of sparsely

filled buckets which will result in poor performance Tor sequential access. He goes on to
propose a modification which unfortunately, unlike linear hashing, does not result in a
bucket retrieval cost of one or two disk reads {for the hash operations). In contrast,
directory-based methods such as the Grid File and EXCELL do not suffer from such a
problem to the same extent because, since the directory consists of grid blocks and
several grid blocks can share a bucket, the sparseness issue can be aveided.
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7. Curvilinear data

The region quadtree [Klin71] approach to region representation is based on a
description of the region’s interior. This section focuses on representations that specify
borders of regions. This is done in the more general context of data structures for curvi-
linear data. The simplest representation is the pelygon in the form of vectors [Nagy79]
which are usually specified in the form of lists of pairs of z and y coordinate values
corresponding to their start and end points. One of the most common representations is
the chain code [Free74] which is an approximation of a polygon. Other popular
representations include raster-oriented methods [Merr73, Peuq79], as well as a combina-
tion of vectors and rasters (e.g., vasters [Peuqg83]). There has also been a considerable
amount of interest recently in hierarchical representations. These are primarily based on
rectangular approximations to the data [Ball81l, Burt77, Peuc78). In particular, Burton
[Burt77] uses upfight rectangles, Ballard [Ball81] uses rectangular strips of arbitrary
orientation, and Peucker [Peuc78] uses sets of bands. There also exist methods that are
based on a regular decomposition in two dimensions, as reported by Hunter and Steiglitz
[Hunt79a], Shneier [ShneBlc]|, and Martin [Mart82]. Note that our primary focus is on
the facilitation of set operations and not ease of display, which is a characterization of
B-splines and Bezier methods [Cohe80].

In many applications polygons are not unrelated, but together form a partition of
the study area (termed a polygonal map). It is possible to use the above representations
for each curve that bounds two adjacent regions. However, it is often preferable to
represent the complete network of borders with a single hierarchical data structure.
‘Some examples include the line quadtree of Samet and Webber [Same84a], the PM quad-
tree of Samet and Webber [Same83a), and the edge variant of the EXCELL method of
Tamminen {Tamm8l]. In order to avoid confusion with the point space formulation of
the EXCELL method, we shall use the term edge ~-EXCELL . The remainder of this sec-
tion elaborates further on the strip tree and also on the representations that are based
on a regular decomposition, concluding with a brief comparison of these methods.

7.1. Strip trees

The strip tree is a hierarchical representation of a single curve that is obtained
by successively approximating segments of it by enclosing rectangles. The data struc-
ture consists of a:binary tree whose root represents the bounding rectangle of the entire
curve. For example, consider Figure 7.1 where the curve between points P and Q, at
locations (zp,yp) and {zq,yq) respectively, is modeled by a strip tree. The rectangle
associated with the root, A in this example, corresponds to a rectangular strip of max-
imum width, enclosing the curve, whose sides are parallel to the line joining the end-
points of the curve (i.e., P and Q). Next, this rectangle is decomposed into two parts at
one of the points (termed a splitting point } on the rectangle that is also part of the
curve. There is at least one such splitting point. If there are more, then the decomposi-
tion is performed using the point that is at a maximum distance from the line joining
the endpoints of the curve. If the curve is both continuous and differentiable at the
splitting point, then, of course, the boundaries of the rectangle that pass through these
points are tangents to the curve. This splitting process is recursively applied to the two
- sons until every strip is of a width less than a predetermined value. For Figure 7.1, the
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first splitting operation results in the creation of strips B and C. Strip C is further split
creating strips D and E at which point the splitting process ceases. Figure 7.2 shows the
resulting binary tree. Note that each nede in the strip tree is implemented as a record
with eight fields. Four fields contain the z 2nd y coordinates of the endpoints, two
fields contain pointers to the two sons of the ncde, and two fields contaln information
about the width of the strip (i.e., w;, and wy of Figure 7.1).

Figure 7.1 is a relatively simple example. In order to be able to cope with more
complex curves, the notion of a strip tree mast be extended. In particular, closed curves
{e.g., Figure 7.3) and curves that extend past their endpoints {Figure 7.4) require some
special treatment. The general idea is that these curves are enclosed by rectangles which
are split into two rectangular strips and from now on the strip tree is used as before.
Note that the strip tree concept and the related algorithms are regarded by Ballard as
completely expanded ‘down to a primitive level of unit line scgments on a discrete grid
even when the !underlying curves are collinear. In order to be able to handle curves that
consist of disconnécted segments, strips are classified as either regular or not and a spe-
ccial bit is associated with each strip to indicate its status. Formally, a curve is said to
-be regular if it is connected and has its endpoints touching the ends of the strip.

Like point and region quadtrees, strip trees are useful in applications that involve
;search and set operations. For example, suppose we wish to determine whether a road
‘crosses a river. Usmg a strip tree representation for these features, answering this query
means ba.s:cally performmg an intersection of the corresponding sirip trees. Three cases
are possible as is shown in Figure 7.5. Figures 7.5a and 7.5b correspond to the answers
NO .and YES respectively while Figures 7.5¢ requires us to descerd further down the
strip tree. Other operations that can be performed efficiently by using the strip tree
data structure include the computation of the union of two curves, length of a curve,
areas of closed curves, intersection of curves with areas, point membership, etc. [Baligl).
In particular, for closed curves that are well-behaved, intersection and point membership
are O (logn } processes where n is the number of points describing the curve. Strip trees
are also used by Gaston and Lozano-Perez [Gast84] in robotic tactile recognition and
localization.

The strip tree can be characterized as a top-down approach to curve approxima-
tion. Burton {Burt77] defines a related structure termed a BSPR (Binary Searchable
Polygonal Representation) which is a bottom-up approach to curve approximation.
Once again, the primitive unit of approximation is a rectangle; kowever, in the case of
the BSPR all rectangles are upright (i.e., they have a single orientation). - The curve to
be approximated is decomposed into a set of simple sections where each simple seciion
corresponds to a segment of the curve which is monotonic in both the x and y values of
the points comprising it. The tree is built by combining pairs of adjacent simple sec-
tions to yield compound sections. This process is repeatedly applied until the entire
curve is approximated by one compound section. Thus we see that terminal nodes
correspond to simple sections and non-terminal nodes cerrespend to componnd sections.
For a curve with 2® simple sections, the corresponding BSPR has n levels.

As an example of a BSPR consider the regular octagon in Figure 7.6a having ver-

tices A-H. It can be decomposed into four simple sections - i.e., ABCD, DEF, FGH, and
- HA. Figure 7.6b shows a level 1 approximation to the four simple secticns consisting of
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rectangles AIDN, DJFN, HMFK, and AMHL respectively. Pairing up adjacent simple
sections yields compound sections ALJF corresponding to AIDN and DJFN, and AFKL
corresponding to HMFK and AMHL {see Figure 7.6c). More pairing yields the rectangle
- for compound section IJKL (see Figure 7.6d). The resulting BSPR tree is shown in Fig-
ure 7.6e. Using the BSPR, Burton shows how to perform point in polygon determination
and polygon intersection. These operations are implemented by tree searches and split-
ting operations. ' '

Both the strip tree and the BSPR share the property of being independent of the
grid system in which they are embedded. An advantage of the BSPR representation
over the strip tree is the absence of a need for special handling of closed curves. How-
ever, the BSPR is not ‘as flexible as the strip tree. In particular, the resolution of the
approximation is fixed (i.e., once the width of the rectangle is selected it canmot be
varied). : 3 i : |

. : ; |
7.2. Methods based on a regular decomposition

Strip tree methods approximate curvilinear data with rectangles. Quadtree
methods achieve similar results by use of a collection of disjoint squares having sides
whose lengths are powers of two. A number of variants of quadtrees are currently in
use, and can be differentiated by the typé of data that they are designed to represent.
All but the PM quadtrce of Samet and Webber [Same83a] and the edge-EXCELL of
Tamminen [Tamm81] are pixel-based and yield approximations whose accuracy is con-
strained, in part, by the resolution of the data they are representing. They can be used
to represent both linear and non-linear curves. The latter need not be continuous or
differentiable. In contrast, the PM quadtree and the edge-EXCELL yield an exact
representation of polygons or collections of polygons. -

The edge quadtree of Shneier [Shne81] is an attempt to store linear feature infor-
mation (e.g., curves) for an image (binary and grey-scale) in a manner analogous to that
used for storing region information. A region containing a linear feature or part thereof
is subdivided into four squares repeatedly until a square is obtained that contains a sin-
gle curve that can be approximated by a single straight line. Each leaf node contains
the following information about the edge passing through it: magnitude (i.e., 1 in the
case of a binary image or the intensity in case it is a grey-scale image), direction, inter-
cept, and a directional error term (i.e., the error induced by approximating the curve by
a straight line using a measure such as least squares). If an edge terminates within a
node, then a special flag is set and the intercept denotes the point at which the edge ter-
minates. Applying this process leads to quadtrees in which long edges are represented
by large leaves or a sequence of large leaves. However, small leaves are required in the
vicinity of cormers or intersecting edges. Of course, many leaves will contain no edge
information at all. As an example of the decomposition that is imposed by the edge
quadtree, consider Figure 7.7 which is the edge quadtree corresponding to the polygon of
Figure 7.8 when represented on a 2! by 2* grid. Note that the edge quadtree in Figure
7.7 requires fewer blocks than Figure 7.8, which is the representation of the polygon
- when using the methods of Hunter and Steiglitz [Hunt79a). : :

Closely related to the edge quadtree is the least square quadiree of Martin
[Mart82]. In that representation, leaf nodes correspond to regions that contain a single
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curve that can be approximated by K {fixed @ priori) straight lines within a least square
tolerance. This enables handling curved lines with greater precision and which have
fewer nodes than the edge quadtree. A cruder method is described by Omolayole and
Klinger [Omol80] where all parts of the image that contain edge data are repeatedly
decomposed until obtaining a 2 by 2 quadrant in which they store template-like
representations of the edges. This is quite similar to the MX quadtree, except that the
data are edges rather than points. However, it is too low a level of representation in
that it does not take advantage of the hierarchical nature of the data structure.

We use a variant of the edge quadtree in our geographic information system. In
particular, the edge quadtree is implemented in the form of a variant of the linear quad-
tree [Garg82]. The edge quadtree is represented as a collection of 2ll the leaf nodes
comprising it. As with area and point data each leaf node is encoded by a pair of
numbers corresponding to its level and a locational code. The latter is a base 4 number
corresponding to a sequence of directional codes that locate the leaf along a path from
the root of the quadtree. Fach edge quadtree leaf node is implemented as a record con-
taining additional information about the line that passes through the node. In general, a
non-WHITE edge quadtree node will contain exactly one line segment which intersects
two of the node's edges. However, when two or more lines intersect, an edge quadtree
representation requires that decomposition be performed to the pixel level. In such a case
the number of lines that intersect at the pixel is recorded as the value of the node.

In our system each edge quadtree leaf node is represented by two 32 bit words.
The first word contains the level and the locational code of the leaf node. Images as large
as 2'? by 2!? can be handled. The second word contains information about the leaf node.
One bit is used to describe its type (1 for a line segment and O for a single pixel or a
WHITE node). Two bits indicate, for all non-WHITE nodes, the quadrant in which the
node is found relative to its father (termed SONTYPE). One bit is unused. The remain-
ing 28 bits are used to describe the leaf node. For a WHITE node they are 0. If the node
corresponds to a single pixel, then it contains the number of lines that pass through the
pixel. Otherwise, one line segment passes through the node and its intercepts with the
leaf’s block are stored here. 14 bits are used for each intercept. Two bits indicate which
of the four edges of the block are intersected by the intercept. The remaining 12 bits
indicate the distance from a corner of the block to the intercept {the left corner for the
north and south edges, and the lower corner for the east and west edges}). The SON-
TYPE field is very important because without it, a general purpose merge routine would
merge four brother nodes with identical type information, whereas such a merger should
only occur if the identical type information signifies an empty node. For example, con-
sider Figure 7.9 which shows the existence of four brother quadrants with identical line
segments passing through them. The same is true for four brother quadrants that con-
tain pixels with the same number of lines passing through each of the four pixels. Of
course, this problem can be avoided, in part, for the case of a single line segment by
storing absolute addresses for the intercepts (the 12 bits are sufficient). However, now a
line’s descriptor is not independent of the overall quadtree coordinate system. This is of
potential use in a paged environment. '

The line quadiree of Samet and Webber [Same84a] addresses the issue of
hierarchically representing images which are segmented into a number of different
regions rather than mere foreground and background as is the case for conventional
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quadtrees. In particular, it encodes both the areas of the individual regions and their
boundaries in a hierarchical manner. This is in contrast to the region quadtree, which
encodes only areas hierarchically and the strip tree which encodes only curves hierarchi-
cally. The line quadtree partitions the set of regions (termed a map) via a recursive
decomposition technique which successively subdivides the map until obtaining blocks
(possibly single pixels) that have no line segments passing through their interiors. With
each leaf node, a code is associated that indicates which of its four sides form a boun-
dary (not a partial boundary) of any single region. Thus, instead of distinguishing leaf
nodes on the basis of being BLACK or WHITE, boundary adjacency information is used.
~This boundary information is hierarchical in that it is also associated with non-terminal
nodes. In essence, wherever a non-terminal node does not form a T-junction with any of
the boundaries of its descendants along a particular side, this side is then marked as
being adjacent to a boundary.

As an illustration of a line quadtree, consider the polygonal map of Figure 7.10
whose corresponding line quadtree (i.e., block decomposition) is shown in Figure 7.11.
The bold lines indicate the presence of boundaries. Note that the south side of the block
corresponding to the root is on a boundary which is also the border of the image. As
another example, the western side of the SW son of the root in Figure 7.11 does not indi-
cate the presence of a boundary (i.e., the side is represented by a light line) even though
it is adjacent to the border of the image. The problem is that the SW son of the root has
its NW and SW sons in different regions, as is signalled by the presence of a T-junction
along its western side. Having the boundary information at the non-terminal nodes
enables boundary following algorithms to be performed quickly, in addition to facilitat-
ing the process of superimposing one map on top of another. Observe also that the line
quadtree has the same number of nodes as a conventional quadtree representation of the
image. Boundaries of leaf nodes that are partially on the boundary between two regions
can have their boundaries reconstructed by examining their neighbors along the shared
boundary. For example, the southern side of the NW son of the SW son of the root in
Figure 7.11, say A, represents a partial boundary. The exact nature of the boundary is
obtained by examining the NE and NW sons of the southern brother of A .

The PM quadtree of Samet and Webber [Same83a] and the edge-EXCELL of
Tamminen {Tamm81] are attempts to overcome some of the problems associated with
the following three structures: the line quadtree, the edge quadtree, and the quadtree
formulation of Hunter and Steiglitz (termed an MX quadtree) for representing polygonal
maps (i.e., collections of straight lines). In general, all three of these representations
correspond to approximations of a map. The line quadtree is based on the approxima-
- tion that results from digitizing a polygonal map. For the edge and MX quadtrees, the
result is still an approximation because vertices are represented by pixels in the edge
quadtree and borders are represented by BLACK pixels in the MX quadtree. Another
disadvantage of these three representations is that certain properties of polygonal maps
cannot be directly represented by them. For example, it is impossible for five line seg-
ments to meet at a vertex. In the case of the edge and MX quadtrees we would have
difficulty in detecting the vertex and for the line quadtree the situation cannot be han-
dled because all regions comprising the map must be rectilinear. Note that it is impossi-
ble for five rectilinear regions to meet at a point. Other problems include a sensitivity to
shift and rotation which may result in a loss of accuracy in the original approximation.
Finally, due to their approximate nature, these data structures will most likely require a
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considerable amount of storage, since each line is frequently approximated at the pixel -
level thereby resulting in quadtrees which are fairly deep.

The PM quadiree represents a polygonal map by using the PR quadtree discussed
in Section 6.2. Each vertex in the map corresponds to a data point in the PR quadtree.
We define a g-edge to be a segment of an edge of the map that either spans an entire
block in the PR quadtree (e.g., segment RS in Figure 7.13) or extends from a boundary
of a block to a vertex within the block (i.e., when the block contains a vertex - e.g., seg-

ment CV in Figure 7.13).

For every leaf in the PR quadtree we partition all of its ¢-edges into seven
classes. Each of these classes is stored in a balanced binary tree [Aho74]. One class
corresponds to the set of g-edges that meet at a vertex within the block's region. This
class is ordered in an angular manner. The remaining g-edges that pass through the
block’s region must enter at one side and exit via another. This yields six classes: NW,
NS, NE, EW, SW, and SE, where SW denotes q-edges that intersect both the southern
and western boundaries of the block’s region. Note that these classes are often empty.
The qedges of these classes are ordered by the position of their intercepts along the per~
imeter of the block’s region. A q-edge that coincides with the border of a leaf’s region is
placed in either class NS or EW as is appropriate. For example, consider the polygonal
map of Figure 7.12 and its corresponding PM quadtree in Figure 7.13. The block con-
taining vertex C has one balanced binary tree for the q-edges intersecting vertex C (three
balanced binary tree nodes for q-edges CM, CN, and CV) and one balanced binary tree

for the q-edges intersecting the NW boundary (one balanced binary tree node for q-edge
ST). In total, the PM quadtree of Figure 7.1v3 contains seven quadtree lezf nodes, nine
non-empty balanced binary trees, containing seventeen nodes.

The PM quadtree provides a convenient, reasonably efficient data structure for
- performing a variety of operations. Point-in-polygon determination is achieved by finding
a bordering g-edge with respect to each of the seven classes and then selecting the closest
of the seven as the true bordering g-edge. The execution time of this procedure is pro-
portional to the depth of the PM quadtree. It should be noted that the depth of the PM
' quadtree is inversely proportional to the log of the minimum separation between two

vertices plus the log of the number of edges in the polygonal map [Same83c]. Besides

point-in-polygon determination, there exist efficient algorithms for insertion of an edge

into the map, overlaying two maps, clipping and wirdowing a map, and range searching
. (i.e., determining all polygons within a given distance of a point).

The edge-EXCELL method is an application of the EXCELL method for point
data (described in Section 8.4 } to polygonal maps. It is based on a regular decomposi-
tion. The principle guiding the decomposition process and the data structure are identi-
cal to that used for representing points. The only difference is that now the data con-
sists of straight line segments that intersect the cells {i.e., grid blocks). Once again, a
grid directory is used which maps the cells into storage areas of a finite capacity (e.g.,
buckets) which often reside on disk. As the buckets overflow (i.e., the number of line
segments intersecting them exceeds the capacity of the bucket), buckets are split into
two equal-sized grid blocks, which may also lead to a doubling in the size of the direc-
tory. If the polygonal map contains a vertex at which m lines intersect, and m is
greater than the bucket capacity, then no matter how many times the bucket is split it
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will be impossible to store all the line segments in one bucket. In such a case, edge-
EXCELL makes use of overflow buckets. This is a disadvantage of edge-EXCELL when -
compared with the PM quadtree.

Using edge-EXCELL, point-in-polygon determination is achieved by a two step
process. First, the cell in which the point lies is located. Second, the corresponding
polygon is determined by finding the closest polygon border in any given direction by
use of a technique known as ray casting [Roth82) (similar to searching for the closest g-
edge when using the PM quadtree). Tamminen [Tamm83] has shown that, in practice,
this requires on the average little more than one cell access. Edge-EXCELL has also
been used to do hidden line elimination [Tamm82].

7.3. Comparison

The chain code is the most compact of the representations. However, it is a very
local data structure and is thus rather cumbersome when attempting to perform set
operations such as intersection of two curves represented using it. In addition, like the
strip tree, and to a lesser extent the BSPR, it is not tied to a particular coordinate sys-
tem. This is a problem with methods based on a regular decomposition, although it is
somewhat reduced for the PM quadtree and edge-EXCELL.

Representations based on a regular decomposition have a number of advantages
over the strip tree. First, more than one curve can be represented with one instance of
the data structure - a very important feature for maps. Second, they are unique. In con-
trast, only one curve can be represented by a single strip tree. Also, the Strip tree is not -
~ unique when the curve is closed, not regular, or contains more than one end point. How-
ever, the strip tree is invariant under shifts and rotations. The line quadtree is better
than the MX quadtree of [Hunt79a], which represents boundary lines as narrow BLACK
regions, for two reasons. First, narrow regions are costly in terms of the number of
nodes in the quadtree. Second, it commits the use to a specific thickness of the boun-
dary line which may be unfortunate - e.g., when regenerating the picture on an output
device. Also, such arbitrary decisions of representation accuracy are not very appropri-
- ate when data is to be stored in a data base,

The edge quadiree representation has a number of problems. First, it uses up too
much space for vertices since the decomposition must proceed to the pixel level. Second,
the slopes of the various segments through the nodes are inaccurate due to ronndoff
error induced by the digitization process. The PM quadtree does not have such a prob-
lem but is more difficult to integrate into a database containing data of different types
due to the large amount of information that must be stored at each terminal node.

At this point it might be appropriate to speculate on some other data structures
for' curvilinear data. Representations based on regular decomposition are attractive
because they enable efficient computation of set operatiors. In particular, at times it is
convenient to perform the operations on different kinds of geometric entities (e.g., inter-
‘secting curves with areas, etc.). The strip tree is an elegant data structure from the
standpoint of approximation. However, it has the disadvantage that decomposition
points are independent of the coordinate system of the image (i.e., they are at arbitrary
points dependent on the data rather than at predetermined positions as is the case with
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a data structure that is based on a regular decomposition). Thus answering a query such

as “Find all wheat growmg regions within 20 miles of the Mississippi River” is not easy
to do when the river is represented as a strip tree and the wheat growing regions are
represented by region quadtrees. The problem is that while quadtree methods merely.
require pointer chasing operations, strip tree methods may lead to complex geometric
computations. What is desired is a regular decomposition strip tree or variant thereof
that meets these issues and those raised earlier.

The data structures discussed in this section are rooted in the image processing
area and were designed primarily to represent curves and lires. Computational geometry
is another area where similar problems arise [Edel84, Tous80}. This is 2 rapidly changing
field having its roots in the work of Shamos and Hoey [Sham75, Sham78] and focusing
on problems of asymptotical computational complexity of geometric algorithms. How-
ever, a full presentation'of this field is beyond the scope of this survey. Nevertheless, in
the following we do give a brief sample of the type of results attainable for similar prob-
~ lems. Many of the solutions (e.g., [Lipt77]) are based on the representation of line seg-
ments as edges and vertlces in a graph.

For example, an alternative to the PM quadtree and edge-EXCELL is the K-
structure of Kirkpatrick [Kirk83). It is a hierarchical structure based on triangulation
. - rather than a regular decomposition. The notion of hierarchy in the K-structure is radi-

“cally different from that of a quadtree, in that instead of replacmg a group of triangles
by a single triangle at the mext higher level, a group of triangles is replaced by a smaller
~group of triangles. Triangles are grouped for replacement because they share a common
vertex.. The smaller group results from eliminating the common vertex and then retri-

angulating. Kirkpatrick [Kirk83] shows that at each level of the hierarchy, at least -2%—1‘,11

of the vertices can be eliminated in this manner. The vertices that have been eliminated
are guaranteed to have degree of 11 or less, thus bounding the cost of retriangulating.
Let v denote the number of vertices in a polygonal map. Then, the size of a K-structure
is guaranteed to be O (v) although the worst-case constant of proportionality is 24 times
the amount of information stored at a node. It also leads to an O (log v ) query time for
point-in-polygon determination. The construction process has a worst-case execution
time of O (v) for a triangular subdivision and O (v - log v ) for a general one. The latter
is dominated by the cost of triangulating the original polygonal map [Hert83]. Since a
triangulation constitutes a convex map, i.e., a planar subdivision formed of convex
regions, the work of Nievergelt and Preparata [Niev82] is relevant. They show that the
cost of performing a map overlay operation is O (v -log v+s) where s is the number of
intersections of 2ll line segments in the two maps. Finally, it is worth noting that the
hierarchical nature of the K-structure may lead to an efficient range-searching algorithm.

In comparing the K-structure with the PM quadtree (and to some extent edge-
EXCELL} the qualitative comparison is analogous to that of a point quadtree with a PR
quadtree. Both structures have their place; the one to use depends on the nature of the
data and the importance of guaranteed worst-case performance. The K-structure organ-
izes the data to be stored while the PM quadtree organizes the embedding space from
‘which the data is drawn. The K-structure has better worst case execution time bounds
for similar operations compared to those considered for the PM quadtree. However, con-
siderations such as ease of implementation and integration with representations of other
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data types must also be taken into account in making an evaluation. In the case of
dynamic files, at present, it would seem to be more convenient to uwse the PM quadtree
since a general updating algorithm for the K-structure has not been reported.

89



-+, ®Inb1d 03 butpuodseiiod sox3 drang -z-, oanbrg




N
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Figure 7.6. (a) A recular octagon and (b)-(d) the three successive

approximations resulting from the use of BSPR. (e) The

resu2lting BSPR.
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Figure 7.7. The edge guadtree corresponding
to the polygon of Figure 7.8.
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Figure 7.8. Hunter and Steiglitz's quadtree
representaticn of a polvgon.
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Figure 7.9. An example- of four identical siblings.
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Figure 7.10. Example polygonal map to illustrate
line guadtrees.
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Figure T-11. Line

guadtree corresponding to Figure T7.10.
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Figure 7.12, Example polygonal map to illustr;te
PM gquadtrees.
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. 8. Conclusions and Future FPlans

During Phase III of our investigation into the application of hierarchical data
structures to geographic information systems, the database system was enhanced in a
number of ways. A method was developed for storing information describing individual
maps through use of the DMA Standard Lineal Format header file. A method was also
developed for storing information about polygons and classes of polygons through use of
the attribute attachment functions. Our implementation also allows for the sharing of
attribute class definitions among sets of maps. Finally, new functions and improved
algorithms have extended the usefulness of the present database system.

Our main topic of research during the next phase of this project will be an exam-
ination of other hierarchical data structures for use within our system. Particular
emphasis will be placed on structures for representing line data. The structures to be
investigated will be largely drawn from those reported on in Sections 6 and 7 of this
report. Other probable topics include new work on a database gquery language, and
extension of the memory management system to allow greater flexibility in the node size
of the structures used to store maps. '
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