' Wd/bbw d3 00 & &

e

CAR-TR-248

DCR-86-05557
CS-TR-1752

January 1987
HIERARCHICAIL DATA STRUCTURES AND
ALGORITHMS FOR COMPUTER GRAPHICS

Hanan Samet

Computer Science Department

University of Maryland
College Park, Maryland 20742

Robert E. Webber

Computer Science Department
Rutgers University, Busch Campus
New Brunswick, New Jersey 08903

ABSTRACT

An overview is presented of the use of hierarchical data structures and algorithms
in computer graphics. These methods have found many applications in image rendermg
and solid modeling. While such data structures are not necessary- for the processing of
simple scenes, they are central to the efficient processing of large-scale realistic scenes.
Although object-space hierarchies are discussed briefly, the main emphasis is on hierar-
chies constructed in the image space such as quadtrees and octrees

The support of the Natlonal Science Foundation under Grant DCR-86-05557 is gratefully ac-
knowledged.

-

1. INTRODUCTION

Computer graphics applications require the manipulation of two distinet data
formats: vector and raster (see Figure 1). The raster format enables the modeling of a
graphics image as a collection of square cells of uniform size (called pixels). A color is
associated with each pixel. In order to attain a maximum degree of flexibility, an
attempt is made to model directly the addressability of the phosphors on the display
screen so that each pixel corresponds to a phosphor. This format has also proven useful
In computer vision since it corresponds to the digitized output of a tv camera. In con-
trast, instead of modeling the display screen directly, the vector format models the ideal
geometric space that is to be represented on the display screen. Vector data consists of
points, line segments, filled polygons, and polyhedral solids. In addition to processing
these two formats of data directly, in computer graphics applications we are also con-
cerned with the problem of conversion between these two formats. Closely related to the
distinction between the raster format and the vector format is the distinction between
image space and object space presented in an ea,rly classification of hidden-surface algo-
rithms [Suth74].

Both data formats have obvious representations. These representations are
minimal in the sense of just providing suflicient structure to allow updating. For the ras-
ter format, the obvious representation is as a two-dimensional array of color values. As
an example, in Figure 1b, all elements of the array through which a line passes or that
contain a point (i.e., shown shaded) are BLACK. For the vector format, the obvious
representation is as a linked list of line segments (see Figure 2). Early work on the vector
format extended the structure of this list by ordering the line segments around common
vertices. For example, consider the winged-edge polyhedra representation [Baum72] as
‘illustrated in Figure 3. While these representations are suitable for medium range appli-
cations, once the scene being modeled becomes significantly larger than the display grid,
major ‘logistic problems arise. There are two approaches {Suth74] to handle the logistics
problems. One approach, based on object-space hierarchies [Clar76], is only discussed
briefly in this paper. The other approach, based on image-space hierarchies, is typified
by hierarchical data structures such as the quadtree and octree and is the subject of this

paper.

In the remainder of this paper we review applications of hierarchical data struc-
tures such as the quadtree and octree in computer graphics. Section 2 contains a general
discussion of their properties. Sections 3 and 4 describe algorithms using quadtrees and
octrees respectively. Section 5 concludes with a brief discussion of some other applica-
“tions of these data structures as well as hardware implementations. For more references
and details on hierarchical data structures, see [Same84b, Same86b].

2.. PROPERTIES OF QUADTREES AND OCTREES

In this section we discuss some fundamental properties of quadtrees and octrees.
However, we first elaborate on the motivation for their development. As mentioned in
Section 1, hierarchical data structures such as the quadtree and octree have their roots
in attempts to overcome the problems that arise when the scene that is being modeled is
more complex than the display grid (e.g., in size, precision, number of elements, etc.).
These problems are solved by use of object-space hierarchies and image-space hierar-
chies, which are described in greater detail below. Next, we present a definition of the

quadtree and octree, an examination of some of the more common ways in which they
are implemented, and an explanation of the quadtree/octree complexity theorem. We
conclude with a discussion of vector quadtree and vector octrees.

2.1. OBJECT-SPACE HIERARCHIES

Two kinds of logistic problems present themselves. The first problem is the com-
munication between the user software and the graphics package, i.e., the number of pro-
cedure calls {or commands transmitted on a graphics channel) can become a bottleneck
for the system. The second problem is in determining what subset of the scene is actu-
ally visible. For example, in a 512X 512X 512 scene, only about 512X 512 of it is actually
visible at any given time. When the scene extends horizontally and vertically past the
bounds of the viewing surface the problem is further aggravated. The first problem has
been addressed, in part, by observing that the universe can be hierarchically organized
into objects composed of subobjects which are in turn composed of other objects and so
forth [Simo69]. This observation has been used as the basis for the organization of the
user’s interface to the data from the earliest graphics systems [Suth63, Gray67] to the
most recent graphics package designs [Lant84, ANSIS5].

Since the object hierarchy must be kept to solve the communication problem, it
is tempting to use this hierarchy to solve the visible-subset problem. One way to adapt
the object hierarchy to the visible-subset problem is through the notion of bounding
objects. When determining whether or not an object is visible, it is common [Roge85] to
surround the object (see Figure 4a) with a bounding box (see Figure 4b) or sphere (see
Figure 4¢). If the bounding object is not visible, then clearly the object being bounded is
also not visible. This produces a major computational savings, since it is usually
significantly easier to test for visibility of the bounding object than the visibility of the
bounded object. However, this technique is not capable of dealing with the visible-subset
problem when the number of objects is large. It has been noted [Clar76, Rubi80,
Wegh84] that the objects being bounded need not be limited to the primitive objects of
the scene; instead, bounding objects can also be placed around the complex objects
formed by the different levels of the object hierarchy (see Figures 4d and 4e).

While this approach is easy to implement and can significantly improve execution
- time, its efliclency is based on the notion that the object hierarchy is a structural
approximation of a balanced binary tree in the sense that objects in the hierarchy are
expected to be locatable in time roughly proportional to the logarithm of the number of
objects in the hierarchy. Of course, this is often not the case. This is because there are
two kinds of levels in a natural hierarchy: those formed by a few unique objects and
those formed by a large number of nearly identical objects [Simo69]. Levels formed in
this second manner can be very flat and of little computational benefit. Even when the
branching factor is reasonable, there is no guarantee that the natural hierarchy will be
balanced in the algorithmic sense (see Figure 4f). Some attempts have been made to
artificially structure the object space to avoid these problems (e.g., [Fuch83]); however,
such attempts have problems handling dynamically changing scenes (due to preprocess-
ing costs) as well as often having unfortunate worst-case results.

A related artificial object hierarchy is the strip tree [Ball81] (see Figure 5). In this
case, we are dealing with an object consisting of a single curve. The curve is surrounded

by a bounding rectangle two of whose sides are parallel to the line joining the endpoints
of the curve (e.g., the bounding rectangle A in Figure 5 has two sides parallel to the line
between points P and Q). The curve is then partitioned in two at one of the locations
where 1t touches the bounding rectangle. Each subcurve is then surrounded by a bound-

- ing rectangle and the partitioning process is applied recursively. This process stops when
the width of each strip is less than a predetermined value. The strip tree is implemented
as a binary tree where each node contains eight fields. Four fields contain the z and y
coordinates of the endpoints, two fields contain pointers to the two sons of the node, and
two fields contain information about the width of the strip (i.e., Wy, and Wg in Figure
5). The worst-case situations illustrated by this data structure are typical of the prob-
lems with computations on object hierarchies. ‘

2.2. IMAGE-SPACE HIERARCHIES

A natural alternative to processing graphics commands in the object-space hierar-
chy is to organize the data around an image-space hierarchy. One problem with tradi-
tional image-space representations {i.e.,, two and three dimensional arrays) is that they
require the user to fix the maximum resolution in advance. However, a hierarchical
organization of the image space allows the resolution to vary with the complexity of the
objects in various regions. Of course there are many ways to partition the image space
- (when it is viewed as a continuous plane/space) [Ahuj83, Bell83, Gibs82|, but to easily

interface with a Cartesian coordinate system and with the typical display device con-
troller, a decomposition of the plane into square regions {and a space into cubical
_regions) is simplest. Two examples of non-square partitionings of the plane are given in
Figure 6. In the following we discuss the organization of a plarar image space (leaving
consideration of the three-dimensional image space for a later section).

When justifying the usage of object-space hierarchies for image-space processing,
we often refer to the property of area coherence, which means that objects tend to
represent compact regions in the image space. Similarly, we might speak of object
coherence as being a factor in image-space hierarchies, since regions that are close to
~-gach other tend to be parts of the same object. Thus, both types of hierarchies tend to
approximate each other. However, for large-scale applications, the costs associated with
the imprecision of these approximations can easily overshadow any benefits accrued {rom
the explicit maintenance of just one of the hierarchies. Thus, when possible both hierar-
chies should be maintained. A definitive analysis of the merits of image space and object
space hierarchies awaits a universally accepted model of “typical graphic data”. '

2.3. QUADTREE/OCTREE DEFINITION

One commonly used two-dimensional image-space hierarchy is typified by the
quadtree data structure [Klin71, Same84b|. It is constructed in the following manner. We
.start with an image (whose binary array representation is given in Figure 7a) and check
to see If it has a simple description and thus does not require any further hierarchical
structuring. If this is not the case, then the image space is partfitioned into four disjoint
congrient square regions (called quadrants) whose union covers the original image space
(see Figure 7b). Each of these new image spaces is treated as if it was isolated, and for
each one the question is raised as to whether or not it has a simple description (resulting
in Figure 7c}. Of course, in this example, the stopping rule for the decomposition

process is homogeneity (i.e., each square region is of ope color). This decomposition tech-
nique is referred to as a regular decomposition to distinguish it from decomposition
approaches that vary the size of the subregions formed from the original regions (see Fig-
ure 7d). While it is plausible to attempt to move the boundaries of the subregions
inorder to distribute the complexity of the image more evenly, it is not clear how to do
this in an eflfective way. The inherent simplicity of regular decomposition facilitates
both its implementation and the analysis of its performance.

The test for determining whether or not an image space has a simple description
is called the leaf criterion. It is called the leaf criterion because the spaces that satisly it
form the leal nodes of the tree that represents the hierarchical structure. There are
many variants on the quadtree data structure that only differ in what constitutes a
satisfactory leaf criterion for the data structure. This is useful because it allows the con-
struction of integrated graphic databases that handle a wide variety of data in an analo-
gous manner [Rose82, Rose83, Same84c, Same84d, Same85g|.

. There are many plausible leaf criteria. When looking for a leal criterion, we are
really looking for a subset of the possible image spaces where the graphics tasks we want
to process can be solved easily. It is also necessary that any arbitrary image space can
eventually be decomposed into regions that satisfy the criterion. Thus, for example, il
we were to store the vector data in the image space, we might hypothesize a eriterion
that stipulated that at most one line segment could appear in any leaf. However this in
itself would be unsatisfactory, because there are images (for example, any image contain-
ing a vertex where at least two line segments meet) that cannot in general be partitioned
{in a finite amount of time) into square regions where no region contains more than one
line segment. ‘

Although the above criterion is inadequate as a pure vector representation, a
slight modification of it has been used [Shne81, Ayal85, Same84d]. The modification is
to establish a maximum quadtree depth. Once the maximum depth is reached in the
construction process, if the criteria is still not satisfied, then the region is simply
represented by a pixel. This yields a mixed raster and vector representation where some
.information about the image can be lost. This representation is known as the edge
quadtree [Shne81]. For example, Figure 8§ is the edge quadtree corresponding to the vec-
tor data of Figure 1a. In this case, truncation at the maximum tree depth (i.e., 4) has
occurred at the nodes containing vertices A, B, C, D, E| F, and G but not H.

The octree [Hunt78, Jack80, Meag82, Redd78] data structure is the three-
dimensional analog of the quadtree. It is constructed in the following manner. We start
with an image in the form of a cubical volume and determine if its description is
sufliciently complex, in which case the volume is recursively subdivided into eight
congruent disjoint cubes {called octants) until the complexity is sufficiently reduced. Of
course, the leaf criteria differ depending on whether the data is of a raster format (con-
sisting of three-dimensional voxels having a single color instead of two-dimensional pix-
els) or vector format (consisting of solids and planar or curved surfaces instead of
polygons and edges). Figure 9a is an example of a simple three-dimensional object whose
raster octree block decomposition is given in Figure 9b and whose tree representation is
given in Figure 9c. '

For the purposes of this paper, we will consider quadtrees and octrees con-
structed from two different leal criteria (one for handling raster 'data and the other for
handling vector data). For raster data, we will use the quadtree/octree built {rom the
criterion that no space can contain data having more than one color. This works for ras-
ter data because the raster grid is built of singly-colored regions, and hence the hierarchy
need never decompose to a level lower than that of these pixels. This structure has
many interesting mathematical properties, some of which are reviewed briefly below
after the discussion of implementation techniques.

2.4. QUADTREE/OCTREE DATA STRUCTURE IMPLEMENTATIONS

Besides consideration of the leal criteria, the investigation of hierarchical data
structures has also been concerned with how to encode the tree representing the hierar-
chy. In his treatise on data structures, Knuth [Knut75] mentions three general
approaches to representing trees. Each of these approaches has been investigated by oth-
ers with regards to the specific representation of quadtrees. In the following, we describe
., these three approaches and discuss their relative advantages and disadvantages. Our
“discussion is in the context of a quadtree; however, the extension to octrees is straight-

forward.

The first and most obvious quadtree encoding is as a tree structure that uses
pointers. Figure 10 is the tree/pointer representation of the quadtree of Figure 7. Each
internal node (often referred to as a GRAY node) requires four pointers (one for each of
its subtrees). Clearly the leal nodes do not need pointer fields. The size of a pointer
field is the base 2 logarithm of the number of nodes in the tree. Each node also requires
one bit of information to distinguish whether it is an internal node or a leaf. In order to
describe quadtree algorithms, it is useful for each node to contain a father link; however,
this is not necessary from an implementation viewpoint because in most tasks processing
starts at the root and a stack of father links can be easily maintained. Pointers have
also been proposed to connect nodes that represent neighboring regions [Hunt78,
Hunt79a] but these are not necessary for the efficient processing of the quadiree. Most
_;of the early implementations of quadtrees used the pointer approach while the next two
" approaches were considered later due to a perceived storage inefliciency of the pointer
approach. However, the literature is often unclear as to exactly how the quadtree algo-
rithms are coded.

The second approach makes use of the observation that the number of subtrees
of a given node in the quadtree node is either four or zero. This makes it possible to
represent a quadtree by listing the nodes encountered by a preorder traversal of the tree
structure. For example, traversing the quadtree of Figure 10 in the order NW, NE, SW,

-and SE and letting G, B, and W denote non-terminal, solid, and empty nodes, respec-
tively, results in the list CGWGWWBBGWBWBB. It requires exactly one bit of overhead
per node, which is used to distinguish between leaf nodes and internal nodes. Many sim-
ple algorithms, e.g., intersection/union and area.calculation, are performed by preorder
traversals of the quadtree and they can be efficiently implemented with this encoding.
However, other algorithms can not be efficiently implemented by this encoding. For
example, in order to visit the second subtree of a node, it is necessary to visit each node
of the first subtree so that the Jocation of the root of the second subtree can be deter-
mined. Nevertheless, this encoding is usable for some applications, e.g., archiving and

facsimile transmission. Algorithms specific to this representation have been investigated
by Kawaguchi et al [Kawa80a, Kawa80b, Kawa83] who call it a DF —expression
(because of the similarity between a preorder traversal and a depth-first expansion of the
tree), and Oliver and Wiseman [Oliv83a, Oliv83b] who refer to it as a treecode.

The third approach is based on the use of locational codes (referred to as a
Dewey-decimal encoding by Knuth [Knut75]). It was first proposed by Morton [Mort66]
as an Index to a geographical database. In the variant that we describe, each node is
represented by a pair of numbers. The first number, termed a locational code, 1s com-
posed of a concatenation of base 4 digits corresponding to directional codes that locate
the node along a path from the root of the quadtree. The directional codes take on the
values 0, 1, 2, 3 corresponding to quadrants NW, NE, SW, SE, respectively. The second
number is the level of the tree at which the node is located. Assume that the root is at
level 0. For example, the pair of numbers (312,3) are decoded as follows. 312 is the base

_ 4 locational code and denotes a node at level 3 that is reached by a sequence of transi-
tions, SE, NE, and SW, starting at the root. The overhead per node is 2 bits per level of
depth of the node, plus the base 2 logarithm of the depth of the node in order to specify
the level at which the node is found. Algorithms specific to this representation have
been investigated by Gargantini et al. [Garg82a, Garg82b, Garg82c, Garg83] who call
this representation a linear quadiree (because the addresses are keys in a linear list of
nodes}), and Oliver and Wiseman [Oliv83a, Oliv83b] who refer to it as a leafcode.

When using the linear quadtree encoding, it is possible to further reduce the
storage requirements without substantially increasing the runtime requirements of the
algorithms. In particular, there is no need to retain the internal nodes as the general
quadtree structure only stores data in the tree’s leaf nodes. Since the number of internal
nodes is equal to one third of the number of leaf nodes minus one, this results in a
significant space savings. Moreover, it is often remarked that the empty nodes (or nodes
representing a background color) can also be eliminated from the node list. While it is
correct that this does not excessively complicate the processing of the quadtree, it is
unclear how useful it is. In the case of a binary raster image, the result is a reduction in
the size of the quadtree to one half of its former size (assuming that, on the average, one
half of the pixels are background). However, for multicolored raster data, the notion of a
background color becomes less relevant and this compaction becomes, in turn, less use-
 ful. This approach can also be applied to vector data quadtrees. A related method
draws an analogy to run encoding [Ruto68] where the locational codes of the leaf nodes
are sorted and only the first element of each subsequence of blocks of the same color is
retained [Lauz85]. This method cannot be easily applied to vector quadtrees.

It is interesting to compare the overhead of the pointer and linear quadtree
encodings. By overhead of an encoding, we mean the size of that portion of the encod-
ing that is used to represent the quadtree structure. We ignore the data fields that are
stored at the leaf nodes, since they would be the same in either encoding. Our com-
parison is in the context of a static collection of nodes. In particular, we determine the
maximum number of quadtree nodes that can be stored in a fixed amount of storage for
an image of a given maximum leaf depth. This is achieved by computing the cutoff node
count value that indicates when a pointer quadtree requires less space than a linear
quadtree. '

A quadtree internal node has 4 pointers whereas an external node does not
require pointers. We distinguish between the two node types by using a bit that is stored
in the pointer field of the node that points at the node being described, instead of in the
node being described. Expressing the overhead of the pointer encoding as a function of
the number of leaf nodes, we find that it is four thirds times the number of leal nodes
(i.e., four pointers per internal node) times the sum of 1 (the leaf flag bit) and the base 2
logarithm of four thirds the number of leaf nodes (i.e., the pointer size). On the other
hand, the linear quadtree encoding requires a number of bits equal to the number of leaf
nodes times the sum of twice the maximum leal depth and the base 2 logarithm of the
maximum leal depth. If L is the number of leaf nodes and n is the maximum leaf
depth, then the linear quadtree is more compact than the pointer quadtree when:

L-(2-n+logy(n)) < (4/3)-L -(1+logs((4/3)-L))

2-n+logy(n) < (4/3)-(1+logy(4/3)+log(L)

.0or

o(3/4) (2 +loggln -1 +Hoed4/3) _ 1

Table 1 shows the evaluation of the above formula for varicus values of depth n
so that we can see where the tradeoff occurs. For example, a quadtree of depth 9 must
contain at least 22,574 leaf nodes in order for the linear quadtree to be more compact
than the corresponding pointer quadtree. Since the maximum number of leaf nodes at

depth.9 is 262,144 (i.e., 4%), we see that this means that the number of leaf nodes must

be at least 8.6% of the maximum (i.e., the number of leaf nodes in a complete quadtree)
in order for the linear quadtree to be more compact for images of depth 9. To put this in
perspective, consider Figure 11 which is a map of a floodplain from a geographic

Table 1. Tradeoff leaf node count.
depth | tradeoff leafl node count | maximum number of leaf nodes
3 19 G4
4 68 : 256
5 : 227 1024
6 : 736 4096
7 2337 16384
3 7306 ' 55536
9 22574 262144
10 69100) 1048576
11 209928 4194304
12 633807 16777220
13 1903591 67108860
14 5691899 © 268435500
15 16954100 _ 1073742000

database [Same84d]. The number of leal nodes in the quadtree of this map is approxi-
mately 2% of the maximum number of leaf nodes in a quadtree of depth 9. It would be
more compactly represented by a pointer quadiree.

An alternative interpretation of this result is that the greater the compactness of
the quadtree, the smaller the overhead of the pointer quadtree versus the linear quad-
tree. Of course, for an actual implementation, the above analysis must be modified to
take into account the fact that the fields that correspond to the pointer, level, depth,
and node type must lie on bit boundaries. Moreover, the entire encoding of a node must
be further restricted to lie on a byte boundary. However, the interpretation remains the
same.

For octrees, and higher dimensional data, the comparison is performed in the
same manner. The difference is that now there are 8 pointers {or 2¢ for d-dimensional
data) for each internal node. Using the same notation - ie., L is the number of leaf
nodes and n is the maximum leaf depth, then the linear octree is more compact than the
‘pointer octree when:

o{7/8)(8:n +logg(n)-(1+108,(8/7)) <L
Interestingly, for higher dimensional data (e.g., three dimensions and above), the cutofls
are much closer to the maximum node counts which means that in all practical cases of
such data, the pointer structure (e.g., pointer octree} will require less space than the
linear structure (e.g., linear octree). For more details, see [Same86d].

The amount of storage required by quadtrees and octrees is directly proportional
to the number of leaf nodes. One approach to reducing the number of leaf nodes in these
data structures is the bintree {Know80, Tamm84a, Same85b]. In the following, we illus-
trate its application to the octree. The bintree is constructed by first dividing the cube
into two half cubes (with respect to a plane parallel to the y—z plane), then, if necessary,
the half cubes into quarter cubes (with respect to a plane parallel to the z—z plane), and
finally if it is still necessary to subdivide the region, then it can be split further into
cubes (by planes parallel to the z—y plane). For example, see Figures 12a and 12b which
are the block decomposition and tree representation, respectively, for the three-
dimensional bintree corresponding to the octree of Figure 9 when using the octree coordi-
nate system of Figure 12¢. Comparing the pointer representations of bintrees and
octrees, we find that the relative number of internal nodes has increased from 1/7 of the
number of leaf nodes in the octree to one less than the number of leaf nodes in the bin-
tree. However, the number of leaf nodes in the bintree is bounded from below by one
fourth the number of leaf nodes in the octree and from above by the number of leaf
nodes in the octree. Note that both bounds are attainable, and thus it is not always the
case that the total number of nodes in the bintree is less than or equal to the total
number of nodes in the octree. However, in the case of a linear bintree representation the
extra internal nodes become irrelevant and the additional two bits required to distin-
guish the final level of the bintree is often overshadowed by the reduction in the number
of leaf nodes. Another advantage of the bintree is that algorithms using it work for data
of arbitrary dimensionality. :

2.5. THE QUADTREE/OCTREE COMPLEXITY THEOREM

Most quadtree algorithms are simply preorder traversals of the quadtree and
hence their execution time is generally a linear function of the number of nodes in the
quadtree. Thus we are interested in the asymptotic analysis of the size of a quadtree
more from the standpoint of its relevance to the execution-time analysis of quadtree
algorithms than from the standpoint of the amount of storage that is actually required.
Qur discussion assumes a tree representation in the sense that the number of nodes in
the quadtree includes the internal nodes. A key to the analysis of the execution time of
quadtree algorithms is the following result on the size of quadtrees (henceforth referred
to as the Quadtree Complexity Theorem [Hunt78, Hunt79a]), which states that:

For a quadiree of depth g representing an image space of 27 X279 pixels where these

pixels represent a region whose perimeter measured in pixel-widths is p, then the
number of nodes in the quadtree cannot exceed 16-p-11416-4.

Since under all but the most pathological cases {e.g., Figure 13), the region perimeter
exceeds the base 2 logarithm of the width of the image space in which the region is
presented, the Quadtree Complexity Theorem means that the size of the quadtree
representation of a region is linear in the perimeter of the region. An alternative
nterpretation of this result is that for a given image, if the resolution doubles and hence
the perimeter doubles (ignoring fractal effects), then the number of nodes will double.
On the other hand, for the two-dimensional array representation, when the resolution
doubles, the size of the array quadruples. Therefore, asymptotically, quadtrees are arbi-
trarily more compact than two-dimensional arrays; however, for moderate size applica-
tions, constant factors need to be scrutinized more carefully. Figure 14 illustrates the
relative growth of the two representations for a simple triangular region.

In most tree structures, the number of nodes in the tree is dominated by the
number of nodes at the deepest levels (assuming that the root is at the top). This is also
true for quadtrees (e.g., Figure 10). The Quadtree Complexity Theorem follows from the
realization that all nodes in the quadtiree are either adjacent (including diagonal adjacen-
cies) to the border between two regions or have a sibling with a subtree that contains a
portion of the border. Thus at the deeper levels of a quadtree, the only nodes present
are those that are very close to the border. From elementary geometry we know that |
the number of disjoint regions of a bounded size that can be within a bounded region of
the perimeter is a linear function of the length of the perimeter. Although we might
expect a typical image to have a lower constant of proportionality than the 16 of the
Quadtree Complexity Theorem, we should expect it to have a size that is linear in its
perimeter. In fact, Dyer [Dyer82| has shown that if square regions with sides that are
powers of 2 in length, say 2™, are randomly placed in the image space, then the expected
size of the quadtree is linear in the length of the perimeter of the square. For example,
the worst-case for a 27 X 27 image requires 4-p+16-(¢—m }-27 nodes.

The Quadtree Complexity Theorem holds for three-dimensional data [MeagSO]
where perimeter is replaced by surface area, as well as higher dimensions for whlch in all
but pathologlcal cases, it means that

The size of the k-dimensional quadtree of a set of k-dimensional objects is proportional
to the sum of the resolution and the size of the (k-1)-dimensional interfaces between
these objects.

Aside from its implications on the storage requirements, the Quadtree Complexity

Theorem also directly impacts the analysis of the execution time of algorithms. In partic-
ular, most algorithms that execute on a quadtree representation of an image instead of
an array representation have an execution time that is proportional to the number of
blocks in the image rather than the number of pixels. In its most general case, this
means that the application of a quadtree algorithm to 5 problem in d-dimensional space
executes in time proportional to the analogous array-based algorithm in the (d-1)-
dimensional space of the surface of the original d-dimensional image.

2.6. VECTOR QUADTREE DEFINITION

The other type of data that we want to represent is vector data. There are a
number of useful leaf criteria [Same85¢| for representing vector data using quadtrees.
These criteria differ in the degree of the complexity of the image-space description versus
the size of hierarchy (i.e., the number of nodes in the quadtree). Choosing between the
criteria is a matter of analyzing constants on specific machines to determine whether we
prefer 2 large number of simple leaf nodes or a smaller number of more complicated leafl
nodes (where it is understood that the expense of processing a leaf is proportional to the
complexity of the information stored in the leaf). In the following, we present a leaf cri-
terion that results in many simple leal nodes, but which minimizes the complexity of the
description of algorithms; however, other leaf criteria may prove more useful for specific
implementations. The criteria that we shall use for vector data is is termed a PMI quad-
tree [Same85c] and is defined as follows:

(1) There can be at most one vertex in an image space. '

(2) If there is a vertex in the image space, then all line segments in the image space
must share that vertex. :

(3) If there are no vertices in the image space, then there can be at most one line seg-
ment passing through the image space. '

-For our purposes, vertices occur at the endpoints of line segments and at any location
where two line segments intersect. A line segment consists of a set of g-edges where a
g-edge is the maximal portion of a line segment that is contained within a given image
space. Using such criteria, the image of Figure la is represented by the quadtree of Fig-
ure 15.

When a line segment passes through an image space, resulting in a g-edge, only
its presence in the space is explicitly recorded [Nels86]. The intercepts of the g-edge with
the border of the image space can be derived from the descriptor of the line segment
that is associated with the g-edge. Thus all q-edges are specified with the same precision
as the vertices of their corresponding line segments. The descriptor of the line segment is

-retained as long as at least one of its q-edges is still present. Thus fragments of line seg-
‘ments can be represented. This is important for it means that the representation is con-
sistent - i.e., removal of a g-edge from an image space and its subsequent reinsertion into
the same image space will result in the same line segment.

The Quadtree Complexity Theorem is also applicable to vector data. In this case,
a suitable pixel width would be the size of the deepest leaf node needed to represent the
structure. This maximum depth is a function of the closest approach between vertices
and line segments that are not adjacent to the vertices. Alternatively, an upper bound

10

on the depth can be constructed based on the precision with which the location of the
vertices is specified [Same86a]. In either case, the hound on the number of nodes given
by the Quadtree Complexity Theorem is excessively pessimistic for vector data.

It would be nice if the number of nodes of the quadtree was a function of the
number of line segments in the image space (thus making the size of the image-space
hierarchy comparable to the size of the object-space hierarchy for the same data). How-
ever, this is not the case because as the image space is subdivided, line segments are
also subdivided. Thus information about a given line segment can exist in many nodes
of the structure. In the worst case, the number of nodes in which information about a
particular line segment can occur is proportional to the length of that line segment.
This worst case is the one that is analyzed by the above adaptation of the Quadtree
Complexity Theorem. However, this is not typical. In fact, it is reasonable to expect
that the smallest leal nodes that contain a given line segment occur near the endpoints
of the line segment. Furthermore, as we examine parts of the line segment that are suc-
cessively further from both endpoints, the size of the leaf nodes containing these parts of
the line segment get larger. In other words, we expect the number of nodes contributed
by a given line segment to be proportional to the base 2 logarithm of the length of the
line segment.

2.7. VECTOR OCTREE

Just as the raster quadtree leaf criterion could be generalized to a raster octree
leaf criterion, the vector quadtree leaf criteria can also be generalized to form vector
.. octree leaf criteria to represent polyhedra. Octree data structures have been used where
. the octree decomposition was performed as long as the number of primitives in a leaf

node exceeded a predefined bound [Glas84, Wyvi85, Jans86]. This approach has also

been used in the context of the bintree representation of the octree [Kapl85]. However, it

has the same problems as the analogous quadtree approach, i.e., there are some features

that cannot be represented exactly by this approach (thus requiring a maximum depth

truncation similar to the edge quadtree [Shne81, Ayal85, Same84d]). One way to avoid

the information loss from a maximum-depth cutoff, is to permit a variable number of

primitives to be associated with each octree leaf node. The vector octree analog [Ayal85, .
Carl85, Fuji85| of the vector quadtree consists of leaf nodes of type face, edge, and ver-

tex, defined as follows. A face node is an octree leal node that is intersected by exactly

one face of the polyhedron. An edge node is an octree leaf node that is intersected by

exactly one edge of the polyhedron. For our purposes, it is permissible to have more than

two faces meet at a common edge. However, such a situation cannot arise when model-

ing solids with Eulerian operators [Baum72|. Nevertheless, it is plausible when three-

dimensional objects are represented by their surfaces. A vertex node is an octree leaf
node that is intersected by exactly one vertex of the polyhedron. The space requirements
of the vector octree are considerably harder to analyze than those of the raster octree

[Nava86a). However, it should be clear that the vector octree for a given image is much

more compact than the corresponding raster octree. For example, Figure 16b is a vector
octree decomposition of the object in Figure 18a.

Vector octree techniques have also been extended to handle curvilinear surfaces.

Primitives including cylinders and spheres have been used in conjunction with a decom-
position rule that limits the number of distinct primitives that can be associated with a

11

leal node [Fuji86a, Wyvi85]. Another approach [Nava86b] extends the concepts of face
node, edge node, and vertex node to handle faces represented by biquadratic patches.
The use of biquadratic patches enables a better fit with fewer primitives than can be
obtained with polygonal faces, thus reducing the size of the octree. The difficulty in
organizing curved surface patches by using octrees lies in devising efficient methods of
calculating the intersection between a patch and an octree node. Observe that in this
approach we are organizing a collection of patches in the image space, in contrast to
decomposing a single patch in the parametric space by use of quadtree techniques as dis-
cussed in Section 3.8.4.

3. ALGORITHMS USING QUADTREES

In this section we describe how a number of basic graphics algorithms can be
implemented using quadtrees. In particular, we discuss point location, object location, set
operations, image transformations, scaling, transmission, quadtree construction, polygon
coloring, display, and hidden surface algorithms. We also expand on the concept of
neighbor finding which serves as a basis for many algorithms using quadtrees and
octrees.

3.1. POINT LOCATION

Probably the simplest task to perform on raster data is to determine the color of
a given pixel. In the traditional raster representation, this is achieved by exactly one
array access. In the raster quadtree, this requires searching the quadtree structure. The
algorithm starts at the root of the quadtree and uses the values of the z and y coordi-
nates of the center of its block to determine which of the four subtrees contains the
pixel. For example, if both the z and y coordinates of the pixel are less than the z and
y coordinates of the center of the root’s block, then the pixel belongs in the southwest
subtree of the root. This process is performed recursively until a leaf is reached. It
requires the transmission of parameters so that the center of the block corresponding to
the root -of the subtree currently being processed can be calculated. The color of that
leaf is the color of the pixel. The execution time for the algorithm is proportional to the
level of the leaf node containing the desired pixel.

Point location can also be performed without explicitly calculating the center of
the block corresponding to each node encountered along the path. This calculation can
"~ be avoided by making use of the depth n of the pixel relative to that of the root and
assuming that the southwestern-most pixel is at (0,0). This approach to pixel location is
easiest to contemplate with respect to a quadtree representation that makes use of loca-
tional codes, although it is equally applicable to the pointer representation of quadtrees.
The locational code for a leaf is formed by a process (described in Section 2.4) that is
equivalent to interleaving the binary coordinates of the lower lefthand corner of the leaf.
Here, coordinates are integer values ranging from 0 to 2"-1 for a 2" X 2" grid. When the
leaf. nodes are sorted by their locational codes (as is the case for a preorder traversal of
the quadtree), the addresses of all descendants of a node, say P, lie between the address
of P and the address of its immediate successor at the same level. Locating a pixel is
done by first interleaving the binary representations of its coordinates to construct an
. address, say K, for a hypothetical leaf node corresponding to the pixel. This hypotheti-
cal leaf is located by performing a binary search on the sorted list of locational codes for

12

the leaf nodes of the quadtree and returning the leaf node with the largest locational
code value that is less than or equal to K. The execution time for the algorithm is pro-
portional to the log of the number of leaf nodes in the tree (assuming key comparisons
can be made in constant time). When a pointer representation is used, the pixel location
algorithm is slightly different. In particular, we locate the appropriate leal by descending
the tree. The execution time is proportional to the leve]l of the leaf node containing the
desired pixel.

3.2. NEIGHBORING OBJECT LOCATION

The vector analog of the pixel-location task is the object-location operation where
the z and y coordinates of the location of a pointing device (e.g., mouse, tablet, light-
pen) must be translated into the name of the appropriate object. In order to handle this
task, we must first determine the leaf that contains the indicated location. The first
approach discussed in Section 3.1 can be adapted in a straightforward manner. The
second approach, using the interleaved bits, is not immediately applicable since there is
no underlying pixel level. Let us assume that the block corresponding to the root of the
quadtree is the unit square and let us represent the values of the z and y coordinates of
the pointing device as fixed length binary fractions. Now the bits of the binary fraction
can also be viewed as representing the unsigned integer coordinates of a grid where the
separation between neighboring grid points is the minimum resolution of the binary frac-
tion. The equivalence to integer coordinates is straight-forward.

For vector data quadtrees, the leaf corresponding to the location of the pomtmg
’.dewce serves as the starting point of the object-location algorithm. In essence, we wish
“to report the nearest primitive of the object description stored in the quadiree. If the
“leaf is empty, then we must investigate other leaf nodes. In fact, even if the leaf node is
not empty, unless the location of the pointing device coincides with a primitive, it is pos-
sible that a nearer primitive might exist in another leaf. Such an algorithm has been
developed for quadtree reépresentations that use locational codes [Abel84b| as well as
pointers [Ande83]. The latter is reported only for the case of point data; however, the
treatment of vector data differs from point data only in the form of the formula used to
calculate the distance from a point.

Using a pointer quadtree representation, finding the nearest primitive (also
known as the nearest neighbor problem) is achieved by a top-down recursive algorithm.
Initially, at each level of the recursion, we explore the subtree that contains the location
of the pointing device, say P. Once the leaf containing F has been found, the distance
from P to the nearest primitive in the leaf is calculated (empty leaf nodes have a value
of infinity). Next, we unwind the recursion and, as we do so, at each level we search the
subtrees that represent regions that overlap a circle centered at P whose radius is the
distance to the closest primitive that has been found so far. When more than one sub-
tree must be searched, the subtrees representing regions nearer to P are searched before
" the subtrees that are further away (since it is possible that a primitive in them might
make it unnecessary to search the subtrees that are further away). For example, consider
Figure 17 and the task of finding the nearest neighbor of P in node 1. If we visit nodes
in the order NW, NE, SW, SE, then as we unwind for the first time, we visit nodes 2
and 3 and the subtrees of the eastern brother of 1. Once we visit node 4, there is no need
to visit node 5 since node 4 contained A. However, we still visit node 6 which contains

13

point B which is closer than A, but now there is no need to visit node 7. Unwinding one
more level finds that due to the distance between P and B, there is no need to visit
nodes 8, 9, 10, 11, and 12. However, node 13 must be visited as it could contain a point
that is closer to P than B.

Sometimes it -is not necessary to calculate the nearest neighbor as long as a
“close™ neighbor is found. For example, in a plotting application it is desired to minim-
ize the amount of wasted pen motions (i.e., motions of the pen that do not involve draw-
ing). In particular, we require a realtime algorithm in the sense that we want to minim-
ize the total time required to both preprocess the drawing and to actually plot it. In such
a case, it has been found useful to use a quadtree heuristic for calculating the nearest
neighbor [Ande83]. For example, in Figure 17 such a heuristic might return A as the
nearest neighbor of P even though B is closer. In this application, the only relevant data
are the endpoints of the line segments. The heuristic is to use the primitive in the leaf
containing the location of the pointing device {unless that leal is empty in which case
one of the neighboring nonempty leaf nodes is used).

3.3. SET-THEORETIC OPERATIONS AND IMAGE TRANSFORMATIONS

The basic set-theoretic operations on quadtrees were first described by Hunter
and Steiglitz {Hunt78, Hunt79b] for pointer-based quadtrees. Gargantini [Garg83} and
van Lierop {vanL84| later investigated these operations for linear quadtrees. Gargantini
[Garg83] raises the issue of performing these operations on quadtrees that are not
aligned. Hunter and Steiglitz [Hunt78, Hunt79b] and Peters {Pete85} consider the prob-
lem of performing an arbitrary linear transformation on an object represented by a
quadtree. In this section we show how to perform set-theoretic operations on both
aligned and unaligned quadtrees. We conclude with a demonstration that linear transfor-
mations on a quadtree are special cases of set-theoretic operations applied to quadtrees
that are not aligned.

3.3.1. ALIGNED QUADTREES

Two quadtrees are said to be aligned when their root nodes correspond to the
same region. Set-theoretic operations on aligned quadtrees are generally simpler than
the equivalent operation on unaligned quadtrees. Of course, the complement operation,
which is a unary operation, is trivially an aligned quadtree algorithm (since every quad-
tree is aligned with itself). The complement operation only makes sense as a set-
theoretic operation when the quadtree in question represents a binary image (i.e., leaf
nodes are either black or white). In the more general case of a quadtree with mul-
ticolored leaf nodes, the analogous operation is to uniformly replace the color of each of
the leaf nodes by another color. When the color-to-color mapping is specified by an
array indexed by the first color, then the cost of the transformation is simply the cost of
visiting each node of the quadtree and creating a copy with the appropriate new data.
Assuming that the color mapping is one-to-one and onto, then the quadtree’s structure
does not change. The simplest way to do this is to traverse the input quadtree in
preorder, simultanecusly building the resultant quadtree. If the mapping between colors
is not invertible, then it may be necessary to merge some nodes in the resulting quad-
tree. However, this can be done naturally during the preorder traversal of the input
tree. Thus, under either condition, the quadtree recoloring algorithm executes in time

14

proportional to the size of the input quadtree.

A variant of the recoloring algorithm is the dithering (or halftoning) algorithm
{Javi76]. The dithering task requires us to convert an image whose pixels are colored
with varying intensities of gray into an image whose pixels are either black or white
(while maintaining as much similarity to the original image as possible). A simple solu-
tion is to associate the colors black or white with each gray value. Better results can be
achieved by varying the threshold that differentiates the black gray values from the
white gray values in a pseudo-random manner with respect to the location of the pixel in
the image. The traditional algorithm that is used to distribute thresholds across the
image works particularly well with quadtrees because it is based on a matrix of threshold
values that is a square matrix whose width is a power of two. This matrix is defined in
terms of its four square submatrices as follows:

Dy D, + 2/2%

Dy=0 == A
0 ‘Dn Dn_l + 3/221’! Dn_l + 1/22"

In the above formulation we show a scalar term being added to a matrix. In this case,

the scalar term is added to each element of the appropriate matrix.

The recursive definition of the dithering matrix D means that the dithering
values can be computed as the block is recursively decomposed into its subblocks. Once
a pixel sized block is encountered, it is thresholded with the appropriate dither value.
The dynamic computation of the dithering values takes approximately the same amount
of ‘time as that required to access a precomputed dither matrix hence making the
precomputation unnecessary. This means that we can use the largest possible dither
matrix - ie., D, for a quadtree that corresponds to a 2" X2" image. See [Javi76] for a
discussion of the significance of using dithering matrices of varying sizes.

For a binary image, set-theoretic operations such as union and intersection are
quite simple to implement. For example, the intersection of two quadtrees yields a black
node only when the corresponding regions in both quadtrees are black. Figure 18c¢ is the
result of the intersection of the quadtrees of Figures 18a and 18b. This operation is per-
formed by simultaneously traversing three quadtreeés. The first two trees correspond to
the trees being intersected and the third tree represents the result of the operation. At
each step in the traversal one of the following actions is taken:

(1) If either input quadtree node is white, then the output quadtree node is white.

(2) If both input quadtree nodes are black, then the output quadtree node is black.

(3) If one input quadtree node is black and the other input quadtree node is gray

B (i.e., an internal node), then the gray node’s subtree is copled into the output
quadtree. '

(4) If both input quadtree nodes are gray, then the output quadtree node Is gray,
and these four actions are recursively applied to each pair of corresponding sons.
‘Once the sons have been processed, we must check to see if they are all leaf nodes
of the same color in which case a merge takes place (e.g., the sons of nodes B and
E in Figures 18a and 18b respectively). Note that for the intersection operation, a
merge of four black leaf nodes is impossible and thus we must only check for the

15

mergibility of white leal nodes.

The worst-case execution time of this algorithm is proportional to the sum of the
number of nodes in the two input quadtrees. Note that as a result of actions (1) and (3),
it 15 possible for the intersection algorithm to visit fewer nodes than the sum of the
nodes in the two input quadtrees.

The union operation is implemented easily by applying DeMorgan’s law to the
above intersection algorithm. For example, Figure 18d is the result of the union of the
“quadtrees of Figures 18a and 18b. When the set-theoretic operations are interpreted as
Boolean operations, union and iniersection become “or’” and “‘and” operations, respec-
tively. Other operations, such as “xor” and set-difference, are coded in an analogous
manner with linear-time algorithms. Since all of these algorithms are based on preorder
traversals, they will execute efficiently regardless of the way the quadtree is represented
(e.g., pointers, locational codes, DF-expressions, etc.). We also observe that clipping is a
special case of the intersection operation. In this case, one of the input quadtrees
.corresponds to a black region that represents the display screen’s location and size,
thereby making clipping easy to implement using quadtrees.

3.3.2. RECTILINEAR UNALIGNED QUADTREES AND SHIFT OPERATIONS

Implicit in the intersection algorithm given above is the assumption that both
input quadtrees correspond to the same region {although the individual pixels can have
different values). In this section we are interested in the situation where the quadtrees
correspond to regions of the same size but their lower lefthand corners correspond to
different positions. For example, consider the two 4X4 quadtrees given in Figures 19a
and 19b whose lower lefthand corners are at locations (0,2) and {2,0) respectively. This
alignment information is stored separately from the quadtree. Thus in order to translate
or rotate a quadtree we only need to update the alignment information. However, when
two quadtrees of differing alignment must be operated upon simultaneously (e.g., inter-
sected), then the algorithm must take the differing alignments into consideration as it
traverses the two quadtrees. Such quadtrees are termed unaligned quadtrees.

Processing unaligned quadtrees is simplified by the observation that if a square of
size w X w (parallel to the z and y axes) is overlaid on a grid of squares such that each
square is of size w X w, then it can overlap at most four of those squares (see Figure 20a)
and those four squares will be neighbors (i.e., they form a 2w X2w square}. We will
refer to this case as the rectilinear unaligned-quadtree problem. In the case where the
w X w square is not parallel to the z and y axes, we have the general unaligned-quadiree
problem. In that case, we observe that when an arbitrary square of size w X w is overlaid
at an arbitrary orientation upon a grid of squares such that each square is of size w X w,
it can cover at most six grid squares (see Figure 20b). These six or less grid squares will
lie within a 3w X 3w square where the center square of the 3w X 3w square is always one
of the Intersected squares.

To handle the rectilinear unaligned-quadtree intersection problem, we adopt the
convention that the output quadtree will be aligned with the first quadtree. We refer to
the first quadtree as the aligned quadtree and to the second quadtree as the unaligned
_quadtree. For example, intersecting the quadtrees in Figure 19a and 19b so that the

16

quadtree of Figure 19a is the aligned quadtree yields the quadtree of Figure 19c. On the
other hand, if the quadtree of Figure 19b is the aligned quadtree, then the result is
represented by the quadtree of Figure 19d. When intersecting aligned quadtrees (see Sec-
tion 3.3.1), we examined pairs of nodes that overlaid identical regions. In contrast, when
intersecting rectilinear unaligned quadtrees, upon processing a node in the aligned quad-
tree, say A, we must inspect at most four nodes {say Ul, U, Uz U, from the
unaligned quadtree that overlap the corresponding region. Note that A corresponds to
one of the shaded squares in Figure 20a while Uy, U,y Uz, U, correspond to the over-
lapped grid cells. When A is not white, we may have to process the sons of A further.
In this case, the four nodes from the unaligned quadtree that overlap a given son of 4
are chosen from the sons of Uy, U,, U,, and U,. Thus an eflicient recursive top-down
algorithm for this version of the quadtree intersection problem can be easily imple-
mented. The execution time of this algorithm is proportional to the sum of the sizes of
the two input quadtrees and the size of the output quadtree. Note that this bound is
slightly different than the bound obtained for the aligned intersection algorithm as in
this case the size of the output quadtree is not bounded from above by the sum of the
sizes of the two input quadtrees.

Shifting a quadtree can be viewed as a special case of the rectilinear unaligned-
quadtree algorithm. In particular, suppose it is desired to shift a quadtree, say A, to the
right by n units and up by m units. In such a case, a quadtree, say B, is created
representing a black square whose width is the same as that of A and whose origin is n
units to the left and m units below the origin of 4. We now use B as the aligned quad-
‘tree-and A as the unaligned quadtree in our rectilinear unaligned-quadtree algorithm.
The resulting output quadtree will be a shifted version of quadtree 4. For example, see
Figure 21 where the 4 X4 quadtree of Figure 21a is shifted to the right by 2 units and up
by 1 unit. The position of the aligned quadtree relative to the unaligned quadtree is
shown in Figure 21b using broken lines while Figure 21c is the resulting shifted quadtree.
Following the analysis of the previous paragraph, a quadtree can be shifted an integer
_number of pixel widths in time linear with respect to the sizes of the original and result-
ing quadtrees.

3.3.3. GENERAL UNALIGNED QUADTREES AND ROTATIONS

The general unaligned-quadtree algorithm is analogous to the algorithm of Sec-
tion 3.3.2 for rectilinear unaligned quadtrees. The only difference is that each node in the
aligned quadtree can be overlapped by as many as six nodes in the unaligned quadtree
(see Figure 20b). Just as shifting was a special case of the rectilinear unaligned-quadtree
intersection algorithm, rotation is a special case of the general unaligned-quadtree inter-
section algorithm. In particular, suppose we wish ‘to rotate a quadtree, say A, counter-
clockwise by m degrees. In such a case, a quadtree, say B, is created representing a
black square whose width is the same as that of A but one that has been rotated by m
degrees in the clockwise direction about the appropriate center. We now use B as the
aligned quadtree and A as the unaligned quadtree in our general unaligned-quadtree
algorithm. The resulting output quadtree will be a rotated version of quadtree A. In the
following we describe the rotation of the quadtree of Figure 22a, termed A, by 16 degrees
n a counterclockwise direction about its origin. Black block B has been rotated by 16
degrees in the clockwise direction about the origin of A (see Figure 22b). We use broken
lines to depict the decomposition of B and solid lines to depict the decomposition of B.

17

The rotation algorithm proceeds by first determining if B is a terminal node by
checking if the maximum of 6 nodes of equal size in A that cover it are of a the same
color. If yes, then we are done. Otherwise, B is subdivided (it is a gray node) as are the
relevant nodes in A. This process is repeated until either all nodes in B’s trees are termi-
nal or we have reached a maximum level of decomposition. In our example, the first sub-
division is illustrated in Figure 22¢ and its result is given in Figure 22d. Notice the use of
the “?”” symbol to indicate that the block will be subdivided [urther. The NE quadrant
in Figure 22d (corresponding to the block labeled B2 in Figure 22c) is white because the
blocks in A that overlap it (just the two blocks labeled A2 and A4 in Figure 22¢) are
white. Prior to proceeding further, we should check to see if any of the subdivided
blocks of B have four identically colored sons, in which case a merge must occur.

Next, we subdivide the blocks labeled with a “?” in Figure 22d as well as blocks
Al, A2, A3, and A4 in Figure 22¢ to obtain Figure 22e. Again, we now check each of the
newly obtained subblocks of B to see if they are covered by subblocks of A that are of
the same color. In this case we find that this is true for blocks B5 and B6 in Figure 22
(Le., by black subbblocks A5, A6, A7, A8, and A9), as well as blocks B7 and BS. The
result is given in Figure 22f with “?” denoting that the block will be decomposed
further. One more level of decomposition is depicted in Figure 22g and the resulting
rotated quadtree is shown in Figure 22h. Checking if any of the subdivided blocks in B
have identically colored sons finds that the four blocks of the NW son of the NW qua-
drant in Figure 22h should be merged as they are all white. At this point the resulting
quadtree is at the same level as the original unrotated quadtree. Nodes labeled with a
“?” can be assigned either black or white as is desired. This may cause more merging.

Since we are usually working in a digitized space, the rotation operation is not
generally invertible. In particular, a rotated square usually cannot be represented accu-
rately by a collection of rectilinear squares. However, when we rotate by 90°, then the
rotation is invertible. For example, Figure 23b is the result of rotating Figure 23a by
90° counterclockwise. The algorithm traverses the tree in preorder and rotates the
pointers at each node. For a counterclockwise rotation by 90° it is based on the follow-
ing observations. :

(1) All of the pixels in the NW quadrant of the image are in the SW quadrant;

(2) All the pixels in the NE quadrant of the image are in the NW quadrant;

(3) All the pixels in the SE quadrant of the image are in the NE quadrant;

(4) All the pixels in the SW quadrant of the image are in the SE quadrant;

(5) Each of the quadrants in its new position appears as if it had been locally rotated
clockwise by 90-degrees. '

Although the operations discussed in-this and the previous subsections are
presented for binary raster quadtrees, they can be extended in a straightforward manner
to raster quadtrees that have multiple colors and to vector quadtrees. However, vector
quadtree algorithms generally require more bookkeeping operations than the correspond-
ing raster quadtree algorithms and consequently are more difficult to analyze.

18

3.4. SCALING QUADTREES AND MULTIRESOLUTION REPRESENTATIONS

Besides the traditional graphics operations of translation (shifting) and rotation,
which are discussed above, there is also the scaling operation. To make an image
represented by a quadtree half the size that it was originally, we need only create a new
root and give that root three white {or empty in the case of vector quadtrees) sons and
one son that was the original quadtree. To make the quadtree ‘twice as big, we choose
one of the subtrees to serve as the new root (e.g., the SW subtree) thus eliminating the
remaining three subtrees. If a particular portion of the quadtree is to be doubled or
halved in size, then a shift operation may have to be performed for the purpose of align-
ment. The above techniques can be applied to scaling by any power of two. Scaling by
an arbitrary factor, say f, is handled by using the property that when a square, say S,
of size f-w X fw (0<f<1) is placed on a grid of squares such that each square is of size
w, then 5 can overlap no more than four grid squares. Note that arbitrary scaling is
implemented in a manner similar to that used for the rectilinear unaligned-intersection
problem.

Progressive transmission of images represented by quadtrees can be achieved by
taking advantage of the above techniques for scaling by powers of two. Progressive
transmission of an image enables the receiver to preview a reduced resolution version of
the image before seeing it in its entirety. For example, using such a scheme for the trian-
gle of Figure 14 means that we would first see Figure 14d, then Figure 14e, and finally
Figure 14f. This facilitates browsing a database of images. One successful approach
[Hill83, KawaB0a, Same85e, Sloa79} is to transmit the nodes of a raster quadtree in
‘breadth-first order, so that large leaf nodes are seen first.

3.5. BOTTOM-UP NEIGHBOR FINDING

Many quadtree algorithms involve more work than just traversing the tree. In
particular, in several applications we must perform a computation at each node that
depends on the values of its adjacent neighbors. Thus we must be able to locate these
neighbors. There are several techniques for achieving this result. One approach [Klin79]
makes use of the coordinates and the size of the node whose neighbor is being sought in
order to compute the location of a point in the neighbor and then performs an algorithm-
similar to that described in Section 3.1 for the point location problem. For a 2" x2"
image, this can require n steps corresponding to the path from the root of the quadtree
to the desired neighbor. An alternative approach, and the one we describe below, only
makes use of father links and computes a direct path to the neighbor by following links
in the tree. This method is termed bottom-up neighbor finding and has been shown to

‘require an average of four links to be followed for each neighbor that is sought
[Same82a, Same85f]. '

In this section we shall limit ourselves to neighbors in the horizontal and vertical
direction that are of size equal to or greater than the node whose neighbor is being
sought. For neighbors in the diagonal direction, see [Same82a]. Finding a node’s neighbor
in a specified horizontal or vertical direction requires us to follow father links until a
common ancestor of the two nodes is found. Once the common ancestor is located, we
descend along a path that retraces the previous path with the modification that each
step is a reflection of the corresponding prior step about the axis formed by the common
boundary between the two nodes. The general flow of such an algorithm is given in

19

Figure 24. For example, when attempting to locate the eastern neighbor of node A (i.e.,
node G) in Figure 24, node D is the common ancestor of nodes A and G, and the eastern
edge of the block corresponding to node A is the common boundary between node A and
its neighbor. The main idea behind bottom-up neighbor finding can be understood by
~examining more closely how the nearest common ancestor of a node, say A, and its
eastern neighbor of greater than or equal size, say @, is located. In particular, the
nearest common ancestor has A as one of the eastern-most nodes of one of its western
subtrees, and G as one of the western-most nodes of one of its eastern subtrees. Thus
as long as an ancestor X is in a subtree that is not an eastern son (i-e., NE or SE}), we
must ascend the tree at least one more level before locating the nearest common ances-
tor.

3.6. CONSTRUCTING QUADTREES

Before we can operate on images represented by quadtrees, we must first build

the quadtrees. This involves being able to convert between a number of different data

- formats and the quadtree. In this section we briefly describe the construction of raster

quadtrees from raster data and vector data. The construction of vector quadtrees from
etther type of data can be performed in an analogous manner.

_ The algorithm for building a raster quadtree from a two-dimensional array can
be derived directly from the definition of the raster quadtree [Same80b]. When building a
quadtree from raster data presented in raster scan order (i.e., the array is processed row
by row) {Same81a] we use the bottom-up neighbor-finding algorithm described in Section
3.5 to move through the quadtree in the order in which the data is encountered. For
example, considering the quadtree of Figure 7 as a 4 X4 image means that its image ele-
ments are examined in the order indicated in Figure 25. Such an algorithm takes time
proportional to the number of pixels in the image. Its execution time is dominated by
the time necessary to check if nodes should be merged. This can be avoided by use of
predictive techniques which assume the existence of a homogeneous node of maximum
size whenever 2 pixel that can serve as an upper left corner of a node is scanned (assum-
ing a raster scan from left to right and top to bottom). In such a case, merging is
reduced and the algorithm’s execution time is dominated by the number of blocks in the
image [Shaf87] rather than by the number of pixels. However, this algorithm does require
the use of an auxiliary data structure (implemented by a fixed-size array in [Shaf87]) of
size on the order of the width of the image to keep track of all active quadtree blocks
(i.e., blocks containing pixels that have not yet been encountered by the raster scanning
process). :

Building a raster quadtree [rom vector data is more complicated than from raster
data. This is because a list of line segments has-no inherent spatial ordering. A top-down
algorithm for producing a raster quadtree from vector data takes as input a list of line
segments. This list is recursively clipped against the region, say R, represented by the
root of the current subtree of the quadtree. If no line segments fall within R, then 2
white leal node is created. If R is of pixel size and contains at least one line segment,
then a black leaf node is created. Otherwise, a gray node corresponding to R is created
and the algorithm is recursively applied to each of its four children using the list that
has been clipped. . ' '

20

Alternatively, we could use a bottom-up approach to building the raster quadtree
from vector data. First, we must convert the line segments into a list of pixel-to-pixel
steps (also known as chain codes [Free74]) using a traditional line-drawing algorithm
{Bres65]. Next, we follow the path formed by the chain codes of the line segments creat-
ing black pixel-sized leaf nodes [Same80a). This is done by using the bottom-up neighbor
finding algorithm of Section 3.5 Average-case analysis for the execution time of the chain
code to raster quadtree algorithm can be shown to be linear in the length of the chain
code by using the analysis in [Same80a] in conjunction with the Quadtree Complexity
Theorem. Moreover, by preprocessing the chain code, it has been shown that the worst-
case analysis of this algorithm is also linear in the length of the chain code [Webb84].
Neighbor-finding methods have also been used to construct chain codes from quadirees
[Dyer80], as well as two-dimensional arrays in a row by row manner [Same84al.

3.7. POLYGON COLORING

Another raster operation that can be efficiently implemented in quadtrees using
neighbor finding is the seed-filling approach to polygon coloring. The classic seed-filling
algorithm [Roge85] has as its input a starting pixel location and a new color. The algo- .
rithm propagates the new color throughout the polygon containing the starting pixel
location. When using arrays, this algorithm is coded by a recursive routine that checks if
the color of the current pixel is equal to that of the original color of the start pixel. If
yes, then its color is set to the new color and the algorithm is applied to each of the
current pixel’s four neighboring pixels (for a 4-connected region). The array implementa-
tion of this algorithm can be adapted to quadtrees by using bottom-up neighbor finding.
Another approach to coloring a region is to color the border of the region and then move
inward from smaller to larger quadtree nodes [Hunt78, Hunt79a]. This algorithm could
also be implemented using bottom-up neighbor finding.

A more general version of polygon coloring is connected-component analysis.
Here, the task is to take a binary image and recolor each of the distinct black regions so
that each region has a unique color. The general approach is to traverse the quadtree in
preorder and attempt to propagate different colors across the different regions. We dis-
cuss three techniques for propagating the colors. The first technique is to perform the .
quadtree-based seed-filling polygon-coloring algorithm described above whenever a new
region is encountered during the traversal. The second technique consists of a three
stage algorithm [Same81b]. The first stage propagates the color of a node to its southern
and eastern neighbors. This may result in coloring a single connected component with
more than one color in which case the equivalence of the two colors is noted. These
equivalences are merged in the second stage. The third stage updates the colors of all
nodes of the quadtree to reflect the result of the second stage. Often, the first and second
'stages can be combined into one stage [Same85b, Same8Gc|. The third technique
[Webb84| is a modification of the second technique and avoids the second stage of merg-
ing equivalences. Each time the border of a new region is encountered, the preorder
traversal is interrupted and the border of the region is traced and colored using bottom-
up neighbor finding. At the end of the trace, the preorder traversal is resumed.

Both the second and third techniques described above use a special kind of neigh-

bor finding, i.e., they perform a preorder traversal of a quadtree and are interested in
some of the neighbors of each node in the traversal. For this approach top-down

21

neighbor finding can be used to produce improved worst-case results [Same82b, Jack83,
Webb84, Same85a]. Top-down neighbor finding is based on the observation that the
neighbor of a node is either 1) a sibling of the node or 2) a child of a neighbor of the
node’s father. Thus, the neighbors of a node can be transmitted as parameters to the
function that is performing the preorder traversal of the quadtree. The same idea can be

used for efficiently calculating the perimeter of a region represented by a quadtree
[Jack83].

3.8. QUADTREE HIDDEN-SURFACE ALGORITHMS

Probably one of the most basic graphics operations is the conversion of an inter-
nal model of a three-dimensional scene into a two-dimensional scene that lies on the
viewplane for the purpose of display on a two-dimensional screen. This is known as the
hidden-surface operation (also discussed as the visible-subset problem in Section 2.1).
While there are many mappings that are abstractly possible between a three-dimensional
space and a two-dimensional space, we are interested in a mapping that closely models
classical optics. Such mappings are called projections (see Section 4.2 for more details).
Each pixel of the viewplane determines a pyramid that is formed by the set of all rays
originating at the viewpoint and intersecting the viewplane within the boundary of the
pixel (see Figure 26). In the simplest case, a color is assigned to each pixel that
corresponds to the color of the object that is closest to the viewpoint while also lying
within the pixel’s pyramid. The hidden-surface task [Suth74] can be conceptualized as a
two-stage sorting process. The first stage sorts the surfaces into the different viewing
pyramids (this is also known as a bucket sort). The second stage sorts the surface within
a given viewing pyramid to determine the closest one to the viewpoint.

There are four approaches to this task that are relevant to this discussion. First,
the three-dimensional scene can be viewed as a sequence of overlays of two-dimensional
scenes each of which is represented by a quadtree. Second, quadtrees can be used to
model the viewplane even when the three-dimensional scene consists of polygons of arbi-
trary orientation and placement in the three-dimensional space. This solution was first
proposed by Warnock {Warn68, Warn69aj and is known as Warnock’s algorithm. It is an
image-space method. Warnock was actually interested in two versions of the hidden-
surface task: 1) the basic hidden surface task and 2) the hidden-line task, which is an
adaptation -of the hidden surface task to a wireframe representation of a solid. In the
process of developing a solution to the hidden surface problem, Warnock also made con-
tributions [Warn69b] to light modeling that are beyond the scope of this paper. For
expository purposes, we shall first describe the hidden-line operation in our discussion,
and conclude with a description of its adaptation to the hidden-surface operation. Third,
we present Weiler and Atherton’s object-space hidden-surface algorithm [Weil77], which
1s analogous to Warnock’s image-space algorithm. Weiler and Atherton also point out
how image-space heuristics can be used to speed up object-space methods. Fourth, the
parametric space of the surface of a three-dimensional object can be modeled by a quad-
tree. The first three approaches assume a vector data representation of a three-
‘dimensional scene. :

22

3.8.1. 2.5-DIMENSIONAL HIDDEN-SURFACE ELIMINATION

2.5-dimensional hidden-surface elimination is a technique devised to handle the
display of three-dimensional scenes that are represented by a forest of quadtrees. It
arises most commonly in applications in cel-based animation. A cel is a piece of tran-
sparent plastic on which a figure has been painted. A scene can be created by overlaying
cels {see Figure 27). A given view of the scene can be constructed by first laying down
the cel representing the background. On top of the background, cels are placed that
represent objects in the foreground. When each cel is represented by a quadtree, scenes
can be constructed easily. Cel-based scene construction is a simplification of the hidden-
surface task and is described in greater detail below. It is simpler than the general
three-dimensional problem because each object is restricted to be in just one cel. Thus
we need not be concerned with problems resulting from situations such as object A
occluding object B, object B occluding object C, and object C occluding object A. In
other words, in our domain occlusion is transitive whereas it need not be so in an unres-
tricted three-dimensional domain (e.g., Figure 28).

2.5-dimensional hidden-surface elimination is equivalent to a sequence of set-
union operations and can be implemented in a manner analogous to quadtree intersec-
tion as described in Section 3.3.1. In particular, starting with the quadtree corresponding
to the backmost cel, while moving towards the front cel, perform successive overlays of
the quadtrees of the cels encountered along the path [Kauf83]. Hunter [Hunt78] has
shown that the total cost of this process is proportional to the sum of the number of
nodes in all of the quadtrees of the cels.

“While the algorithm given above is an optimal worst-case result, an algorithm
with a better average-case performance is possible. In essence, if the cels are processed
from front-to-back, then certain blocks in the intermediate quadtree can be marked as
transparent thereby indicating that up to now nothing in the sequence of quaditree nodes
corresponding to that location has been opaque. We also mark the internal nodes as
opaque If all of their subtrees are opaque although their subtrees need not be the same
color (i.e., correspond to the same object). Thus when traversing the intermediate quad-
~‘tree and the next cel, say C, if the intermediate quadtree has an internal node that is
marked opaque, then nothing in the corresponding subtree of cel C, say T, is visible,
and hence T need not be traversed. Furthermore, when the root of the intermediate
quadtree is marked opaque, then no more cels need be visited. Such actions have a
potential of reducing the execution time of the 2.5-dimensional hidden-surface elimina-
tion task because subtrees corresponding to invisible regions need not be traversed. Of
course, in a more flexible animation system, it is often desirable to overlay unaligned cels
(i.e., unaligned quadtrees). This can be handled by using the techniques described in Sec-
tion 3.3.2 and 3.3.3 for computing set operations on unaligned quadtrees.

3.8.2. WARNOCK’S ALGORITHM

The usage of the quadtree for modeling the viewplane during the hidden-surface
operation was first described by Warnock [Warn68). The quadtree is used to store the
" parts of the scene that are currently believed to be visible. The hidden-line operation is a
derivative task of the hidden-surface operation. The difference between them is how the
result of the visibility calculation is displayed. We will now describe the hidden-line
operation in greater detail. In this case, the viewplane’s quadiree consists of polygons

23

formed by the visible edges of the objects in the three-dimensional scene. At most one
edge 1s associated with each pixel. The edge, if any, that is associated with a pixel,
corresponds to the one that passes through the pixel’s region as part of the border of a
polygon that is not occluded by another polygon which is closer to the viewpoint. In the
following discussion we use the verb color to distinguish between edges of diflerent

polygons. In other words, a pixel is output (i.e., colored) if a visible edge passes through
it.

The quadiree is used in the display process to rapidly select the pixeis that need
to be colored (these are the pixels through which visible edges of the scene pass). The
quadtree is not built explicitly. Instead, the viewplane is recursively decomposed
(traversed as if it were a quadtree) using an appropriate decomposition rule to yield a
collection of disjoint square regions (i.e., leaf nodes). At each such region, drawing (i.e.,
coloring) commands for driving a display are output.

The type of quadtree decomposition rule that is used is analogous to the one dev-
-ised by Hunter and Steiglitz [Hunt78, Hunt79a). In particular, a pixel is represented by a
boundary node if an edge of a polygon passes through it; otherwise it is an empty node.
Empty nodes are merged to yield larger nodes while boundary nodes are not merged.
Using this rule enables us to formulate the actions taken by Warnock’s algorithm in -
terms of the following leaf node types and corresponding actions.

(1) At an empty leaf node, draw nothing since no lines pass through this region.

(2) At a leal node corresponding to a pixel, draw a point representing the border of
the polygon that occludes the upper lefthand corner of the pixel (if no such
polygon exists, then draw nothing). -

(3) At a leal node corresponding to a collection of polygons, draw nothing since the
existence of such a node means that one of the polygons occludes all the other
polygons over this region.

At this point it is interesting to briefly explain the relationship between the
hidden-surface and hidden-line tasks. The hidden-line problem is closely identified with
the usage of vector displays and plotters. This caused Warnock to investigate edge
quadtree-like decompositions {Warn69b]. On the other hand, the hidden surface problem
15 closely identified with the usage of raster devices. Although our treatment of the
hidden-line problem assumes vector data, it results in the output of line-drawing com-
mands at a raster/pixel level. By doing a bit more calculation, we can often recognize
that a line will be visible without having to subdivide all the way down to the pixel
level.

The algorithm given above for the hidden-line problem can be modified to handle .
the hidden-surface problem as well. The only modification which needs to be made here
1s that empty nodes which represent regions that are completely spanned by a polygon
must now be colored with the color of that polygon, instead of being ignored (as happens
in the hidden-line display process). -

One problem with building quadtree decompositions of data presented as arbi-

trary collections of polygons in three-dimensional space is to determine when there is no
need for further subdivision. For example, this situation arises when a node contains a

24

collection of polygons where one polygon completely occludes the other polygons. This
requires a sort of all the polygons in the node. Since occlusion is not in general transitive,
sorting does not always work (recall Figure 28). If sorting fails due to non-transitivity or
because the nearest polygon does not occlude the entire region, then further subdivision
15 needed to determine what is visible in the region corresponding to the node.

It is worthwhile to note that we have been assuming that the closest polygon’s
color was the most appropriate color for a pixel. However, clearly a pixel could contain
small features that this approach would represent falsely. This general problem is
referred to as antialiasing {Roge85]. Warnock handled the situation of a pixel that con-
tained complicated features by pretending that the viewing pyramid for the pixel was a
single ray passing through the pixel’s upper lefthand corner. If this produces an approxi-
mation of the image that is too rough for a particular application, then classical
antialiasing techniques [Roge83] (such as computing a weighted average of the visible
intensities within a pixel) can be applied without altering the basic algorithm.

3.8.3. WEILER-ATHERTON’S ALGORITHM

Warnock’s algorithm is an image-space hidden-surface algorithm. Weiler and
Atherton [Weil77] developed an analogous object-space hidden-surface algorithm. The
object space consists of a collection of polygons. It is interesting to note that Weiler and
Atherton use image-space heuristics to speed up their object-space algorithm. Their
object-space algorithm has the following structure:

_ (1) Otrder all the polygons by their smallest z-value {where the viewer is located at a
z-value of minus mnfinity). :

(2) Find the closest polygon, say C, to the viewer.

(3) Form two collections of polygons. The first collection contains those polygons
whose projection overlaps (partially or totally) the projection of ¢ (which we will
call the inner sef) The second collection contains those polygons whose projection
is not entirely covered by the projection of C' (which we will call the outer set). .
In cases where a polygon is in both the inner and outer sets, it is often convenient
to clip that polygon against C' and store the resulting polygons in the appropri-
ate sets. : '

(4) Remove all polygons from the inner set that do not occlude part of C.

(5) If no polygons occlude C (i.e., the inner set is empty), then the hidden-surface
problem has now been solved for C' and.proceed to solve the hidden-surface prob-
lem for the outer set. '

(6) If there exist polygons that occlude € (i.e., the inner set is non-empty), then
recursively go to step (2) and choose a “nearest’’ polygon from among the occlud-

ing polygons from the inner set of C'. Upon return, process the outer set of C.

In order to reduce the number of polygons that have to be compared in step (4),
‘Weiler and Atherton propose two preprocessing methods that are relevant to our study.

25

The first method recursively subdivides the image space (in the z and y directions) until
the number of polygons in a given region, say R, drops below a specified threshold.
Within region fi, the basic algorithm, described above, is used. Note that at step {4),
only the polygons in region £ need to be considered. The second method is based on the
observation that besides preprocessing by subdividing in the z and y directions, it might
also be useful to subdivide in the z direction. In particular, after subdividing in the z
direction, they propose to solve the hidden-surface problem for the backmost volume ele-
ments and then using this solution as part of the polygon list for the volume elements in
the front. This back-to-front approach is also discussed in Section 3.8.1 in the context
of 2.5 dimensional hidden-surface elimination. This last heuristic could be viewed as an
octree method (see Section 4.2 for more details).

3.8.4. DISPLAYING CURVED SURFACES

In this paper, vector data is usually viewed as consisting of straight line segments
and polygons. However, the quadtree paradigm also has proven useful to researchers
interested in the manipulation of curved features such as surfaces. Curved surfaces are
often represented by a collection of parametric bicubic surface patches [Mort85|. Curved
surface representations are important in computer graphics applications because they are
often more compact than polygonal representations and aiso because they enable the
stipulation of continuity in the derivative of piecewise surface representations which is
important for ray-tracing calculations (see Section 4.3).

One early approach to displaying such surfaces was developed by Catmull
[Catm75]. The idea is to recursively decompose the patch into subpatches until the sub-
patches that are generated are so small that they only span the center of one pixel (or
can be shown to lie outside the display region). The test for how many pixel centers are
spanned by the patch (or whether or not the patch lies outside the display area) is based
on the approximation of the patch by a polygon connecting the patch’s corners. In our
examples, patches are denoted by solid lines and their approximating polygons are
denoted by broken lines.

As an example of the recursive decomposition of patches, consider Figure 29. Fig-
ure 29a shows a single patch with corners A, B, C, and D on a grid of pixel centers. We
observe that quadrilateral ABCD which approximates the patch ABCD, contains more
than one pixel center. Thus the patch must be decomposed. Figure 29b shows the
decomposition of patch ABCD into quadrilateral patches AFIE, BGIF, CHIG, and DEIH.
Since the quadrilateral approximations of each of these patches, again, span more than
one pixel center, they must each be subdivided further as shown in Figure 29¢. This time
there 1s not enough detail in the figure to show the difference between the patch and its
quadrilateral approximation. Note that in Figure 29¢ the quadrilateral approximation for
patch JFIKN contains only one pixel center and hence will not need to be subdivided
further. Also, the quadrilateral approximation of patch MNLG contains no pixel centers
and thus it too will not need to be subdivided further. However, the quadrilateral
approximation of patch IJNM contains two pixel centers and hence will need to be sub-
divided further. The final decomposition of the original patch is shown in Figure 29d,
and the raster image yielded by this decomposition is shown in Figure 29e.

26

As was observed by Catmull, the recursive decomposition approach to approxi-
mating the location of a patch can be generalized apd thereby applied to other patch
representations. Patch representations based on characteristic polyhedrons (e.g., Bezier
and B-spline patches) . [Mort85], allow these test decisions to be based on an approxima-
tion of each patch by the convex hull enclosing its control points (which is guaranteed to
enclose the entire patch). This yields a more accurate result than Catmull’s approxima-
tion which is only based on four corners of a patch.

As with Warnock’s algorithm, Catmull’s algorithm is oriented toward the genera-
tion of display commands. Thus it does not explicitly generate the quadtree structure
although its processing follows the quadtree decomposition paradigm in the parametric
space. Since the patches exist in three-dimensional space, more than one patch can span
the same pixel center, the Catmull algorithm makes use of a z-buffer to keep track of the
intensity /color of the patch that has most recently been found to be closest to the
viewpoint. Basically, a z-buffer is a two-dimensional array that represents the displayed
image. Each entry of the array contains a colar and a depth. Initially, each pixel in the
displayed image is black and at an infinite depth. Whenever a new color is to be assigned
to a pixel, we first compare the depth of the location to which the pixel corresponds and
if it is greater than the current depth in the z-buffer, then the assignment is ignored;
otherwise, update the color and depth values in the z-buffer. Although, traditionally, the
z-buffer has aliasing problems (i.e., it produces jagged borders between neighboring
regions), these can be mitigated by using the rgb-a-z approach Dufl85].

= Warnock’s algorithm requires that the scene be completely specified at the time
the-algorithm is initiated. In contrast, the z-buffer enables elements of the scene to be
processed in an arbitrary order. This permits elements to be added to the scene without
having to reprocess elements of the scene that have been previously processed. In other
words, at any time during its processing, the z-buffer represents what would be displayed
if there were no further elements in the scene. The z-bufler is represented explicitly as a
two-dimensional array. Such an array could be represented by a quadtree. This quad-
tree z-buffer representation might prove useful for generating line representations of the
borders between surfaces but not for generating shaded surfaces [Posd82]. Note that
raster quadtrees are seldom eflicient for representing scenes including shaded surfaces
since each pixel location on a shaded surface will have a slightly different color. However,
if only the borders of the surfaces are represented, then the interior portions of the sur-
faces can be efficiently merged.

Catmull’s display algorithm has been adapted to handie a constructive solid
geometry [Requ80| representation of objects (i.e., objects composed as boolean combina-
tions of primitive objects) for the case where the initial primitives are solids bordered by
bicubic surfaces [Carl82|. Instead of subdividing down to the pixel level everywhere, the
subdivision is performed only until it has generated subpatches that are mutually dis-
joint. Two subpatches can be viewed as disjoint when the interiors of the convex hulls of
their respective control points are disjoint. While this approach helps determine the
actual intersection between two subpatches, it does not address the problem of choosing
which patches should be compared to determine the possible existence of an intersection.
A vector octree approach to this problem [Nava86b] is mentioned in Section 4.2.3.

27

4. ALGORITHMS USING OCTREES

In this section we describe some usages of the octree in computer graphics. Due
to space limitations and a desire to avoid repetition, we only discuss a few usages. We
first review the exccution of a number of basic operations using an octree including its
construction. Next, we show how to apply the parallel and perspective projection
methods to display the collection of objects that are represented by an octree. Implicit in
this task is the solution of the hidden-surface problem in order to resolve the interaction
between the objects in the scene modeled by an octree. We conclude with a discussion of
image rendering (i.e., the problem of calculating what light falls on the view plane) by
use of ray tracing and radiosity. Ray tracing models light as particles moving in the
scene. The octree speeds up the determination of the objects that are intersected by rays
emanating from the viewpoint. In contrast, radiosity models light as energy and seeks to
determine a point at which its distribution is at equilibrinm. This requires the derivation
of a large set of linear equations. Using octrees can simplify the process of calculating the
coeflicients of these equations. This is especially true if rendering is to be done with
_respect to more than one viewpoint. The efficient solution of these equations is aided by

- use of heuristics, one of which is the adaptive recursive decomposition of the scene’s sur-
face analogous to that used by the algorithms of Warnock and Catmull (see Section
3.8.4).

4.1. BASIC OPERATIONS

The algorithms for performing basic computer graphics operations such as trans-
lation, rotation, scaling, and clipping on both raster and vector octrees are direct exten-
stons of the algorithms discussed earlier for quadtrees. The techniques which were used
in performing some of these operations {e.g., preorder traversal rectilinear unaligned
traversal,- general unaligned traversal, bottom-up neighbor finding and top-down neigh-
bor passing) can all be extended to deal with octrees once some additional bookkeeping
information is maintained.

Building an octree is not an easy process from the point of view of the sheer
amount of data in a three-dimensional image that must be examined. Clearly, the
amount of work to construct a raster octree from a three-dimensional array representa-
tion of an image is quite costly due to the large number of primitive elements that must
be inspected. If we start with an array representation, the conventional raster-scanning
approach used to build quadtrees is computationally expensive because much time is
spent detecting the mergibility of nodes. This can be alleviated, in part, by using the
predictive techniques of Shaffer and Samet [Shaf87] (see Section 3.6). This method makes
use of an auxiliary array whose storage requirements are as large as a cross-section of the
image which may render the algorithm impractical. However, since this array is often
quite sparse, this problem can be overcome by representing it by use of a linked list of
blocks in a manner similar to that used by Samet and Tamminen [Same85b] for con-
nected component labeling for images of arbitrary dimension. Alternatively, we can ini-
tially represent the data by using one of the more compact three-dimensional representa-
tions such as the boundary method or the CSG tree [Requ80). '

The boundary method represents a three-dimensional object by its faces. The

winged-edge representation [Baum72] referred to in Section 1, when applied to polyhe-
dra, is one such representation. In order to create a boundary representation, we must

28

first decompose the surface of the object into a collection of faces. The result is a graph
whose edges correspond to the interconnections between the faces of the object. For
example, the object in Figure 30a can be decomposed into the set of faces and intercon-
nections shown in Figure 30b. There are a number of variants of this representation.
They arise from the use of different methods of representing individual faces {which
could be either polygons or curved surfaces), and different approaches of specilying the
interconnection between adjacent faces. For example, we can view faces as meeting at
either their borders or corners. Thus instead of a graph where the vertices represent
faces and the edges represent their interconnection, we also have boundary methods
where the vertices of the graph represent borders of a face or even the corners of a face.
Tamminen and Samet [Tamm84b] describe a method for building a raster octree from a
boundary representation by use of connectivity labeling.

Constructive Solid Geometry (CSG) methods represent rigid solids by decompos-
ing them 1into primitive objects that are subsequently combined using variants on
Boolean set operations such as union, intersection, and set-difference, and possibly
geometric transformations (e.g., translation and rotation). These primitives are often in
the form of basic solids such as cubes, parallelepipeds, cylinders, spheres, etc. A more
fundamental primitive is a halfspace whose border can either be linear or non-linear. For
example, a linear halfspace in three dimensions is given by the following inequality:

az+b-y+c-z>d

CSG methods are usually implemented by a CSG tree which is a birary tree in which
internal nodes correspond to geometric transformations and Boolean set operations while
leaves correspond to the primitive objects (e.g., halfspaces). For example, the object in
Figiire 30a can be decomposed into three primitive solids whose CSG tree is shown in
Figure 30c. Samet and Tamminen [Same85d] show how to build a bintree representation
of a raster octree from a CSG tree {see also [Wood82|). These techniques are useful for
conversion as well as display [Kois85, Morr85].

An even more fundamental problem than building the octree is the acquisition of
the initial boundary data to form the boundary representation. One approach is to use a
three-dimensional pointing device to create a collection of samples from the surface of |
the object. Having collected the point data, it is then necessary to interpolate a reason-
able surface to join the point data. This interpolation can be achieved by triangulation.
A triangulation in three-dimensional space is a maximal set of disjoint triangles that
form a surface whose vertices are points in the original data set. There are many tri-
angulation methods currently in use, both in two-dimensional spaces [Wats84] and
three-dimensional spaces [Faug84]. They differ by how they determine which points are
to be joined. For example, often it is desired to form compact triangles instead of long
narrow ones. However, the problems of minimizing total edge length or maximizing the
minimum angle pose difficult combinatorial problems. Posdamer [Posd82] has proposed
to use the ordering imposed by an octree on a set of points as the basis for determining
which points should be connected to form the triangles.

Posdamer’s algorithm uses an octree whose leaf criterion is that no leaf can con-
. tain more than three points. The initial set of triangles is formed by c¢onnecting the
points in the leaves that contain exactly three points. Whenever a leal node contains
exactly two points, these points are connected to form a line segment that is associated

29

with the leaf node. This is the starting point for a bottom-up triangulation of the points
by merging disjoint triangulations to form larger triangulations. The isolated points (i.e.,
leal nodes that contain just one point) and isolated line segments are viewed as degen-
erate triangulations. The triangulation associated with a gray node is the result of merg-
ing the triangulations associated with each of its sons. By merging or joining two tri-
angulations, we mean -that a sufficient number of line segments is drawn between ver-
tices of the two triangulations such that we get a new triangulation that contains the
original two triangulations as sub-triangulations.

When merging the triangulations of the eight sibling octants, there are a number
of heuristics that can be used to guide the choice of which triangulations are joined first.
The order in which we choose the pair of triangulations to be joined is determined, in
part, by the following factors. First, and foremost, it is preferred to merge triangulations
that are in siblings that have a common face. If this is impossible, then triangulations in
nodes that have a common edge are merged. Again, if this is not feasible, then triangula-
tions in nodes that have a common vertex are merged. Within each preference, the tri-
-angulations that are closest according to some distance measure are merged first.

Alternative approaches to building an octree consist of taking a number of
different views of an image [Chie86, Veen85] or even range data [Conn84]. This task can
be viewed as the intersection of a collection of sweeps of two-dimensional silhouettes
[Chie86]. When using such methods we must be careful that the views are adequate to
describe the object in sufficient detail. In medical applications, it is feasible to be work-
ing with a collection of images representing slices of the three-dimensional object. Yau
and Srihari [Yau83| show how to construct an k-dimensional octree-like representation
from multiple (k-1)-dimensional cross-sectional images.

4.2. PARALLEL AND PERSPECTIVE PROJECTIONS

Once an octree has been constructed, it is natural to want to display it. The two
display techniques used most commonly are the perspective projection and the parallel
projection. The perspective projection is formed with respect to a viewpoint and a
viewplane. In this case, all points lying on a given line through the viewpoint project
onto the same point on the viewplane (see Figure 31a). A parallel projection can be
defined as a special case of the perspective projection such that the viewpoint is at
infinity (see Figure 31b).

For raster octrees, the most common display technique is the parallel projection
{Doct81, Gill81]. The easiest parallel projection to perform on a raster octree is when the
viewplane is parallel to one of the faces of a node in the tree. This situation is equivalent
to the 2.5-dimensional hidden-surface task discussed in Section 3.8.1. A special case of
the parallel projection technique that is of interest to engineers is the isometric projec-
tion. It has the property that the silhouette of a cube dorresponding to the space
spanned by root of an octree projects onto a regular hexagon which can be decomposed
into six equilateral triangles. These triangles are decomposed further into triangular
quadtrees in the process of determining what portions of the leaf nodes are visible for the
purpose of display. A display algorithm based on this approach is reported by Yamagu-
chi et al. [Yama84]. . o '

30

Implicit in the task of displaying an octree is the solution of the hidden-surface
problem for the interaction among the objects represented by the octree. Not surpris-
ingly, since the octree imposes a spatial ordering on objects, the hidden-surface problem
for scenes represented by octrees can be solved more efficiently than the general hidden-
surface problem for arbitrary polygons. Note that any opaque object in the four front
octants of an octree will occlude any opaque object in the back four octants. This pro-
perty holds recursively within each of the suboctants. The process of displaying the
scene is facilitated by the construction of a display quadiree which corresponds to a par-
tial two-dimensional view of the scene. The display quadtree is updated as the nodes of
the octree are traversed from back-to-front. Each opaque node, say P, that is encoun-
tered in this traversal paints out (i.e., overwrites) the previous view contained in a por-
tion of the display quadtree that coincides with the projection of P. Of course, as indi-
cated in the discussion of the 2.5-dimensional hidden-surface problem in Section 3.8.1,
the nodes could also be processed from front-to-back, thereby allowing lor the possibility
of visiting fewer nodes.

Generalizations of the parallel projection to planes of arbitrary position and
orientation are described by Meagher [Meag82] and Yau [Yau84|. Generalizations can
also be made in a straightforward manner to compute perspective projections onto arbi-
trary planes as well. Another approach to the perspective projection task is to first
transform the three-dimensional scene into a new three-dimensional scene whose parallel
projection is the same as the corresponding perspective projection of the original scene.
This approach was used on CSG trees by Ioistinen et al. [Kois85], who then
transformed the resulting CSG tree into a bintree for display by one of the parallel pro-

‘jection methods discussed above.

One drawback to displaying scenes represented by a raster octree is that there is
little potential of using lighting models for the shading of the scene since adjacent faces
of octree nodes meet at 90-degree angles. One approach at overcoming this drawback is
described by Doctor and Torborg [Doct81. They suggest that the amount by which to
shade a face of a node can be calculated as a function of the number of the node’s tran-
sparent neighbors. Thus a node on the corner of an object that is surrounded by empty
space will be brighter than another node on the interior of a face of the object, since it ,
has fewer transparent neighbors. This yields an interesting highlighting effect. More
recently, this problem has been investigated by [Gord85, Chen85, Brig86).

4.3. RAY TRACING

Although the parallel and perspective projection display techniques are suitable
for computer-aided design, realistic modeling of lighting eflects generally requires using
some variant of raytracing {Roge85|. Raytracing is an approximate simulation of how
the-light that is propagated through a scene lands on the image plane. This simulation is
based on the classical optical notions of reflection (diffuse and specular) and refraction
[Whit80]. Although the geometry of the reflection and refraction of “beams” of light
from surfaces is straightforward, the formulation of the equations to model the intensity
of the light as it leaves these surfaces is a recent development. The quality of the
displayed image 1s a function of the appropriateness of the model represented by these
equations and the precision with which the scene was represented. Nevertheless, the
amount of time required to display a scene is heavily influenced by the cost of tracing

31

the path of the rays of light as they move backward from the viewer’s eye, through the
pixels of the image plane, and out through the scene. For example, Whitted [Whit80]
reports that as much as 95% of the total picture-generation time may be required to cal-
culate points of intersection between rays of light and objects in a complex scene. Thus
the motivation for using the octree in raytracing is to enable the calculation of more rays
with a greater amount of accuracy. Since light-modeling equations rely on the avallabil-
ity of accurate information about the location of the normal to the surface at the point
of its intersection with the ray, vector octrees are generally more appropriate than raster
octrees. This is especially true for vector octrees that can represent curved, rather than
planar, surfaces using either curved patches [Nava86b| or curved primitives [Wyvi85|.

Octrees have been used to speed up intersection calculations for raytracing
[Glas84, Fuji86a, Wyvi85, [Kapl85, Jans86|. The basic speedup can be seen by examining
the 22-sided polygon in Figure 32a. We use a quadtree instead of an octree in order to
simplify the presentation. A naive raytracing algorithm would have to test the ray
emanating {rom the viewpoint against each of these sides, sort the resulting intersec-
tions, calculate the reflected ray, and finally test the reflected ray to see if it intersects
any other portion of the polygon. Figure 32b shows that a quadtree (octree)-based algo-
rithm would perform the same calculation by visiting only 6 leaf nodes (ie., nodes 1, 2,
14, 6, 3, and 4). Glassner [Glas84] describes a method to do this using a linear octree
addressing scheme where the octree nodes are stored in a hash table rather than a list
[Garg82b] or a B-tree [Rose83, Abel84a]. Thus, instead of using standard neighbor-
finding techniques (either top-down or bottom-up) to move between the nodes that lie
sequentially along a given ray, a neighboring node is located by calculating a point that
would lie in the neighbor and then searching the octree for that point. This approach
has also been applied to the pointer-based representation of octrees [Wyvi85, Fuji86a).
For an analogous approach using the bintree representation of octrees see {I{apl85].

Although searching for the node containing a particular point can be done very
efliciently, standard neighbor-finding techniques should be faster for more complicated
scenes. The use of both top-down and bottom-up neighbor-finding for raytracing on an
octree is discussed by Jansen [Jans86]. However, more empirical results are required to
evaluate the merits of the various neighbor-finding techniques for raytracing typical
scenes. Nevertheless, the octree approach to raytracing seems promising. For example,
Glassner [Glas84] reports that tracing 597,245 rays in a particular scene of 1,536 objects
required 42 hours and 12 minutes using non-octree raytracing techniques, while only 2
hours and 57 minutes were required when using octrees. Another scene that was
estimated to require 141 hours using non-octree methods was analyzed in 5 hours and 5
minutes using octrees.

4.4. RADIOSITY

~ While for many years ray tracing was the dominant approach to the realistic
" rendering of images, newer and different techniques have recently emerged. One such
method is the radiosity approach [Gora84]. Instead of modeling light as particles bounc-
ing around in a scene (as is done in raytracing), the radiosity approach models light as

energy. whose distribution tends toward a stable equilibrium. In other words, the radios-
ity approach treats light as if it were heat - ie., light sources behave as sources of heat,
and surfaces that reflect light behave as surfaces that reflect heat. In the subsequent

32

discussion we use the terms reflect, radiate, and emit interchangeably to denote the light
leaving a patch where a patch is a portion of a surface of an object in the scene.
Although energy in the form of light and heat is normally viewed as a continuous flow,
the radiosity method uses a discrete simulation of the flow so that an approximate
rendering can be computed. :

- A scene is viewed as a collection of patches where the light emitted by the sur-
face of a given patch, say Q, is either constant {e.g., for a light source) or is a linear
combination of the light falling on @ from all the other patches. The simplifying
assumption is made that the surfaces are Lambertian diffuse reflectors, ie., light is
reflected uniformly from the surface in all directions. This restriction can be lifted
{Imme86] at the expense of greatly increasing the size of the problem. Of course, many
patches do not contribute light to a particular patch because they are occluded by closer
patches. In essence, radiosity converts the image rendering problem to one of solving a.
set of simultaneous linear equations. Each equation represents a portion of the discrete
simulation of the light flow, i.e., the portion of the light from the rest of the scene that is .
eventually reflected by the patch. Furthermore, the equation for patch @ depend on
which patches are visible from Q.

The process of deriving the equations {ie., the determination of the values of
their coefficients) that describe the interactions among the patches was the computa-
tional bottleneck in the initia) presentation of radiosity [Gora84, Cohe85|. Deriving the
equations is straightforward although the exact mechanics [Gora84, Cohe85| are beyond
the scope of this survey. However, part of this process can be facilitated, in part, by
observing that if two patches, say @ and R, are mutually invisible , then the coeflicient
of theterm in the equation of @ (or R) associated with R (or @) will be zero. The phy-
sical interpretation of the concept of mutual invisibility is that light emitted by one of
the patches cannot reach the other patch without first being reflected by yvet a third
patch. A geometric interpretation of this concept is that two patches, say Q and R, are
mutually invisible only if there does not exist a pair of points po on @ and pp on R
such that a straight line can be drawn between them without intersecting a third patch
or passing through the interior of an object in the scene.

. The determination of which terms in the equations have zero coeflicients
corresponds to a hidden-surface problem among the patches. It must be solved
separately for each patch - ie., if we have M patches, then we must solve the hidden-
surface interactions among each of the O(Mz) combinations of patches. Worse, we need
to solve these problems not just for a point on a patch, but for every point on the sur-
face of the patch. The solution of these problems could be eased by using a data struc-
ture such as the octree to organize the elements of the scene - i.e., the three-dimensional
space occupied by the patches. This simplifies-the determination of which patches are
hidden with respect to the other patches thereby yielding the zero coefficients.

_ Unfortunately, the application of radiosity to the rendering of more complicated
scenes results in a marked increase in the number of equations necessary to mode! the
scene. This has led to a shift of the computational bottleneck so that it is now associated
with the problem of solving the simultaneous equations. Nevertheless, recursive subdivi-
sion can still be used. Instead of recursively subdividing the three-dimensional space
occupied by the patches, Cohen ef al. [Cohe86] recursively subdivide the surfaces of the

33

patches. This subdivision takes place in the parametric space of the patch in a manner
similar to Catmull’s algorithm (see Section 3.8.4). As with Catmull’s algorithm, recursive
subdivision of a patch (described below) does not actually require the construction of a
quadtree. Instead, the data is simply aggregated in a manner that is equivalent to
applying a particular leal criterion to the organization of the surface of a scene.

It is interesting to observe that in order to determine the rough flow of light
through a scene, the number of patches needed to model the objects in the scene is con-
siderably smaller than the number of patches needed to depict features of the scene that
are caused by the actual flow of light through the scene (e.g., shadow boundaries). For
example, suppose that we are modeling a scene that corresponds to a room containing
boxes. In this case, a rather coarse grid can be used to represent the surface of the room.
However, the accurate representation of the shadows that the boxes cast on the walls
will usually require a much finer grid. This is especially true for area light sources (e.g.,
fluorescent tubes that cannot be modeled accurately as point light sources) that cause
varying shadow intensities. Of course, the more patches used to represent a scene, the
more expensive is the solution process required to solve the corresponding set of equa-
tions since there are more equations with a concomitant increase in terms. In particular,
the number of equations is proportional to the number of patches which can potentially
lead to a quadratic number of interpatch relations. It should be noted that we don’t
know how many patches will be needed to represent the results of the radiosity calcula-
tion until after it has been performed. Early work on radiosity simply guessed the max-
imum number. However, with more complicated scenes the guesses are overly pessimistic,
thereby apparently resulting in needlessly inefficient algorithms. Recursive subdivision
performed in an adaptive manner avoids this problem.

Cohen et al. [Cohe86] propose a two-step algorithm to reduce the number of
equations that must be solved simultaneously. The basic approach is to first solve the set
of simultaneous equations corresponding to the light flow among the patches that are
used to model the surfaces of the scene. In the second step, patches whose intensity
value computed by the first step differs greatly from that of their neighbors are subse-
quently decomposed into smaller subpatches, termed elements, via a regular recursive
decomposition (i.e, equal surface area). The rationale for further subdivision is the
assumption that the intensity variance in the scene is a continuous function meaning
that sharp discontinuities are an artifact of undersampling the intensity function - ie.,
the grid was too coarse. The result is that the scene consists of a collection of patches
{each corresponding to a small portion of the surface of the scene) where each patch is
represented by a quadtree whose leaves are elements. The leaf criterion used to construct
the quadtree is one that is based on the absolute intensity difference, across the portion
of the surface approximated by the leaf, being below a given threshold.

Now, instead of deriving a new set of equations to represent the interactions
between all the elements of each of the patches, the new set of equations assumes that
only one patch has been decomposed and the remaining patches are treated as if they
have a constant intensity value - Le., the one computed in the first step. This is
equivalent to an assumption that the cumulative effect of elements of patch @ on other
patches is approximately the same as that of Q. In other words, for each collection of
elements corresponding to a particular patch, a set of simultaneous equations is derived
- based on the individual variable intensity values of the elements in the collection and

34

treating other patches in the scene as having constant intensity. This greatly reduces the
number of equations that need to be solved with only a modest reduction in the accu-
racy of the solution.

The approach of Cohen et al. described above has several advantages. First of
all, by applying adaptive decomposition to the individual patches it prevents the size of
the set of linear equations (i.e., the number of terms) from growing quadratically.
Second, it assumes that the decomposition of a particular patch, say @, into elements
does not change the total amount of light that is reflected by & and that is therefore
incident on the other patches. This means that after solving the problem of determining
the light flow with the initial set of patches, the individual behavior of the light flow
within a patch can be solved independently of the individual behavior within the other
patches. In fact, the result is an asymmetric relation between the effects of patches and
elements of patches. For each element in a patch, we compute the effect of the light from
the remaining patches. However, the effect of individual elements of patch @ on patch
R is taken collectively - i.e., the fact that @ has been decomposed into elements has no
eflect on the amount of light reflected by R.

As an example, Cohen et al. [Cohe86] report that application of these techniques
to a scene whose objects required 58 patches and whose optical features (e.g., caused by
shadow boundaries) required 1135 elements took 22.49 minutes to derive its radiosity
equations and 1.10 minutes to solve them. However, instead of using the adaptive
approach, a simple decomposition of the same scene into 829 patches required 90.10
minutes to derive the equations and 6.36 minutes to solve them.

_ Of course, even though the solution of the radiosity equations is a major part of
the image rendering process, there still remain other issues to be considered. In particu-
lar, once the radiosity equations have been solved, we must still render the scene from a
particular viewpoint. The scene described in the previous example required 14.67 minutes
to render 1135 elements and 14.16 minutes to render the 829 patches. In order to
improve the rendering time, it is necessary to use data structures that facilitate the solu-
tion of the standard hidden-surface problem. In Sectior 4.2 we suggested that the octree
is an appropriate data structure for this problem,

5. CONCLUDING REMARKS

An overview of the use of hierarchical data structures, such as the quadtree and
the octree, in computer graphics applications has been presented. This is a rapidly mov-
ing area of research which caii be expected to yield further improvements in performance
of traditional graphics algorithms in the future, In many cases, aside from a potential
savings in space requirements, methods that incorporate these techniques also. produce
significant savings in the execution time of the algorithms. Of course, these data struc-
turés are used in applications other than computer graphics, some of which are deseribed
below. In addition, we briefly mention some hardware implications of their use.

Variants of quadtrees are used to represent points, lines, and areas in g geo-
graphic information system [Same84d]. This enables the data to be handled in an
integrated manner and permits answering queries that involve combinations of the
different data types. For example, it is easy to answer a query of the form “find all roads

35

passing through swampland in Florida that pass through cities with over 10,000 inhabi-
tants.” They also have been applied in finite element mesh generation [Yerr83].

An important advantage of quadtrees and octrees is that it is easy to update
them to reflect changes in the scene that they are representing. Thus it is natural that
they would prove useful in the representation of scenes that change over time due to the
motion of objects within the scene. Ahuja and Nash [Ahuj84j represent motion by
updating an octree structure as the object is moved. Alternatively, Samet and Tam-
minen [Same85d] view a changing three-dimensional scene as a four-dimensional object
and use a [our-dimensional bintree to represent the space-time object. Besides using
octrees to represent motion, they also can be used to plan motion. Kambhampati and
Davis [Kamb86] have developed a multiresolution path-planning heuristic for two-
dimensional motion using quadtrees that could easily ‘be extended to three-dimensional
motion using octrees. Fujimura and Samet [Fuji86b] use a similar approach to do path
planning in the presence of moving obstacles.

. Many graphics displays accept ﬁlied'rectangles as a display primitive (e.g.,
[Whel82]) which means that the speed of displaying the quadtree is proportional to the
number of nodes in the displayed region. On the other hand, pure raster displays would
require the user to decompose the rectangle into pixels. A central goal that arises when
designing graphics display primitives is to minimize the number of bits that need to be
transferred while representing a given primitive. A general fill-rectangle primitive
requires the specification of location, height, and width information in addition to color
information. In contrast, a special purpose quadtree processor that expects a serics of
quadtree leal nodes, only requires the specification of the width and color of the leaf
nodes; the location can be derived from the position of the leaf in the list. Such an
approach has been taken with at least one MC68000-based graphics display [Milf84,
Will85]. A more aggressive approach to quadtree hardware is to design a parallel com-
puter where individual processors are connected like nodes in a quadtree 'Warn68,
Linn73, Kush82, Dipp84]. One such device that has proven useful in image processing is
the pyramid machine [Mill85]. Meagher [Meag84] describes an octree machine. Dew ef al.
[Dew85] discuss mapping an octree approach to CSG evaluation onto a systohic array
computer. It should be noted that much of this work takes advantage of the intercon-
nections within the hierarchy, but does not attempt to efficiently balance the workload
among a restricted number of processors.

There still remain open questions about recursive hierarchical data structures for
tasks in computer graphics. For example, the usage of quadtrees and octrees is often
motivated by intuitive notions about the behavior of typical graphics data. However,
this intuition still requires formalization. Furthermore, although muchk attention has
been devoted to the development of hierarchieal data structures, there has been rela-
tively little work done comparing them. Comparisons based on more than a few “typi-
cal” examples would be a welcome contribution to this domain.

36

REFERENCES

1. [Abel84a] - D.J. Abel, A B*-tree structure for large quadtrees, Computer Vision,
Graphics, and Image Processing 27, 1{July 1984), 19-31.

2. {Abelg4b] - D.J. Abel and JL. Smith, A simple approach to the nearest-neighbor
problem, The Australian Computer Journal 16, 4(November 1984), 140-146.

3. [Ahuj83] - N. Ahuja, On approaches to polygonal decorrfposition for hierarchical
image representation, Computer Vision, Graphics, and Image Processing 24, 2{November
1983), 200-214. ‘

4. [Ahnj84] - N. Ahuja and C. Nash, Octree representations of moving objects, Com-
puter Vision, Graphics, and Image Processing 26, 2(May 1984), 207-216.

5. |ANSI85] - American National Standards Institute Committee X3H31, American
National Standard for the Functional Specification of the Programmer’s Hierarchical
Interactive Graphics Standard (PHIGS), ANSI Standard X3H31/85-05 X3H3/85-21,
American National Standards Institute, New York, February 85.

6. [Ande83] - D.P. Anderson, Techniques for reducing pen plotting time, A CM Transac-
tions on Graphics 2, 3(July 1983), 197-212.

7. {Ayal85] - D. Ayala, P. Brunet, R. Juan, and 1. Navazo, Object representation by
means of nonminimal division quadtrees and octrees, ACM Transactions on Graphics 4,
1{January 1985), 41-59. :

8. [Ball8l] - D.H. Ballard, Strip trees: A hierarchical representation for curves, Com-
munications of the ACM 24, 5(May 1981), 310-321 (see also corrigendum, Communica-
tions of the ACM 25, 3(March 1982), 213).

9. [Baum72] - B.G. Baumgart, Winged-edge polyhedron representation, STAN-CS-320,
Computer Science Department, Stanford University, Palo Alto, CA, 1972.

10. [Bell83] - S.B.M. Beli, BM. Diag, F. Holroyd, and M.J. Ja,ckson,' Spatially referenced
methods of processing raster and vector data, Image and Vision Computing 1,
4(November 1983), 211-220.

I1. [Br&sGS] - J. E. Bresenham, Algorithm for computer control of digital plotter, IBM
Systems Journal 4, 1(1965), 25-30.

12. [Brig85] - S. Bright and S. Laflin, Shading of solid voxel models, Computer Graphics
Forum 5, (1986), 131-137.

13. [Carl85] - I. Carlbom, I. Chakravarty, and D. Vanderschel, A hierarchical data struc-
ture for representing the spatial decomposition of 3-D objects, IEEE Computer Graphics
and Applications 5, 4(April 1985), 24-31.

14. [Carl82] - WE. Carlson, An algorithm and data structure for 3D object synthesis:

37

using surface patch intersections, Computer Graphics 16, 3(July 1982), 255-264 (also
Proceedings of the SIGGRAPH’82 Conference, Boston, July 1982).

15. [Catm75} - E. Catmull, Computer display of curved surfaces, Proceedings of the
Conference on Computer Graphics, Pattern Recognition, and Data Structure, Los
Angeles, May 1975, 11-17.

16. [Chen85] - L.S. Chen, G.T. Herman, R.A. Reynolds, and J.K. Udupa, Surface shad-
ing in the cuberille environment, I[EEE Computer Graphics and Applications 5,
12{December 1985}, 33-41.

17. {Chie86] - C.H. Chien and J.K. Aggarwal, Identification of 3-d objects from multiple
silhouettes using quadtrees/octrees, Computer Vision, Graphics, and Image Processing
86, 2/3(November/December 1986), 256-273.

18. [Clar76] - J. H. Clark, Hierarchical geometric models for visible surface algorithms,
- Communications of the ACM 19, 10{October 1976), 547-554.

19. [Cohe85] - M.F. Cohen and D.P. Greenberg, The hemi-cube, Computer Graphics 19,
3(July 1985), 31-40 (also Proceedings of the SIGGRAPH'85 Conference, San Francisco,
July 1985).

20. [Cohe86] - M.F. Cohen, D.P. Greenberg, D.S. Immel, and P.J. Brock, An eflicient
radiosity approach for realistic image analysis, IEEE Computer Graphics and Applica-
tions 6, 3(March 1986), 26-35.

21. [Conn84] - C.I. Connolly, Cumulative generation of octree models from range data, -
Proceedings of the International Conference on Robotics, Atlanta, March 1984, 25-32.

22. [Dew85] - P.M. Dew. J. Dodsworth, and D.T. Morris, Systolic array architectures for
high performance CAD/CAM workstations, in Fundamental Algorithms for Computer
Graphics, R.A. Earnshaw, Ed., Springer-Verlag, Berlin, 1985, 659-694.

23. [Dipp84] - M. Dippe and J. Swensen, An adaptive subdivision algorithm and paralle]
architecture for realistic image synthesis, Computer Graphics 18, 3(July 1984), 149-158
(also Proceedings of the SIGGRAPH84 Conference, Minneapolis, July 1984)

24. [Doct81] - L.J. Doctor and J.G. Torborg, Display techniques for octree-encoded
objects, IEEE Computer Graphics and Applications 1, 1(July 1981), 39-46.

25. [Dufi85] - T. Duff, Compositing 3-D rendered images, Computer Graphics 19, 3(July
1985), 41-44 (also Proceedings of the SIGGRAPH’85 Conference, San Francisco, July
1985).

26. [Dyer80] - C.R. Dyer, A. Rosenfeld, and H. Samet, Region representation: boundary
codes from quadtrees, Communications of the ACM 23, 3{March 1980), 171-179.

. 27. [Dyer82] - C.R. Dyer, The space efficiency of quadtrees, Computer Graphics and
- Image Processing 19, 4(August 1982), 335-348. ' ' :

38

28. [Faug84| - O.D. Faugeras, M. Hebert, P. Mussi, and J.D. Boissonnat, Polyhedral
approximation of 3-d objects without holes, Computer Vision, Graphics, and Image Pro-
cessing £5, 2(February 1984), 169-183.

29. ([Free74] - H. Freeman, Computer processing of line-drawing images, ACM Comput-
ing Surveys 6, 1(March 1974), 57-97.

30. [Fuch83] - H. Fuchs, G.D. Abram, and E.D. Grant, Near real-time shaded display of
rigid objects, Computer Graphics 17, 3(July 1983), 65-72 (also Proceedings of the SIG-
GRAPH'83 Conference, Detroit, July 1983).

31. [Fuji86a] - A. Fujimoto, T. Tanaka, and K. Iwata, ARTS: Accelerated ray-tracing
system, [EEE Computer Graphics and Applications 6, 4(April 1986), 16-26.

32. [Fuji85] - K. Fujimura and T.L. Kunii, A hierarchical space indexing method,
Proceedings of Computer Graphics’85, Tokyo, 1985, T1-4, 1-14.

33. [Fuji86b] - K. Fujimura and H. Samet, A hierarchical strategy for path planning
among moving obstacles, Computer Science TR-1736, University of Maryland, College
Park, MD, November 1986.

34. [Garg82a) - I. Gargantini, An effective way to represent quadtrees, Communications
of the ACM 25, 12(December 1982}, 905-910.

35. [Garg82b] - I. Gargantini, Linear octtrees for fast processing of three dimensional
objects, Computer Graphics and Image Processing 20, 4(December 1982), 365-374.

36. [Garg82¢] - I. Gargantini, Detection of connectivity for regions represented by linear
quadtrees, Computers and Mathematics with Applications 8, 4(1982), 319-327.

37. [Garg83] - I. Gargantini, Translation, rotation, and superposition of linear quadtrees,
International Journal of Man-Machine Studies 18, 3(March 1983), 253-263.

38. [Gibs82] - L. Gibson and D. Lucas, Vectorization of raster images using hierarchical
methods, Computer Graphics and Image Processing 20, 1{September 1982), 82-89.

39. [Gill81] - R. Gillespie and W.A. Davis, Tree data structures for graphics and image
processing, Proceedings of the Seventh Conference of the Canadian Man-Computer Com-
munications Society, Waterloo, Canada, June 1981, 155-161.

40. [Glas84] - A.S. Glassner, Space subdivision for fast ray tracing, JEEE Computer
Graphics and Applications 4, 10{October 1984), 15-22.

41. [Gora84] - C.M. Goral, K.E. Torrance, D.P. Greenberg, and B. Battaile, Modeling
the interaction of light between- diffuse surfaces, Computer Graphics 18, 3(July 1984),
213-222 (also Proceedings of the SIGGRAPH 84 Conference, Minneapolis, July 1984).

42. {Gord8s] - D. Gordon and R. A. Reynolds, Image space shading of three-dimensional
objects, Computer Vision, Graphics, and Image Processing 29, 3(March 1985), 361-376.

39

43. [Gray67] - J.C. Gray, Compound data structure for computer aided design: a sur-
vey, Proceedings of the 20nd National Conference of the ACM, 1967, 355-365.

44. [Hillg3] - F.S. Hilj, Jr. , S. Walker, Jr., and F. Gao, Interactive image query system
‘using progressive transmission, Computer Graphics 17, 3(July 1983), 323-330 (also
Proceedings of the SIGGRAPH’88 Conference, Boston, July 1983).

45. [Hunt78] - G.M. Hunter, Efficient computation and data structures for graphics,
Ph.D. dissertation, Department of Electrical Engineering and Computer Science, Prince-
ton University, Princeton, NJ, 1978,

46. {Hunt79a)] - G.M. Hunter and K. Steiglitz, Operations on images using quad trees,
IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 2(April 1979), 145
153.

47. [Hunt79b] - GM. Hunter and K. Steiglitz, Linear transformation of pictures
represented by quad trees, Computer Graphics and Image Processing 10, 3(July 1979),

289-296.

48. [Imme86] - D.S. Immel, M.F. Cohen, and D.P. Greenberg, A radiosity method for -
non-diffluse environments, Computer Graphics 20, 4(August 1986), pp. 133-142 (also
Proceedings of the SIGGRAPH 86 Conference, Dallas, August 1986).

49. [Jack80} - C.L. Jackins and S.L. Ta.nimoﬁo; Oct-trees and their use in representing
three-dimensional objects, Computer Graphics and Image Processing 14, 3(November
1980), 249-270. .

50. [Jack83] - C.L. Jackins and S.L. Tanimoto, Quad-trees, oct-trees, and k-trees - a
generalized approach to recursive decomposition of Euclidean space, IEEE Transactions
on Pattern Analysis and Machine Intelligence 5, 5(September 1983), 533-539.

51. [Jans86] - F.W. Jansen, Data structures for ray tracing, Data Structures for Raster
Graphics (F.J. Peters, L.R.A. Kessener, and M.L.P. van Lierop, Eds.), Springer Verlag,
‘Berlm, 1986, 57-73. '

52. [Javi76] - J.F. Javis, C.N. Judice, and W.H. Ninke, A survey of techniques for the
image display of continuous tone images on a bilevel display, Computer Graphics and
Image Processing 5, 1(March 1976}, 13-40.

53. [Kamb86] - S. Kambhampati and L.S. Davis, Multiresolution path planning for
mobile robots, IEEE Journal of Robotics and Automation 2, 3(September 1986}, 135-145.

54. [Kapl85] - M.R. Kaplan, Space-tracing: a constant time —ray-tracer, SIGGRAPH’85
Tutorial on the Uses of Spatial Coherence in Ray-Tracing, San Francisco, ACM, July
1985.

55. |[Kauf83] - A. Kaufman, D. Forgash, and Y. Ginsburg, Hidden surface removal using

a forest of quadtrees, Proceedings of Conference on Image Frocessing, Computer Graph-
ics, and Pattern Recognition, Beer-Sheva, Israel, June 1983, 85-89.

40

56. [Ka.waSOa,] - E. Kawaguchi and T. Endo, On a method of binary picture representa-
tion and its application to data compression, IEEE Transactions on Pattern Analysis
and Machine Intelligence 2, 1{January 1980}, 27-35.

57. [Kawa80b] - E. Kawaguchi, T. Endo, and M. Yokota, DF-expression of binary-
valued picture and its relation to other pyramidal representations, Proceedings of the
Fifth International Conference on Pattern Recognition, Miami Beach, December 1980,
822-827. '

58. [Kawa83] - E. Kawaguchi, T. Endo, and J. Matsunaga, Depth-first exPression view.ed
from digital picture processing, IEEE Transactions on Pattern Analysis and Machine
Intelligence 5, 4(July 1983), 373-384.

59. [Klin71} - A. Klinger, Patterns and Search Statistics, in Optimizing Methods in
Statistics, J.S. Rustagi, Ed., Academic Press, New York, 1971, 303-337.

60. [Klin79] - A. Klinger and M.L. Rhodes, érganization and access of image data by
areas, IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 1{January
1979), 50-60.

61. [Know80| - K. Knowlton, Progressive transmission of grey-scale and binary pictures
by simple, efficient, and lossless encoding schemes, Proceedings of the IEEE 68, 7(July
1980), $85-896.

62. (Knut75] - D.E. Knuth, The Art of Computer Programming, vol. 1, Fundamental
Algorithms, Second Edition, Addison-Wesley, Reading, MA, 1975. '

63. [Kois85) - P. Koistinen, M. Tamminen, and H. Samet, Viewing solid models by bin-
tree conversion, Proceedings of the EUROGRAPHICS’85 Conference, C.E. Vandoni, Ed.,
North-Holland, 1985, 147-157.

64. [IKush82] - T. Kushner, A. Wu, and A. Rosenfeld, Image processing on ZMOB, [EEE
Transactions on Computers 31, 10(October 1982), 943-951.

65. [Lant84] - K.A. Lantz and W.L 'Nowicki, Structured graphics for distributed sys-
tems, ACM Transactions on Graphics 8, 1{(January 1984), 23-51.

66. [Lauz85] - J.P. Lauzon, D.M. Mark, L. Kikuchi, and J.A. Guevara, Two-dimensional
run-encoding for quadtree representation, Computer Vision, Graphics, and Image Pro-
cessing 30, 1{April 1985), 56-69.

67. [Linn73] - J. Linn, General merthod.s for parallel searching, Technical Report 81,
Digital Systems Laboratory, Stanford University, Stanford, CA; May 1973.

68. [Meag80] - D. Meagher, Octree encoding: a new technique for the representation, the
manipulation, and display of arbitrary 3-d objects by computer, Technical Report IPL-
TR-80-111, Image Processing Laboratory, Rensselaer Polytechnic Institute, Troy, New
York, October 1980. N

41

69. [Meag82] - D. Meagher, Geometric modeling using octree encoding, Computer Graph-
ics and Image Processing 19, 2(June 1982), 129-147.

70. [Meag84} - D. Meagher, The Solids Engine: a processor for interactive solid model-
ing,_ Proceedings of the NICOGRAPH °8{ Conference, Tokyo, November 1984.

71. [Milig4} - D.J. Milford and P.C. Willis, Quad encoded display, {EE Proceedings 131,
E3(May 1984), 70-75.

72. [Mill85] - R. Miller and Q.F. Stout, Pyramid computer algorithms for determi.ning
geometric properties of images, Proceedings of the Symposium on Computational
Geometry, Baltimore, June 1985, 263-269.

73. [Morr85| - D.T. Morris and P. Quarendon, An algorithm for direct display of CSG
objects by spatial subdivision, Fundamental Algorithms for Computer Graphics, R.A.
Earnshaw, Ed., Springer-Verlag, Berlin, 1985, 725-736.

74. [Mort85] - M.E. Mortenson, Geomelric Modeling, John Wiley and Sons, New York,
1985.

75. [Mort66] - G.M. Morton, A computer oriented geodetic data base and a new tech-
nique in file sequencing, IBM Ltd., Ottawa, Canada, 1966.

76. [Nava86a] - I. Navazo, Contribucio a les tecniques de modelat geometric d’objectes
poliedrics usant la codificacio amb arbres octals, Ph.D. dissertation, Escola Tecnica Supe-
rior d’Enginyers Industrials, Department de Metodes Informatics, Universitat Politech-
nica de Barcelona, Barcelona, Spain, January 1986,

77. [Nava86b] - I. Navazo, D. Ayala, and P. Brunet, A geometric modeller based on the
exact octree representation of polyhedra, Escola Tecnica Superior d’Enginyers Industri-
als, Department de Metodes Informatics, Universitat Politechnica de Barcelona, Bar-
celona, Spain, January 1986. :

78. [Nels86] - R.C. Nelson and H. Samet, A consistent hierarchical representation for
vector data, Computer Graphics 20, 4(August 1986), 197-206 (also Proceedings of the
SIGGRAPH’86 Conference, Dallas, August 1986).

79. [Oliv83a] - M.A. Oliver and N.E. Wiseman, Operations on quadtree-encoded images,
Computer Journal 26, 1{February 1983), 83-91. ‘

80. [Oliv83b) - M.A. Oliver and N.E. Wiseman, Operations on quadtree leaves and
related image areas, Computer Journal 26, 4(November 1983), 375-380.

© 81. [Pete85] - F.J. Peters, An algorithm for transformations of pictures represented by
quadtrees, Computer Vision, Graphics, and Image Processing 32, 3(December 1985),
397-403.

82. [Posd82] - J.L. Posdamer, Spatial sorting for sampled surface geometries, Proceed-
‘ings of SPIE - Biostercometrics’82 861, San Diego, August 1982.

42

83. [Redd78] - D.R. Reddy and S. Rubin, Representation of three-dimensional objects,
CMU-CS-78-113, Computer Science Department, Carnegie-Mellon University, Pitts-
burgh, April 1978,

84. [Requ80] - A.A.G. Requicha, Represent.ations of rigid solids: theory, methods, and
systems, ACM Computing Surveys 12, 4(December 1980), 437-464.

85. [Roge85] - D.R. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill
Book Company, New York, NY, 1985.

86. [Rose82] - A. Rosenfeld, H. Samet, C. Shaffer, and R.E. Webber, Application of
hierarchical data structures to geographical information systems, Computer Science TR-
1187, University of Maryland; College Park, MD, June 1982.

87. [Rose83] - A. Rosenfeld, H. Samet, C. Shaffer, and R.E. Webber, Application of
hierarchical data structures to geographical information systems phase II, Computer Sci-
ence TR-1327, University of Maryland, College Park, MD, September 1983.

88. [Rubi80] - S M. Rubin and T. Whitted, A 3-dimensional representation for fast
rendering of complex scenes, Computer Graphics 14, 3(July 1980), 110-116 (also Proceed-
ings of the SIGGRAPH’80 Conference, Seattle, July 1980).

89. [Ruto68] - D. Rutovitz, Data structures for operations on digital images, in Pictorial
Pattern:Recognition, G.C. Cheng et al., Eds., Thompson Book Co., Washington D.C,,
1968, 105-133.

90. [Same80a] - H. Samet, Region representation: quadtrees from boundary codes, Com-
munications of the ACM 28, 3(March 1980), 163-170.

91. [Same80b] - H. Samet, Region representation: quadtrees from binary arrays, Com-
puter Graphics and Image Processing 18, 1{May 1980), 88-93.

92. [Same81a] - H. Samet, An algorithm for converting rasters to quadtrees, IEEE Tran- |
sactions on Pattern Analysis and Machine Intelligence 8, 1{January 1981), 93-95.

93. [Same81b] - H. Samet, Connected component labeling using quadtrees, Journal of
the ACM 28, 3(July 1981), 487-501.

94. [Same82a| - H. Samet, Neighbor finding techniques for images represented by quad-
trees, Computer Graphics and Image Processing 18, 1(January 1982), 37-57.

95.. [Same82b] - H. Samet and R.E. Webber, On encoding boundaries with quadtrees,
Computer Science TR-1162, University of Maryland, College Park, MD, February 1982.

96. [Same84a] - H. Samet, Algorithms for the conversion of quadtrees to rasters, Com-
puter Vision, Graphics, and Image Processing 26, 1{April 1984), 1-16.

97. [Same84b] - H. Samet, The quadtree and related hierarchical data structures, ACM
Computing Surveys 16, 2(June 1984), 187-260. : :

43

[Same84c] - H. Samet, A. Rosenfeld, C.A. Shaffer, R.C. Nelson, and Y.G. Huang,
Application of hierarchical data structures to geographical information systems Phase I
Computer Science TR-1457, University of Maryland, College Park, MD, November 1984.

[Same84d] - H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, A geographic
information system using quadtrees, Pattern Recognition 17, 6 (November/December
1984), 647-656.

100. [Same85a] - H. Samet, A top-down quadtree traversal algorithm, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 7, 1(January 1985), 94-98.

101. {Same85b| - H. Samet and M. Tamminen, Efficient component labeling of images of
arbitrary dimension, Computer Science TR-1480, University of Maryland, College Park,
MD, February 1985.

102. [Same85¢c| - H. Samet and R.E. Webber, Storing a collection of polygons using
quadtrees, ACM Transactions on Graphics 4, 3(July 1985), 182-222 (also Proceedings of
Computer Vision and Patiern Recognition §3, Washington, DC, June 1983, 127-132; and
University of Maryland Computer Science TR-1372).

103. [Same85d| - H. Samet and M. Tamminen, Bintrees, CSG irees, and time, Computer
Graphics 19, 3(July 1985), 121-130 (also Proceedings of the SIGGRAPH’85 Conference,
San Francisco, July 1985; and University of Maryland Computer Science TR-1472).

104. [Same85e| - H. Samet, Data structures for quadtree approximation and compres-
ston, Communications of the ACM 28, 9(September 1985), 973-993 (also University of
MaryIand Computer Science TR-1208).

105. [Same85f] - H. Samet and C.A. Shaffer, A model for the analysis of neighbor
finding in pointer-based quadtrees, IEEE Transactions on Pattern Analysis and Machine
Intelligence 7, 6(November 1985), 717-720 (also University of Maryland Computer Sci-
ence TR-1432).

106. [Same85g] - H. Samet, A. Rosenfeld, C.A. Shaffer, R.C. Nelson, Y-G. Huang, and
K. Fujimura, Application of hierarchical data structures to geographic information sys-
tems: phase IV, Computer Science TR-1578, Umversxty of Maryland, College Park, MD,
December 1985.

107. [Same86a| - H. Samet, C.A. Shaffer, and R.E. Webber, Digitizing the plane with
cells of non-uniform size, to appear in Information Processing Letters (also University of
Ma,ryla,nd Computer Science TR-1619).

108. [Same86b] - H. Samet, Bibliography on quadtrees and related hierarchical data
structures, in Data Structures for Raster Graphics, F.J. Peters, L.R.A. Kessener, and
M.L.P. van Lierop, Eds., Springer Verlag, Berlin, 1986, 181-201.

109. [Same86c| - H. Samet and M. Tamminen, A general approach to connected com-

ponent labeling of images, Compute Science TR-1649, University of Maryland, College
Park, MD, August 1986 (see also Proceedings of the IEEE Computer Vision and Pattern

44

Recognition Conference, Miami Beach, June 1986, 312-318).

110. [Same86d| - H. Samet and R.E. Webber, A comparison of the space requirements of
multi-dimensional quadtree-based file structures Computer Science TR-1711, University
of Maryland, College Park, MD, September 1986

111. [Shaf87| - C.A. Shaffer and H. Samet, Optimal quadtree construction algorithms, to
appear in Computer Vision, Graphics, and Image Processing.

112. [Shne81] - M. Shneier, Two hierarchical linear feature representations: edge pyram-
ids and edge quadtrees, Computer Graphics and Image Processing 17, 3(November 1981),
211-224.

113. [Simo69] - H.A. Simon, The Sciences of the Artificial, MIT Press, Cambridge, MA,
1969.

114. ([Sloa79] - K.R. Sloan Jr. and S.L. Ta1‘1imoto, Progressive refinement of raster
images, IEEE Transactions on Computers 28, 11(November 1979), 871-874.

115. [Suth63] - LE. Sutherland, Sketchpad, a man-machine communication system,
Proceedings of the Spring Joini Computer Conference, Detroit, MI, May 1963, 329-346.

116.- -[Suth74] - LE. Sutherland, R.F. Sproull, and R.A. Schumacker, A characterization
of ten hidden-surface algorithms, ACM Computing Surveys 6, 1{March 1974), 1-55.

117, [Tamm84a] - M. Tamminen, Comment on quad- and octtrees, Communications of
the ACM 27, 3(March 1984), 248-249.

118. [Tamm84b} - M. Tamminen and H. Samet, Efficient octree conversion by connec-
tivity labeling, Computer Graphics 18, 3(July 1984}, pp. 43-51 (also Proceedings of ihe
SIGGRAPH8{ Conference, Minneapolis, July 1984).

119. [Tarj75] - R.E. Tarjan, Efficiency of a good but not linear set union algorithm,
Journal of the ACM 22, 2(April 1975), 215-225

120. {vanL84] - M.L.P. van Lierop, Transformations on pictures represented by
leafcodes, Department of Mathematics and Computing Science, Eindhoven University of
Technology, Eindhoven, The Netherlands, 1984.

121. [Veen85] - J. Veenstra and N. Ahuja, Octree generation from silhouette views of an
object, Proceedings of the International Conference on Robotics, St. Louis, March 1985,
843-848. :

122. |Warn68| - J.E. Warnock, A hidden line algorithm for halftone picture representa-
tion, Computer Science Department TR 4-5, University of Utah, Salt Lake City, May
1968.

123. [Warn69a] - J.E. Warnock, The hidden line problem and the use of halftone
displays, in Pertinent Concepts in Computer Graphics - Proceedings of the Second

45

University of Illinols Conference on Computer Graphics, M. Faiman and J. Nievergelt,
Eds., University of Illinois Press, Urbana, Illinois, March 1969, 154-163.

124, [Warn69b] - J.E. Warnock, A hidden surface algorithm for computer generated half
tone pictures, Computer Science Department TR 4-15, University of Utah, Salt Lake
City, June 1969.

125. [Wats84] - D.F. Watson, and GM. Philip, Systematic triangulations, Computer
Vision, Graphics, and Image Processing 26, 2(May 1984), 217-223.

126. [Webb84] - R.E. Webber, Analysis of quadtree algorithms, Ph.D. dissertation, TR-
1376, Computer Science Department, University of Maryland, College Park, MD, March
1984,

127. [Wegh84] - H. Weghorst, G. Hooper, and D.P. Greenberg, Improved computational
methods for ray tracing, ACM Transactions on Graphics 8, 1{January 1984), 52-69.

128. [Weil77] - K. Weiler and P. Atherton, Hidden surface removal using polygon area
sorting, Computer Graphics 11, 2(Summer 1977), 214-222 (also Proceedings of the SIG-
GRAPH'77 Conference, San Jose, California, July 1977). '

129. [Whel82] - D.S. Whelan, A rectangular array filling display system architecture,
Computer Graphics 16, 3(July 1982), 147-153 (also Proceedings of the SIGGRAPH’82
Conference, Boston, July 1982).

130. [Whit80] - T. Whitted, An improved illumination model for shaded display, Com-
munications of the ACM 29, 6(June 1980), 343-349.

131. [Will85] - P. Willis and D. Milford, Browsing high definition color pictures, Com-
puter Graphics Forum {, (1985), 203-208. .

132. [Wood82] - J.R. Woodwark and K.M. Quinlan, Reducing the effect of complexity
on volume model evaluation, Computer-aided Design 14, 2(1982), 89-95.

133. [Wyvi85] - G. Wyvill and T.L. Kunii, A functional model for constructive solid
geometry, The Visual Computer 1, 1{July 1985), 3-14.

134. [Yama84] - K. Yamaguchi, T.L. Kunii, I{. Fujimura, and H. Toriya, Octree-related
data structures and algorithms, JEEE Computer Graphics and Applications 4, 1{Januvary
1984), 53-59.

135. [Yau83] - M. Yau and S.N. Srihari, A hierarchical data structure for multidimen-
stonal digital images, Communications of the ACM 26, 7(July 1983), 504-515.

136. [Yau84] - M. Yau, Generating quadtrees of cross-sections from octrees, Computer
Vision, Graphics, and Image Processing 27, 2{August 1984), 211-238.

137. [Yerr83] - M.A. Yerry and M.S..Shepard, A modified quadtree approach to finite
element mesh generation, I[EEE Computer Graphics and Applications 8,

1(January/February 1983), 39-46.
' | 46 -

"IeuIOT ejlep I93ser e ()
pue {3jewIOy e3lep x03089A B (B) Ul pajussozdex obewt ardulexy

*T @2anbtg

O L

Y

 §
Y

HIGL[GLIALIELICLIFLIALICL,,
GIMEMATEICTDM DB B[

Figure 2. Linked list of records representing, by pairs of
their endpoints, the line segments of Figure la.

Figure 3.

I

7. b N

o\

ﬁ_‘qﬁi |
) O

/T

et et (;

_<

Tol)

-t —— i

AT

e O— e

./

O

Winged-edge representation of the line segments
and their endpoints of Figure la. The result is
a graph with two types of nodes shown as squares
and narrow solid rectangles. The squares
correspond to endpoints of line segments while
the rectangles correspond to the actual line-
segments. Each arrow denotes an edge in the
graph between two nodes. Edges can exist be-
tween two line segments and also from line
segments to their endpoints. '

((]) Unbounded objects for use in parts (b}-(f).

Figﬁfe 4. An example of the use of bounding objects.

‘ _ (b) Bounding boxes

(C) Bounding circles.

(d) Hierarchical bounding boxes.

*9913 drajzs burpuodsexiod 8yl (q) pue sdrils Jo AUyoIeIaTy
® 03uT uotTiTtsoduoosp s3I (B) 0 pue g sjutrod usS9mldg. 2AIND ¥ G 2aInbrta

Figure 7.

Q) Original image.

C Second and final
level of decom-
position. .

Illustration of the quadtree

(b)First level of
decompesition.

Example of an ir-
regular decompos-
ition. :

decomposition process.

77/

DN

'Figure 8. The edge quadtree for the vector data of -Figure la.
The maximum level of decomposition is 4.

‘uoT3ejussaadsar 9911 S3T {O) pue
fuot3Tsoducosp YooTq 881300 S3T (q) {308lqo TeuorsuswIip-o9Iys ordwexy (v) °6 =anbrg

(2) (@ (e)

2010168L96

NW Sk
NE oW

OO BEB O

Figure 10. Pointer encoding of the quadtree of Figure 7.

Internal nodes are represented by circular
nodes. Terminal nodes are represented by

square nodes whose contents correspond to the
blocks in Flgure 7.

Figure 11. An example map whose encoding using a pointer quadtree
is more efficient than its encoding using a linear

quadtree.

_ , * (D) 3Jo weisAs ajeurp
-I000 931300 3yl bursn usym g sanbrg Jo oelqo 9y3 o3 burtpuodsexiod aaxjurqg
[PUOTSURWIP-231Yy3 9yl Jo uoriejussaadear 2913 (q) pue uorjrsodwossp yoolg (e} r-z1 sanbtg

(©) | (q) o (e)

Figure 13. Example quadtree where the perimeter
does not exceed the base 2 logarithm
of the width of the image. The
region in the image is assumed to
consist of four pixels each of unit
width. - S :

Figure 14.

(a) (d)
(b) ‘ _ (e)
(c) : (£)

An illustration of the relative growth of the array
and quadtree representations at different levels. of
resolution for a simple triangular region. (a}-(c)
are the array representations of the triangle at
resolutions 1, 2, and 3, while (d)~(f) are the cor-
responding quadtree representations at the same
resolutions. Whenever any part of a square or node
partially overlaps the interior of the triangle,
the node or square is treated as being in the
region (and shown shaded). Note that the quadtree
at resolution 1 (i.e., in (d)) has just one node

~as the triangle overlaps each of the four blocks

and thus they have been merged.

g | \
Vv
Y
N

M®

Y

Figure 15. A vector data quadtree corresponding to the
image of Figure la.

{a)

(b) \J\ |

N

Figure 16. (a) Exarﬁple-thrée—dimensional object and
(b) its corresponding vector octree.

o.

Isb

|12 13

Figure 17. Example illustrating the neighboring
" object problem. P is the location
of the pointing device. The nearest
obiect is represented by point B in
node 6.

| 2 3 4 7 8 910

(a) Sample image and its quadtree.

29 | 30
28
33 34
I
| J
28 33 34
2930 3| 32

(c) Intersection of the images
in {a) and (b). '

19 20

1213141516 i7 I8

(b) Sample image and its gquadtree.

2l 22 23

24 252627

(d} Union of the images
in ¢(a) and (b).

Figure 18. Example of set-theoretic operations.

(a) | | (b)

BD|CE

BD|CE
(c) (d)

Figure 19. Example of rectilinear unaligned-quadtree intersection.
(2a) A 4x4 quadtree with a lower lefthand corner at (0,2).
(b) A 4x4 quadtree with a lower lefthand corner at (2,0).
(c) The intersection of (a) and (b) with (a) as the
aligned gquadtree.
{d) The intersection of {(a) and (b) with (b) as the
allgned quadtree.

{a)

(b)

Figure 20.

Examples showing how many squares
can be overlapped when a square
of size WxW is overlaid on a grid
of squares such that each square
is of size WXW so that the square
and the grid are (a) rectilinear-
ly unaligned; (b} generally unal-
igned. _

(c)

Figure 21. Example of shifting a 4x4 quadtree by 2 units to the right
and 1 unit up.

(a)
(b)

(c)

Original quadtree.

Relative position of the two gquadtrees that are being
intersected.

The BLACK quadtree is shown with broken lines.

The result of shifting the quadtree of (a) -

(b) Rotation of (a) by'l6 degrees in a
' counterclockwise direction about
its origin.

Pigure 22. Example of rotation. Broken lines depict the decomposition
of the unaligned quadtree and solid lines depict the decom-
position of the aligned gquadtree. . :

(d)

1
1
1
,.(“
\ A \
g \ \ \
[}
\ A \ \
\‘ \‘ \‘
\ | B2
L} [Y \‘
' \ -
1 [} —— \
] 1 "a' \
\ \ __.p"' 3
\ .
-
\ - r \
- L
1,-———" \D@* \
N \ \
Ao, \ \
L 1
\ \ \
\ \ \
A \ \
| \ \
. 1 \ -
\ E -
1 1Y -
] -
L] |
11 -—"#L
“ - .—"’"
Lo~

of subdivision.

(C) Decomposition after the first level

Rotated gquadtree with one level
of subd1v151on.

e
PP\ \
L -— 1 1y
- 1 \ 1
- ! \ \
U ‘\ ‘\ \ -
1 \ |} \—"'-— \
\ \ \ - \
- L]
1 A s [}
“ V- \ \‘
- 1 i \
“ _—“ .r‘ AB “ \‘ \‘
\‘ k \ \ ‘.—”“
\ \ \
1 } | i ‘
\ “"—
L] - [\ \l
\ ——""-’ ‘\ T “ \\ \
1 L. 4
i) - 1
\ Y BST A1\ B7]}
L] ¥
‘ 1 —— [1 i
P o 1
‘\ " \‘pﬁ— \ \ v
-) 1
‘\ D.B \ A ="
\ \ A
\ ‘\ BG “—""'- - 88
1 [} -
="

(e) Decomposition after the second

level of subdivision.

S

(f) Rotated quadtree with two levels
of subdivision.

Decomposition after the third level

o]
O
-
_— -
Lt B A
1 [t | L] \ el
vy TS \ L\ 8%
\) \\f\ \ v 1 ¥ - o]
-] [} \ \ L~) \ =]
L Elda \ \ \ L =-F \ \ v i
L] 1 1} L ™
] \ \ \.\\-“ J- f \|\\\\ “
1 \ \‘\&—. \ u —— - o
L) .‘. 4 -
\ A\ -~
Voo e o
e S

Rotated qguadtree with three
levels of subdivision.

(h)

7 8 9 10
(a)

8 10 7 9

(b)

Figure 23. Rotating (a) by 90° counterclockwise yields (b).

(D ‘*8-T) ¥ 8pou jo Joqubrau

‘uotiejusssadsa 9815 (9)

3N

®©

Ho

MN

®

ursises ayz burjeoorl 30 ssoooxd sylr pz 2anbTg

‘uoTaTsodwooap JYooTdg Amv

d

ul

7

Ne
|

IN|

AN

Figure 25. Raster scanning order for the image of Figure 7.

Figure 26. The viewing pyramid associated with the black pixel
"{shown shaded) in the viewplane.

(q). (b) (c)

Figure 27. Example of scene creation via cel overlay.
(a) Plant cel.
(b) Tree cel.
{c) Possible overlay of (b) on (a).

Figure 28. Example of a three-dimensional
image where occlusion is not
transitive.

(¢) Decomposition of
(b) into sixteen
patches,

(b) Decomposition of (a)
into four patches.

(d) Final decomposition
such that each
patch contains no
more than one pixel

center.

(e} The raster image

corresponding to
the decomposition.

Figure 29. An example of the use of recursive decomposition into patches
for the display of curved surfaces. Where space permits

(i.e., in (a) and (b)), patches are denoted by sclid lines and

their approximating polygons are denoted by broken lines.

(a) .

(c)

Figﬁre 30. {a) A three-dimensional object; (b) its boundary
: repre_sentation; and {(c) its C8G tree.

(a) | (b)

Figure 31. (a) Perspective projection.of a cube.
(b) Parallel projection of a cube.

5
17
30
(a)
40 4] 42 43
(b)
Figure 32. (a) Example polygon and (b) its corresponding quadtree with

a ray shown to emanate from the viewpoint and reflect from
the object. o '

