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Hierarchical Data Structures for
Three-Dimensional Data

Hanan SAMET

Data structures {octree, quadtree), graphic display, three-dimensional models, morphology

Abstract: Anoverview, with an emphasis on recent results, is presented of the use of hierarchical data
structures such as the octree and quadtree to represent three-dimensional data. They are based on the principle
of recursive decomposition. The focus is on the representation of data used in solid modeling and the representa-
tion of terrain data. The emphasis is on three-dimensicnal regions and surfaces.

[Hierarchische Datenstrukturen fiir dreidimensionale Daten]

Kurzfassung: Unter besonderer Beriicksichtigung aktueller Ergebnisse soll die vorliegende Arbeit
einen Uberblick tiber den Gebrauch hierarchischer Datenstrukturen (z.B. Octree und Quadiree) fiir die Darstel-
lung dreidimensionaler Daten geben. Sie basieren auf dem Prinzip rekursiver Aufspaltung. Das Hauptaugen-
merk liegt auf der Darstellung von Daten fiir dreidimensionale Modelle und der Darstellung von Geldndedaten
mit Betonung dreidimensionaler Regionen und Oberfléchen.
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1 Introduction

Hierarchical data structures are important in the domains of image processing, solid modeling,
computer graphics, and geographic information systems. They are based on the principle of recur-
sive decomposition (similar to divide and conquer-methods). They are used primarily as devices

Author’s address: Dr. H. SaMeT, Computer Science Department, Center for Automation Research and Institute
for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742, USA.



46 HANAN SAMET

to sort data of more than one dimension and different spatial types. The term quadtree is
often used to describe this class of data structures. For a more extensive treatment of this subject,
see SAMET (1990a, b).

In this paper we review the use of hierarchical data structures to represent three-dimensional
regions and surfaces. Our presentation is organized as follows: Section 2 describes the region
guadtree and octree and briefly reviews the historical background of the origins of hierarchical
data structures for regions. Section 3 discusses the region octree while Section 4 discusses the PM
octree. Section 5 describes hierarchical surface-based object representations. Section 6 contains
concluding remarks in the context of a geographic information system that makes use of these
concepts.

2 Historical Background

The term gquadtree isused to describe a class of hierarchical data structures whose com-
mon property is that they are based on the principle of recursive decomposition of space. They
can be differentiated on the following bases: (1) the type of data that they are used to represent,

- {2) the principle guiding the decomposition process, and (3) the resolution (variable or not).
Currently, they are used for points, rectangles, regions, curves, surfaces, and volumes. The de-
composition may be into equal parts on sach level (termed a regular decomposi-
tion), orit may be governed by the input. The resolution of the decomposition (i.e., the number
of times that the decomposition process is applied) may be fixed beforehand or it may be governed
by properties of the input data.
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Fig. 1: A region, its binary array, its maximal blocks, and the corresponding quadtree: (a) region; (b) binary
array; {€) block decomposition of the region in (a); blocks in the region are shaded; {d} quadtree representation
of the blocks in (c)
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The most common quadiree representation of dataisthe region quadtree.Itisbased
on the successive subdivision of the image array into four equal-size quadrants. If the array does
not consist entirely of ones or entirely of zeros (i.e., the region does not cover the entire array),
it is then subdivided into quadrants, subquadrants, etc., until blocks are obtained (possibly single
pixels) that consist entirely of ones or entirely of zeros.

As an example of the region quadtree, consider the region in Figure 1a, which is represented
by the 23 x 2° binary array in Figure 1b. Observe that the ones correspond to picture elements
(termed pixels)that are in the region and the zeros correspond to picture elements that are
outside the region. The resulting blacks for the array of Figure 1b are shown in Figure 1c. This
process is represented by a tree of degree 4 (Fig. 1d). The leaf nodes correspond to those blocks
for which no further subdivision is necessary. A leaf node is black or white, depending on whether
its corresponding block is entirsly inside or entirely outside of the represented region. All non-leaf
nodes are gray.

Quadtrees can also be used to represent non-binary images. In this case, we apply the same
merging criteria to each color. For example, in the case of a landuse map, we simply merge all
wheat-growing regions, and likewise for corn, rice, etc. This is the approach taken by SAMET
et al. (1984). :

Unfortunately, the term qua d tree has taken on more than one meaning. The region quitad-
tree, as described here, is a partition of space into a set of squares whose sides are all a power of
two long (KLWGER 1971). A similar partition of space into rectangular quadrants, termed a
point quadtree {FINKEL & BENTLEY 1974), is an adaptation of the binary search tree to two
dimensions (which can be easily extended to an arbitrary number of dimensions). Its shape is
dependent on the order in which the points are added to it.

Quadtree-like data structures can alse be used to represent images in three dimensions and
higher. The octree (HUNTER 1978; JACKINS & TANIMOTO 1980; MEAGHER 1982; REDDY & RUBIN 1978)
data structure is the three-dimensional analog of the quadtree. It is constructed in the following
manner: We start with an image in the form of a cubical volume and recursively subdivide it into
eight congruent disjoint cubes (called octants} until blocks are obtained of a uniform color or a
predetermined level of decomposition is reached. Figure 2a is an example of a simple three-
dimensional object whose raster octree block decomposition is given in Figure 2b and whose tree
representation is given in Figure 2c.
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Fig. 2: (a) Example of a three-dimensional oiﬁject; (b) its octree block decomposition;
and (c) its tree representation
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Depending on the particular implementation of the quadtree, we may not necessarily save space
(e.g., in many cases a binary array representation may still be more economical than a quadtree).
However, the effects of the underlying hierarchical aggregation on the execution time of the
algorithms are more important. Most quadtree {and octree) algorithms are simply pre-order
traversals of the tree and, thus, their execution time is generally a linear function of the number
of nodes in the quadtree. A key to the analysis of the exécution time of quadtree algorithms is
the Quadtree Complexity Theorem (HunTER 1978, HUNTER & STEIGLITZ 1979)
which states:

For a quadtree of depth q representing an image space of 2% x 29 pixels where these pixels repre-
sent a region whose perimeter measured in pixel-widths is p, then the number of nodes in the
quadtree cannot exceed 16 - g—11 + 16 * p.

Since under all but the most pathological cases (e.g., a small square of unit width centered in
a large image), the region perimeter exceeds the base 2 logarithm of the width of the image con-
taining the region, the Quadtree Complexity Theorem means that the size of the quadtree represen-
tation of a region is linear in the perimeter of the region.

The Quadtree Complexity Theorem holds for three-dimensional data (MEAGHER 1980} where
perimeter is replaced by surface area, as well as higher dimensions for which it is stated as follows:

The size of the k-dimensional quadtree of a set of k-dimensional objects is proportional to the
sum of the resolution and the size of the (k—1)-dimensional interfaces between these objects.

The Quadtree Complexity Theorem also directly impacts the analysis of the execution time of
algorithms. In particular, most algorithms that execute on a quadtree representation of an image
instead of an array representation have an exscution time that is proportional to the number of
blocks in the image rather than the number of pixels. This means that the application of a quadtree
algorithm to a problem in d-dimensional space executes in time proportional to the analogous
array-based algorithm in the (d—1)-dimensional space of the surface of the original d-dimensional
image. Therefore, quadtrees (and octrees) act like dimension-reducing devices.

3 Region Octrees

The region octree is the simplest variant of the octree data structure. It is also usually the one
that reguires the most space. It has the same drawback as the region quadtree in the sense that it
is an approximation and, thus, it is not so suitable for some applications. Constructing a region
octree from a three-dimensional array representation of an image is quite costly because of the
sheer amount of data that must be examined. In particular, the large number of primitive elements
that must be inspected means that the conventional raster-scanning appreach used to build quad-
trees spends much time detecting the mergibility of nodes.

The easiest way to speed up the region octree construction process is to reduce the amount of
data that needs to be processed. FRANKLIV & AKMAN (1985) show how to build a region octree from
a set of rectangular parallelepipeds approximating the object. This data can be acquired, for
example, by casting parallel rays along the z-axis and perpendicular to the x,y-plane.

In many applications, an even more fundamental problem than building the octree is acquiring
the initial boundary data to form the boundary of the object being represented. One approach is
to use a three-dimensional pointing device to create a collection of samples from the surface of the
object. After the point data is collected, it is then necessary to interpolate a reasonable surface to
join it.

Interpolation can be achieved by triangulation. A surface triangulation in three-dimensional
space is a connected set of disjoint triangles that forms a surface with vertices that are points in
the original data set. There are many triangulation methods currently in use. PospaMER (1982)
suggests use of the ordering imposed by an octree on a sst of points (e.g., by bit interleaving
(SaMET 1990b) as the basis for determining the points that should be connected to form the
triangles.
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Pospamer’s algorithm uses an octree for which the leaf criterion is that no leaf can contain more
than three points. The initial set of triangles is formed by connecting the points in the leaf nodes
that contain exactly three points. Whenever a leaf node contains exactly two points, these points
are connected to form a line segment that is associated with the leaf node. This is the starting point
for a bottom-up triangulation of the points. It merges disjoint triangulations to form larger trian-
gulations.

The isolated points (i.e., leaf nodes that contain just one point} and isolated line segments are
treated as degemerate triangulations. The triangulation associated with a gray node is the result of
merging the triangulations associated with each of its sons. By merging or joining
two triangulations, we mean that a sufficient number of line segments is drawn between vertices
of the two triangulations so that we get a new triangulation containing the original two triangu-
lations as subtriangulations.

When merging the triangulations of the eight sibling octants, a number of heuristics can be used
to guide the choice of which triangulations are joined first. The order in which we choose the pair
of triangulations to be joined is determined, in part, by the following factors: First, it is preferred
to merge triangulations in siblings whose corresponding octree blocks have a common face. If this
is impossible, then triangulations in nodes that have a common edge are merged. Again, if this
is not feasible, then triangulations in nodes that have a common vertex are merged. For each
preference, the triangulations that are closest, according to some distance measure, are merged
first.

There are many other methods of building an octree representation of an object. The simplest
is to take quadtrees of cross-sectional images of the object and merge them in sequence. This tech-
nique is used in medical applications in which the cross sections are obtained by computed
tomography methods (YAU & SrRiHART 1983). YAU & SRIBARI {1983) discuss this technique in its full
generality by showing how to construct a k-dimensional octree-like representation from multiple
{k—1)-dimensional cross-sectional images. YAU & Smnar?’s aigorithm proceeds by processing the
cross sections in sequence. Fach pair of consecutive cross sections is merged into a single cross
section. This pairwise merging process is applied recursively until there is one cross section left
for the entire image.

In other applications, the volume of the available data is not as large. Often, a small number of
two-dimensional images is used to reconstruct an octree representation of a three-dimensional
object or a scene of three-dimensional objects. In this case, projection images (termed sil -
houettes) are taken from different viewpoints. Thesa silhousttes are subsequently swept
along the viewing direction, thereby creating a bounding volume, represented by an octree, that
serves as an approximation of the object. The actrees of the bounding volumes, corresponding to
views from different directions, are intersected to vield successively finer approximations of the
object. In the rest of this section, we elaborate further on methods based on silhousttes.

MARTIN & AGGARWAL (1983) use this method with volume segments that are parallelepipeds
stored in a structure that is not an octres. CHIEN & AGGARWAL (1984) show how to use this methoed
to construct an octree from the quadtrees of the three orthogonal views. HoNG & SHNEIER {1985)
point out that the task of intersecting the octree and the bounding volume can be made more effi-
cient by first projecting the octree onto the image plane of the silhouette, and then performing the
intersection in the image plane. In contrast, NOBORIO et al. (1988) perform the intersection check
directly in the three-dimensional space rather than preceding it by a projection. In the rest of this
section, we assume that the silhouettes result from parallel views, although perspective views
have also been used (e.g., SRIVASTAVA & AHUJA 1987).

Generally, three orthogonal views often are insufficient for an accurate approximation of the
object. Thus, more views are needed. CHIEN & AGGARWAL [1986) overcome this problem by con-
strucling what they terma generalized octree from thres arbitrary views having the
requirement that they are not coplanar. The generalized octree differs from the conventional region
octree in that each node represents a parallelepiped with faces parallel fo the viewing planes.
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The approximation is refined by intersecting the projection of each object node P in the generali-
zed octree with the image plane of the additional view. P is relabeled as a non-object node or a
gray node unless its projection lies entirely within the object region in the additional view {see
also HONG & ShNEIER 1985).

A problem with using additional views from arbitrary viewpoints is that intersection operations
must be explicitly performed to determine the relationship between the projections of the octants
in the octree space and the silhouette of the new view. In the general case, the silhouette can be
approximated by a polygon. The intersection of the polygonal projection of an octant with the
polygon approximation of a silhoustte is a special case of the polygon clipping problem.

CHIEN & AGGARWAL (1984) and AHUJA & VEENSTRA (1989) point out that sweeping the silhouette
image of an orthographic parallel projection and restricting the views enable the exploitation of
a regular relation between octants in the octree space and quadrants in the image space. This
means that the intersection operation can be replaced by a table-lookup operation. The key idea
is to represent the image array by a quadtree and to make use of mappings between the quadrants
and the octants so that the octree can be constructed directly from the silhouettes of the digitized
image. We thereby avoid the need to explicitly perform the sweep operation.

The image array corresponding to the silhouette is processed as if we were constructing its quad-
tree. CHIEN & AGGARWAL (1984) use three face views while AHUJA & VEENSTRA (1989) use 13 views.
The 10 additional views correspond to 6 edge views and 4 vertex views. Face views are taken with
the line of sight perpendicular to a different face of the octree space; the three faces must be
mutually orthogonal. Edge views are taken with the line of sight passing through the center of an
edge and the center of the octree space. Vertex views are taken with the line of sight passing
through a vertex and the center of the octree space. The vertex views are also known as isometric
projections. :

In some situations, even 13 views are inadequate to obtain a sufficiently accurate approximation
of the object, particularly when the object has a number of concave regions. Here it is best to use
aranging device to obtain range data. The range data can be viewed as partitioning the scene into
three parts: the visible surface of the scene, the empty space in front of this surface, and the
unknown space behind the surface. CoNNOLLY (1984) constructs an octree representation of the
scene that corresponds to the series of such range images. This octree represents a piecewise linear
approximation of the surfaces of the scene. A quadtree is used as an intermediate representation
of a piecewise linear surface approximating the data comprising a single range image prior to its
incorporation into the octree. ConnOLLY (1985) derives an octree-based heuristic for selecting the
positions from which to take subsequent range images. However, the issue of determining the next
«best» view is still an open problem.

A drawback of CoNNOLLY's use of the quadiree as an intermediate representation is that the
quadtree must be transformed into the octree coordinate system when the coordinate axes of the
quadtree are not aligned with those of the octree. This is a relatively complex process from a
computational standpeint. CHieN et al. (1988) also represent the views by quadtrees. However,
they point out that ConnOLLY’s approach can be simplified by exercising control over the confi-
guration of the range sensor. In particular, much of its complexity can be reduced (and avoided)
by assuming that the ranging device is aligned with the cube that corresponds to the scene. This
enables them to take advantage of the interrelationship between the quadtree and octree structures.
They make use of six views to vield six range images — one for each of three pairs of orthogonal
viewing directions.

Chien et al. (1988) generate a quadtree for each range image using a decomposition criterion so
that each block has a constant range value (i.e., each block contains a square surface patch parallel
to the image plane). They assume that the observed object occupies the space extending from the
visible surfaces to the rear boundary of the scene cube (with respect to the ranging device being
at the front for the particular view in question). Based on this assumption, they use a segment tree
(a one-dimensional region guadtree) to represent the subpart of the object that is behind the
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visible surface patch associated with the block. Thus, the object corresponding to each view is a
quadtree in which each leaf node is, in turn, a segment tree. Whereas the quadtree partitions the
two-dimensional image plane into blecks of constant range value, the segment tree decomposes
the remaining dimension (i.e., depth) into object and non-object regions.

The actual octree corresponding to each view (termed a range octree) is obtained by
recursively merging the segment trees of the quadtree nodes. The rationale for using the combi-
nation of quadtrees and segment trees instead of the octree is to reduce the intermediate space
requirements. Memory and time can be saved by not merging the six range octrees directly. In-
stead, once a pair of range octrees corresponding to opposite views (e.g., front and rear) are
obtained, they are merged. The final step merges these three range octrees to yield the desired
octree.

4 PM Octrees

One of the deficiencies of the region octree is that if the faces of the object(s) represented by it
are not rectilinear, then the representation is inexact {it is an approximation). The only exception
is if the faces are mutually orthogonal in which case a suitable rotation operation can be applied
to yield rectilinear faces. In many applications this is not & problem. However, in solid modeling
it is preferable to have an exact representation. When the object has planar faces, an extension of
the PM quadtree, a representation for polygonal maps (SAMET & WEBBER 1985), can be used and
is the focus of this sectian.

In the approach we describe, the resulting decomposition insures that each octree leaf node
corresponds to a single vertex, a single edge, or a single face. The only exceptions are that a leaf
node may contain more than one edge if all the edges are incident at the same vertex. Similarly,
a leaf node may contain more than one face if all the faces are incident at the same vertex or edge.
The resultistermeda PM octree. The above subdivision criteria can be stated more formal-
ly as follows:

(1) At most, one vertex can lie in a region represented by an octree leaf node.

(2) If an octree leaf node's region contains a vertex, then it can contain no edge or face that is
not incident at that vertex.

(3) An octree leaf node’s region that contains no vertices can contain at most one edge.

(4) An octree leaf node's region that contains no vertices and contains one edge can contain no
face that is not incident at that edge.

(5} An octree leaf node’s region that contains no edges can contain at most one face.
(6) Each region’s octree leaf node is maximal.

Implementation of the PM octree involves leaf nodes of type vertex, edge, and face. For our
purposes, it is permissible to have more than two faces meet at a common edge. However, such
a situation can not arise when modeling solids that are bounded by compact, orientable two-
manifold surfaces (i.e., only two faces may meet at an edge and the surface is two-sided). Never-
theless, it is plausible when three-dimensional objects are represented by their surfaces.

The above PM octree formulation was reported almost simultanecusly by three research groups
who each gave it a different name (Avara et al. 1985, CARLBOM et al. 1985; FupMuRa & Kuni 1985).
In fact, it can be traced even further back (HunTer 1981; QUINLIN & WOODWARK 1982; TAMMINEN
1981, 1982; VANDERSCHEL 1984). The most extensive treatment of this data structure is to be found
in the Ph.D. dissertation of Navazo (1986a]. This work contains a detailed analysis of the storage
requirements of the representation. It also includes algorithms for Boolean operations involving
it, and conversion between it and a boundary model.

PM octree technigues have also been extended to handle curvilinear surfaces. Primitives in-
cluding cylinders and spheres have been used in conjunction with a decomposition rule Hmiting
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the number of distinct primitives that can be associated with a leaf node (FuamoTO et al. 1986;
WyVILL & KUNII 1985). Another approach (Navazo et al. 1986b) extends the concepts of face, edge,
and vertex nodes to handle faces represented by biquadratic patches. The use of biguadratic
patches enables a better fit with fewer primitives than can be obtained with planar faces, thereby
reducing the size of the octree. The difficulty in organizing curved surface patches by using octrees
lies in devising efficient methods of calculating the intersection between a patch and an octree
node. Observe that in this approach we are organizing a collection of patches in the image space.
This is in conirast to decomposing a single patch in the parametric space by use of quadtree tech-
niques [(e.g., CATMULL 1975).

5 Surface-Based Object Representations

Often, three-dimensional objects can be represented in terms of their surfaces. For some applica-
tions the primary interest is in the representation of surfaces as 2.5-dimensional images — i.e., for
each pair (x,v), there corresponds a unigue value of z. In applications in solid modeling the re-
quirement that the value of z be unique is relaxed. In this section we give a brief overview of hier-
archical representations of 2.5-dimensional images in the context of processing topographic data.
The problem usually arises as one of reconstructing a surface in a digital environment. It is usually
formulated as the interpolation of a function of two variables (say x and y) with values given at
points that are either arbitrarily located or drawn from a uniformly-spaced grid. For an in-depth
overview of this field, see the recent survey of De FrLorian {1987).

Regardless of how the surface is sampled, the representations should adapt to the changes in
the terrain. The most common way of representing topographic data is to record it in a fixed
rectangular or triangular grid (known as a gridded digital terrain model). An alternative method,
which is more compact, is capable of capturing point and line features (e.g., peaks, pits, passes,
ridges, and valleys) in the surface by approximating the surface by a network of planar non-
overlapping triangles. The result is known as a Triangular Trregular Network (TIN) (PEUCKER &
CeRIsMAN 1975). Unfortunately, an arbitrary triangulation is usually unsatisfactory for the pur-
pose of interpolation, due to the high likelihood that the triangles are thin and elongated (i.e., the
triangles should be as equiangular as possible).

When the amount of data is large, the triangular network approach becomes unwieldy in terms
of storage requirements. In this case, there are two possible solutions. The first is a pyramid-like
approach that represents the surface at different predefined levels of precision. The second ap-
proach, and the one we focus on, represents different parts of the surface at different levels of
resolution. Representations based on such an approach are usually characterized as being hierar-
chical. The hierarchical methods that are commonly used are based on either triangulations or
rectangular decompositions.

Hierarchical triangular decomposition methods are differentiated on the basis of whether the
decomposition is into three (ternary)orfour (quaternary) parts. Ternary decompo-
sitions are formed by taking an internal point of one of the triangles, say T, and joining it to the
vertices of T (e.g., Fig. 3). Quaternary decompositions are formed by joining three points, each on
a different side of a given triangle (e.g., Fig. 4). Hierarchical triangulations are represented by trees
where the root corresponds to the initial enclosing rectangle. For a ternary decomposition, each
triangle is adjacent to at most one triangle on each side. In contrast, for a quaternary decompo-
sition, each triangle may be adjacent to a. number of triangles along a side.

Hierarchical triangulations result in the approximation of a surface S by planar triangular
patches whose vertices are a subset of the data points that define S. For each such patch, an appro-
ximation error is computed that is usually the maximum error of the data points with projections
on the x,y-plane overlapping the projection of the patch on the x,y plane. H the approximation
error exceeds a predefined tolerance, then the patch is subdivided further. The resulting surface
depends on the nature of the decomposition.
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In the case of a ternary decomposition, the surface described by the triangulation is usually
continuous at every level. However, the triangles are often thin and elongated, since the point at
which the triangle is decomposed is internal to the triangle. Thus, equiangularity is not satisfied
(but see the prism tree (FAUGERAS et al. 1984; PONCE & FaucEras 1987)). The ternary decomposi-
tion is usually used when the surface is defined at points that are randomly located. DE FLORIANI
et al. (1984) discuss its use for surface interpolation as well as serving as a data compression
mechanism.

Fig. 3: Example of ternary decomposition.

In the case of a quaternary decomposition, each triangle can be adjacent to a number of triangles
on each of its sides. Thus, the interpolating surface defined on it is generally not continuous unless
all of the triangles are uniformly split — i.e., the resulting tree is a complete quadtree. If the initial
approximating triangle is equilateral and the triangles are always subdivided by connecting their
midpoints, then equiangularity holds and the interpolation is ideal. The quaternary decomposi-
tion is especially attractive when the data points are drawn from a uniformly spaced grid. The
quaternary decomposition is used as as surface representation by GoMEzZ & GuzmaN (1979) and
BARRERA & VAzQUEZ (1984). The approach of BARRERA & VAZQUEZ uses regular decomposition
while GomEz & Guzman’s decomposition is data driven (like a point quadtree).

Fig. 4: Example of quaternary decomposition.
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Hierarchical rectangular decompositions are similar to hierarchical triangulations that are based
on a quaternary decomposition. They are used when the data points are the vertices of a rectangu-
lar grid. In this case, a rectangle is split by choosing an internal point and jeining it to its project-
ions on the four sides of the rectangle. When the data is uniformly spaced, the result is analogous
to a region quadtree.

The main drawback of using a rectangular decomposition is the absence of continuity between
adjacent patches of unequal width (termed the alignment problem). As an example of the
alignment problem, see Figure 5a, which is the result of using a guadtree-like de-
composition rule in the parameter space representation of a surface patch. Notice the presence of
cracks along the boundary of the NE quadrant. BARRERA & HNOJOSA (1987) overcome this problem
by using the interpolated point instead of the true point, while VON HERZEN & BARR (1987) trian-
gulate the squares.

There are several ways to triangulate a square. It can be split into two, four, or eight triangles,
depending on how many lines are drawn through its midpoint (one, two, or four, respectively).
The simplest method is to split it into two triangles. Unfortunately, the cracks still remain.
Von HERZEN & BARR (1987) avoid the-cracks by converting the rectangular decomposition into a
restricted quadtree. At this peint, a square can be split into either four or eight triangles.

b)

Fig. 5: (a) The three-dimensional view of the resulting subdivision of a surface using a quadtree-like decomnposi-
tion rule in parameter space [some of the cracks) are shown shaded}; (b) the quadtree of (a) in parameter space;
{c) the restricted quadtree corresponding to {(b); (d) the triangulation of (c)
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A restricted gnadtree is one where all four adjacent blocks (i.e., nodes) are either of equal size
or of ratio 2:1. Given an arbitrary quadiree decomposition, the restricted quadtree is formed by
repeatedly subdividing the larger nodes until the 2:1 ratio holds. It results in a quadtree-like
decomposition {Fig. 5c), as opposed to a more traditional representation (Fig. 5b). Note that the
SE guadrant of Figure 5b had to be decomposed once. This method of subdivision is also used in
finite element analysis as part of a technique called h-refinement by KeLa et al. (1986) to
adaptively refine a mesh that has already been analyzed, as well as to achieve element compa-
tibility. '

Von HERZEN & BARR (1987) overcome the alignment problem by triangulating the quadtree leaf
nodes of Figure 5¢ in the manmner shown in Figure 5d. The rule is that every block is decomposed
into eight triangles, or two triangles per edge, unless the edge is shared by a larger block. In that
case, only one triangle is formed. Observe that there are no cracks. Cracks can also be avoided by
varying the basic decompaosition rule so that each block is decomposed into four triangles, or one
triangle per edge, unless the edge borders a smaller square. In that case, two triangles are formed
along the edge. VoN HERZEN & BARR prefer the decompaosition into eight triangles because it avoids
problems when displaying (i.e., shading) the resulting object.

6 Concluding Remarks

The use of hierarchical data structures enables focusing computational resources on the inter-
esting subsets of data. Thus, there is no need to expend work where the payoff is small. Although
many of the operations for which they are used can often be performed equally as efficiently, or
more so, with other data structures, hierarchical data structures are attractive because of their
conceptual clarity and ease of implementation.

When the hierarchical data structures are based on the principle of regular decomposition, we
have the added benefit of a spatial index. All features, whether they are regions, points, rectangles,
lines, surfaces, or volumes, etc., can be represented by maps which are in registration. In fact, such
a system, known as QUILT (SHAFFER et al. 1990}, has been built for representing geographic infor-
mation. It has recently been extended to represent three-dimensional objects and surfaces. It uses
the region octree representation. In addition, a three-dimension graphics package has been im-
plemented that utilizes perspective projection. Objects can be translated and rotated. Surfaces are
represented as an MX octree (HUNTER 1978; SameT 1990a) where black nodes correspond to the
surface boundary while all remaining nodes fboth inside and outside of the surface] are white.

The disadvantage of quadtree methods is that they are shift sensitive in the sense that their space
requirements are dependent on the position of the origin. However, for complicated images the
optimal positioning of the origin will usually lead to little improvement in the space requirements.
The process of obtaining this optimal positioning is computationally expensive and is usually not
worth the effort (Lt et al. 1982).

The fact that we are working in a digitized space may also lead to problems. For example, the
rotation operation is not generally invertible. In particular, a rotated square usually cannot be
represented accurately by a collection of rectilinear squares. However, when we rotate by 90°,
then the rotation is invertible. This problem arises whenever one uses a digitized representation.
Thus, it is also common {o the array representation.
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