“Wiener Schriften zur Geographie und Kartographie, Band 6

23

Samet, Hanan (Maryland)

1. Introduction

Spatial data consists of points, lines, regions, rectang-
les, surfaces, volumes, and even data of higher
dimension which includes time. Spatial databases
permit the storage of spatial information about ob-
jects. Spatial databases are finding increasing use
in applications in environmental monitoring, space,
urban planning, resource management, and geogra-
phic information systems (GIS) (BUCHMANN et al.
1990, GUNTHER et al. 1991). In spatial databases
it is often desirable to attach attribute information
such as elevation heights, city names, etc. to- ob-
jects appearing in maps. On the other hand, in many
standard database applications, it is useful to add
spatial attributes to describe different objects in the
database such as the extent of a given river, or the
boundary of a given county, etc. Many queries ¢an
be answered more efficiently when spatial and
nonspatial information are combined.

Many prototype systems have been proposed to
store spatial data along with the nonspatial data
describing it in a relational database management
system (ABEL 1988, GUTING et al. 1989, LORIE
etal. 1984, ORENSTEIN 1988, ROUSSOPOULOS
etal. 1988, SACKS-DAVIS et al. 1987, WOLF 1990).
At the same time, there has been much research in
the general database area. Many general techniques
have been developed [such as extensible database
management systems - e.g., (CAREY et al. 1988,
STONEBRAKER et al. 1986), and object-oriented
database systems - e.q., (KIM et al. 1990, DEUX et
al. 1990)]. However, they are not well-suited for
Spatial data. The problem is that they often reduce
all spatial data to points in a higher dimensional
Space. Fgr example, a line could be represented by
Its endpoints, This means that the line is represented
by a tuple of four items (a pair of x coordinates and
a pair of y coordinates). Thus, in effect, we have
Constructed a mapping from a two-dimensional space
g-fe-, the space from which the lines are drawn) to
t our-dlmensmpal space (i.e., the space containing
© representative point corresponding to the line).
n fse values are then stored in records in the system
® Same way as nonspatial attributes. Such an
;Pg;ttaach s fine for storage purposes. However, it
The good foy spatial operations involving search.
o Problem is that much time is wasted on the

elrieval step since both spatial and nonspatial in-

Hierarchical Data Structures for Spatial Databases

formation is retrieved although often only the spa-
tial portion is needed. Moreover, such an approach
ignores the geometry inherent in the data {e.g., the
fact that a line passes through a particular region).

For example, suppose we want to detect if two li-
nes are near each other, or, alternatively, to find
the nearest line fo a given line. This is difficult to do
in the four-dimensional space since proximity in the
two-dimensional space from which the lines are
drawn is not necessarily preserved in the four-di-
mensionaf space. In other words, although the two
lines may be very close to each other, the Euclidean
distance between their representative points may
be quite large. Thus we need special representa-
tions for spatial data.

One approach to the representation of spatial data
is to separate it structurally from the nonspatial data

| while maintaining appropriate links between the two

(AREF et al. 1990b, AREF et al. 1991a). This leads
to a much higher bandwidth for the retrieval of the
spatial data. Thus we will perform the spatial ope-
rations directly on the spatial data structures. This
gives the freedom to choose a more appropriate
spatial structure than the imposed non-spatial struc-
ture (e.g., a relational database). In such a case, a
spatial processor can be used that is specifically
designed for efficiently dealing with the part of the
queries that involve proximity relations and search,
and a relational database management system for
the part of the queries that involve non-spatial data.
Its proper functioning depends on the existence of a
query optimizer to determine the appropriate pro-
cessor for each part of the query (AREF et al. 1991b).

As an example of the type of query we would like
to be able to answer consider a request to "find the
names of the roads that pass through the Univer-
sity-of Maryiand region". This requires that we ex-
tract the region locations of all the database records
whose "region name" field has the value "University
of Maryland" and build a map, say A. Next, we
intersect map A with the road map, say B, to yield
a new map, say C, with the selected roads. We now
create a new relation in our database which has
just one attribute which is the relevant road names
of the roads in map C. There are many approaches
to answering the above query. Their efficiency de-
pends on the nature of the data and its volume.

24 Samet, H.: Hierarchical Data Structures for Spafial Databases

in the rest of this review we concentrate on the
data structures used by the spatial processor. In
particular, we focus on hierarchical data structures.
They are based on the principle of recursive de-
composition (similar to divide and conquer methods).
The term quadiree is often used to describe this
class of data structures, and this is the focus of this
paper. We concentrate primarily on region data.
For a more extensive treatment of this subject, see
SAMET 1984a, SAMET 1988a, SAMET et al. 1988b,
SAMET et al. 1988¢c, SAMET 1990a, SAMET 1990b,
SAMET et al. 1991.

QOur presentation is organized as follows. Section 2
briefly reviews the historical background of the
origins of hierarchical data structures. Section 3
discusses some key operations on region data. Sec-
tions 4, 5, and 6 describe hierarchical representa-
tions for point, rectangle, and line data, respecti-
vely, as well as give examples of their utility. Section
7 contains concluding remarks in the context of a
geographic information system that makes use of
these concepts.

2. Historical background

The term quadiree is used to describe a class of
hierarchical data structures whose common property
is that they are based on the principle of recursive
decomposition of space. They can be differentiated
on the following bases: ‘

1. The type of data that they are used to represent,

2. the principle guiding the decomposition process,
and

3. the resolution (variable or not).

Currently, they are used for points, rectangies, regions,
curves, surfaces, and volumes. The decomposition
may be into equal parts on each level {termed a
reguiar decomposition), or it may be governed by
the input. The resolution of the decomposition {i.e.,
the number of times that the decomposition process
is applied) may be fixed beforehand or it may be
governed by properties of the input data.

The most common quadtree representation of data
is the “region quadtree". It is based on the succes-
sive subdivision of the image array into four equal-
size quadrants. If the array does not consist enti-
rely of 1s or entirely of 0s (i.e., the region does not
cover the entire array), it is then subdivided into
quadrants, subquadrants, etc., until blocks are obtained
(possibly 1 x 1 blocks) that consist entirely of 1s or
entirely of Os. Thus, the region quadiree can be
characterized as a variable resolution data structure.

! sufﬂmenﬂy 5|mple to be displayed. HOROW!

As an example of the region quadiree, conside
region shown in Figure 1a which is represented
the 2% x 23 binary array in Figure 1b. Obsarve
the 1s correspond to picture elements (termed
xels) that are in the region and the 0Os correspo
to picture elements that are outside the region.
resulting blocks for the array of Figure Tb are s
in Figure 1c. This process is represented by a
of degree 4.

In the tree representation, the root node corresp
to the entire array. Each son of a node repres
a quadrant (labeled in order NW, NE, SW, §
the region represented by that node. The lea
des of the tree correspond to those blocks for w
no further subdivision is necessary. A leaf no
said to be BLACK or WHITE, depending on wh
its corresponding block is entirely inside or en
outside of the represented region. All non-leaf ni
are said to be GRAY. The quadtree represent:
for Figure 1c is shown in Figure 1d. ‘

Quadtrees can also be used to represent non-bi
images. In this case, we apply the same mergir
criteria to each color: For example, in the case.
a landuse map, we simply merge all wheat gro‘
regions, and likewise for corn, rice, etc. This is
approach taken by SAMET et al. and SHAFFE
al. 1990b.

Unfortunately, the term quaditree has taken on ffig
than one meaning. The region quadtree, as sh
above, is a partition of space into a set of squ_
whose sides are all a power of two long. This
mulation is due to KLINGER {1971) who
the term Q-tree (KLINGER et al. 1976), w
HUNTER (1978) was the first to use the term qu
in such a context. A similar partition of space’ n
rectangular quadrants, also termed a quadiree, Wa
used by FINKEL and BENTLEY (1974). It
adaptataon of the binary search.tree to two dim
sions (which can be easily extended to an arbit
number of dimensions). It is primarily used t0
sent multidimensional point data.

The origin of the principle of recursive decomp
is difficult to ascertain. Below, in order to give
indication of the uses of the quadtree we
trace some of its applications to image dat
TON (1966) used it as a means of indexing
geographic database. WARNOCK ({1969) impl
ted a hidden surface elimination algorithm u
recursive decomposition of the picture area
picture area is repeatedly subdivided into su
sively smaller rectangles while searching for

PAVLIDIS (1976) used the quadtree as an initial
step in a "split and merge" image segmentation
algorithm.

The pyramid of TANIMOTO and PAVLIDIS (1975)
is a close relative of the region quadtree. It is a
multiresolution representation which is an exponen-
tially tapering stack of arrays, each one-quarter the
size of the previous array. It has been applied to
the problems of feature detection and segmenta-
tion. Recall that in contrast, the region guadtree is

a variable resolution data structure.

The distinction between a quadtree and a pyramid
can be easily seen by considering the types of spa-
tial queries. There are two principal classes (AREF
at al. 1990a). The first is location-based. In this
case, we are searching for the nature of the fea-
ture associated with a particular location or in its
proximity. For example, "what is the feature at lo-
cation X?", "what is the nearest city to location X?",
or “what is the nearest road to location X?" The
second is feature-based. In this case, we are probing
for the presence or absence of a feature, as well
as seeking its actual location. For example, "does
wheat grow anywhere in California?", "what crops
grow in California?", or "where is wheat grown in
California?"

Location-based queries are easy to answer with a
quadtree representation [e.g., the QUILT system
(SHAFFER et al 1930b)]. On the other hand, fea-
ture-based queries are more difficult. The problem
is that there is no indexing by features. The in-
dexing is only based on spatial occupancy. The
goal is to process the query without examining
every location in space. The pyramid is useful for
such queries since the nodes that are not at the
maximum leve! of resolution (i.e., at the bottom le-
vel) contain summary information (AREF et al.
1990a, AREF et al. 1991¢). Thus we could view
these nodes as feature vectors which indicate whe-
ther or not a feature is present at a higher level of
resolution. Therefore, by examining the root of the
pyramid (i.e., the node that represents the entire
Image), we can quickly tell if a feature is present
without having to examine every location.

Quadtree-fjke data structures can also be used to
fTepresent images in three dimensions and higher.
he octree (HUNTER 1978, JACKINS et al. 1980,
reEAGHER 1982, REDDY et al. 1978) data structu-
Thls the th(ege-dlmensional analogon of the quadtree.
:refore It Is constructed in the following manner:
voEuStan with an image in the form of a cubical
Me and recursively subdivide it into eight con-

gruent disjoint cubes (called octants) until blocks
are obtained of a uniform color or a predetermined
level of decomposition is reached. Figure 2a is an
example of a simple three-dimensional object whose
raster octree block decomposition is given in Figu-
re 2b and whose free representation is given in
Figure 2c.

One of the motivations for the development of
hierarchical data structures such as the quaditree is
a desire to save space. The original formulation of
the quadtree encodes it as a tree structure that
uses pointers. This requires additional overhead to
encode the internal nodes of the tree. In order to
further reduce the space requirements, two other
approaches have been proposed. The first treats
the image as a collection of leaf nodes where each
leaf is encoded by a base 4 number termed a fo-
cational code, corresponding to a sequence of di-
rectional codes that locate the leaf along a path
from the root of the quadiree. It is analogous to-
taking the binary representation of the x and y
coordinates of a designated pixel in the block (e.g.,
the one at the lower left corner) and interleaving
them {i.e., alternating the bits for each coordinate).
It is difficult to determine the origin of this method
(e.g. ABEL et al. 1983, GARGANTINI 1982, KLIN-
GER et al. 1979, MORTON 1966).

The second, termed a "DF-expression”, represents
the image in the form of a traversal of the nodes of
its quadiree (KAWAGUCH! et al. 1980). It is very
compact as each node type can be encoded with
two bits. However, it is not easy fo use when ran-
dom access to nodes is desired. Recently, SAMET
and WEBBER (1989) showed that for a static collec-
tion of nodes, an efficient implementation of the
pointer-based representation is often more econo-
mical spacewise than a locational code represen-
tation. This is especially true for images of higher

~ dimension.

Nevertheless, depending on the particular imple-
mentation of the quadtree we may not necessarily
save space {e.g., in many cases a binary array
representation may still be more economical than a
quadtree). However, the effects of the underlying
hierarchical aggregation on the execution time. of
the algorithms are more important. Most quadtree
algorithms -are simply preorder traversals of the
quadtree and, thus, their execution time is generally
a linear function of the number of nodes in the
quadtree. A key to the analysis of the execution
time of quadtree algorithms is the Quadtree Com-
plexity Theorem (HUNTER 1978, HUNTER et al.
1979) which states that: ,

. 26 Samet, H.: Hierarchical Data Structures for Spatial Databases

For a quadtree of depth g representing an

‘image space of 29 x 29 pixels where these
pixels represent a region whose perimeter
measured in pixel-widths is p, then the
number of nodes in the quadtree cannot exceed
16q - 11 + 16p.

Since under all but the most pathological cases
(e.g., a small square of unit width centered in a
large image), the region perimeter exceeds the
base two logarithm of the width of the image con-
taining the region, the Quadtree Complexity Theo-
rem means that the size of the quadtree represen-
tation of a region is linear in the perimeter of the
region.

The Quadtree Complexity Theorem holds for three-
dimensional data (MEAGHER 1980 and 1982) where
perimeter is replaced by surface area, as well as
higher dimensions for which it is stated as fol-
lows:

The size of the k-dimensional quadtree of a
set of k-dimensional objects is proportional
to the sum of the resolution and the size of
the (k-1)-dimensional interfaces between
these objects.

The Quadiree Complexity Theorem also directly
impacts the analysis of the execution time of algo-
rithms. In particular, most algorithms that execute
on a quadtree representation of an image instead
of an array representation have an execution time
that is proportional to the number of blocks in the
image rather than the number of pixels. In its most
general case, this means that the application of a
quadtree algorithm to a problem in d-dimensional
space executes in time proportional to the analo-
gous array-based algorithm in the (d-1)-dimensio-
nal space of the surface of the original d-di-
mensional image. Therefore, quadtrees act like di-
mension-reducing devices. ‘

3. Algorithms using quadtrees

In this section, we describe how a number of basic
operations required for answering spatial queries
can be implemented using region quadtrees. In
particular, we discuss point and object location and
set operations. Object location is important in de-
tecting the feature associated with a given location
or its neighbors. Set operations form the basis of
most complicated queries. For example, to "find the
names of the roads that pass through the Univer-
sity of Maryland region," we will need to intersect a
region map with a line map. -

 the desired pixel.

3.1. Point and object location

The simplest task to perform on region data is t
determine the color of a given pixel. In the traditiong
array representation, this is achieved by exactly on;
array access. In the region quadtree, this requires
searching the quadtree structure. The algorithm
starts at the root of the quadtree and uses the value;
of the x and y coordinates of the center of its bloc
to determine which of the four subtrees contain
the pixel. For example, if both the x and y coordinate;
of the pixel are less than the x and y coordinate;
of the center of the root's block, then the pixel be
longs in the southwest subtree of the root. T
process is performed recursively until a leaf
reached. It requires the transmission of paramet
so that the center of the block corresponding t
root of the subtree currently being processed ¢
be calculated. The color of that leaf is the color,
the pixel. The execution time for the algorithm
proportional to the leve! of the leaf node contain

The object-location operation is closely related
the point-location task. In this case, the x an
coordinates of the location of a pointing device
representing a mouse, tablet, lightpen, etc.)
be translated into the name of a nearby appro
object (e.g., the nearest region corresponding
specified feature). The leaf corresponding t
point is located as described above. If the leaf
not contain the feature, then we must investig
other leaf nodes. '

Finding the nearest leaf node containing a sp
feature (also. known as the nearest neighbor
blem) is achieved by a top-down recursive
rithm. Initially, at each level of the recursion
explore the subtree that contains the locatio
pointing device, say P. Once the leaf containing
has been found, the distance from P to the ne
feature in the leaf is calculated (empty leaf n
have a value of infinity). Next, we unwind th
cursion and, as we do so, at each level we s
the subtrees that represent regions that ov
circle centered at P whose radius is the dist
to the closest feature that has been found
When more than one subtree must be sear
the subtrees representing regions nearer 10
searched before the subtrees that are furthe
(since it is possible that one of them may
the desired feature thereby making it unnecess
to search the subtrees that are further awa

For example, suppose that the features are P
Consider Figure 3 and the task of finding th

27

rest neighbor of P in node 1. If we visit nodes in the
order NW, NE, SW, SE, then as we unwind for the
first time, we visit nodes 2 and 3 and the subtrees
of the eastern brother of 1. Once we visit node 4,
there is no need to visit node 5 since node 4 con-
tained A. Nevertheless, we still visit node 6 which
contains point B which is closer than A, but now
there is no need to visit node 7. Unwinding one
more level finds that due to the distance between
P and B, there is no need to visit nodes 8, 9, 10,
11, and 12. However, node 13 must be visited as
it could contain a point that is closer to P than B.
For a treatment of the problem for lines, see HOEL
and SAMET 1991.

3.2. Set operations

For a binary image, set-theoretic operations such
as union and intersection are quite simple to im-
plement (HUNTER 1978, HUNTER et al 1979,
SHNEIER 1981). For example, the intersection of
two quadtrees yields a BLACK node only when the
corresponding regions in both quadirees are
BLACK. This operation is performed by simul-
taneously traversing three quadirees. The first two
trees correspond to the trees being intersected and
the third tree represents the result of the operation.
If any of the input nodes are WHITE, then the resuit
is WHITE. When corresponding nodes in the input
trees are GRAY, then their sons are recursively
processed and a check is made for the mergibility
of WHITE leaf nodes. The worst-case execution
time of this algorithm is proportional to the sum of
the number of nodes in the two input quadtrees.
Note that as a result of actions (1) and (3), it is
possible for the intersection algorithm to visit fewer
nodes than the sum of the nodes in the two input
quadtrees.

The above implementation assumes that the ima-
ges are in registration (i.e., they are with respect to
the same origin). However, at times, being ablé to
perform set operations on images that are not in
fegistration is very convenient as it enables the
execution of many other operations (SHAFFER et
al. 1990b). For example, windowing can be achie-
‘é?(: by treating the image and the window as two
st?altr‘mt images, say 1, and 1, that are not in regi-
tor, “[’“ and performing a set intersection opera-
wind n this case, /, is the image from which the
it ?r\lv Is being extracted and /, is a BLACK image
eXtractedsame size and origin as the window to be
of i ed. Thg quadtree corresponding to the result

€ windowing operation has the size and position

of I, where each pixel of J, has the value of the

corresponding pixel of .

Using the same analogy, we can also shift an ima-
ge. Specifically, shifting an image. is equivalent to
extracting a window that is larger than the input
image and having a different origin than that of the
input image. If the image to be shifted has an origin
at (x,), then shifting it by Ax and Ay means that
the window is a BLACK block with an origin at
(x - Ax, y - Ay). Similar paradigms can also be
applied to rotations of images by arbitrary amounts
{not just multiples of 90°) (SAMET et al. 1988b).

4. Point data

Multidimensional point data can be represented in
a variety of ways. The representation ultimately
chosen for a specific task will be heavily influenced
by the type of operations to be performed on the
data. Our focus is on dynamic files (i.e., the number
of data can grow and shrink at will} and on appli-
cations involving search. In Section 2 we briefly
mentioned the point quadtree of FINKEL and BEN-
TLEY (1979). In this section we discuss the PR
quadtree (P for pointand R for region) (ORENSTEIN
1982, SAMET 1990a).

It is an adaptation of the region quadiree to point
data which associates data points (that need not
be discrete) with quadrants. The PR quadiree is
organized in the same way as the region quadtree.
The difference is that leaf nodes are either empty
(i.e., WHITE) or contain a data point (i.e., BLACK)
and its coordinates. A quadrant contains at most
one data point. For example, Figure 4 is a PR
quadtree corresponding to some point data.

Data points are inserted info PR quadtrees in a

“manner analogous to that used to insert in a point

quadtree - i.6., a search is made for them. Actually,
the search is for the quadrant in which the data
point, say A, belongs (i.e., a leaf node). If the qua-
drant is already occupied by another data point with
different x and y coordinates, say B, then the qua-
drant must repeatedly be subdivided (termed spiit-
fing) until nodes A and B no longer occupy the
same quadrant. This may result in many subdivi-
sions, especially if the Euclidean distance between
A and B is very small. The shape of the resulting
PR quadtree is independent of the order in which
data points are inserted into it. Deletion of nodes is

“more complex and may require collapsing of nodes

- i.e., the direct counterpart -of the node splitting
process outlined above.

PR quadirees, as well as other quadtree-like repre-
sentations for point data, are especially attractive
in applications that involve search. A typical query

28 Samet, H.: Hierarchical Data Structures for Spatial Databases

is one that requests the determination of all records
within a specified distance of a given record - i.e.,
all cities within 100 miles of Washington, DC. The
efficiency of the PR quadtree lies in its role as a

pruning device on the amount of search that is re- -

quired. Thus many records will.not need to be
examined. For example, suppose that in the hypo-
thetical database of Figure 4 we wish to find all
cities within 8 units of a data point with coordinates
-(84,10). In such a case, there is no need to search
the NW, NE, and SW quadrants of the root [i.e.,
(50,50)]. Thus we can restrict our search to the SE
quadrant of the tree rooted at root. Similarly, there
is no need to search the NW, NE, and SW qua-
drants of the tree rooted at the SE quadrant [i.e.,
(75,25)]. Note that the search ranges are usually
orthogonally defined regions such as rectangles,
boxes, etc. Other shapes are also feasible as the
above example demonstrated (i.e., a circle).

5. Rectangle data

The rectangle data type lies somewhere between
the point and region data types. Rectangles are
often used to approximate other objects in an image
for which they serve as the minimum rectilinear
enclosing object. For example, bounding rectangles
can be used in cartographic applications to appro-
ximate objects such as lakes, forests, hills, etc.
(MATSUYAMA et al. 1984). In such a case, the
approximation gives an indication of the existence
of an object. Of course, the exact boundaries of the
object are also stored; but they are only accessed
- if greater precision is needed. For such applications,
the number of elements in the collection is usually
small, and most often the sizes of the rectangles
are of the same order of magnitude as the space
from which they are drawn.

Rectangles are also used in VLSI design rute checking
as a model of chip components for the analysis of
their proper placement. Again, the rectangles serve
as minimum enclosing objects. In this application,
the size of the collection is quite large (e.g., millions
of components) and the sizes of the rectangles are
several orders of magnitude smaller than the space
from which they are drawn. Regardless of the ap-
plication, the representation of rectangles involves
two principal issues (SAMET 1988a). The first is
how to represent the individual rectangles and the
second is how to organize the collection of the
rectangles.

The representation that is used depends heavily on
the problem environment. I the environment is static,

then frequently the solutions are based on the use

“intervals where each interval is represented by i

of the plane-sweep paradigm (PREPARATA et
1985}, which usually yields optimal solutions in tim
and space. However, the addition of a single obje
to the database forces the re-execution of the al
rithm on the entire database. We are primarily i
terested in dynamic problem environments. The da
structures that are chosen for the collection of §
rectangles are differentiated by the way in whi
each rectangle is represented. '

One representation reduces each rectangle to
point in a higher dimensional space, and then trea
the problem as if we have a collection of poin
This is the approach of HINRICHS and NIEVE
GELT (1983) and HINRICHS (1985). Each rectan
le is a Cartesian product of two one-dimension

centroid and extent. The collection of rectangles:
in turn, represented by a grid file (NIEVERGELT:
al. 1984}, which is a hierarchical data structure
points. g

The second representation is region-based in tt
sense that the subdivision of the space from whi
the rectangles are drawn depends on the physic
extent of the rectangle - not just one point. Repre
ting the collection of rectangles, in turn, with a t
like data structure has the advantage that the
a relation between the depth of node in the tr
and the size of the rectangle(s) that are associafe
with it. Interestingly, some of the region-based
|lutions make use of the same data structures th
are used in the solutions based on the plane-sweé
paradigm. In the remainder of this section, we git
an example of a pair of region-based represent
tions.

The MX-CIF quadtree of KEDEM (1982) (see
ABEL and SMITH 1983) is a region-based repr
sentation where each rectangle is associated
the quadiree node corresponding to the sm
block which contains it in its entirety. Subdi
ceases whenever a node's block contains no rec
gles. Alternatively, subdivision can also cease o
a quadtree block is smaller than a predeterml
threshold size. This threshold is often chosen
equal fo the expected size of the rectangle (KED
1982). For example, Figure 5 is the MX-CIF
tree for a collection of rectangles. Note that recta
F occupies an entire block and hence it is asso
with the block's father. Also rectangles can be
sociated with both terminal and non-terminal n

It should be clear that more than one rectangté
be associated with a given enclosing block :
thus, often we find it useful to be able to differen]

29

hetween them. Kedem proposes 1o do so in the
following manner. Let P be a quadtree node with
ceniroid (CX, CY), and let S be the set of rectangtes
that are associated with P. Members of S are or-
ganized into two sets according to their intersection
{or colfinearity of their sides) with the lines passing
through the centroid of P's block - i.e., all members
of § that intersect the line x=CX form one set and
all members of § that intersect the line y=CY form

the other set.

It a rectangle intersects both lines {i.e., it contains
the centroid of P's block), then we adopt the con-
vention that it is stored with the set associated with
the line through x=CX. These subsets are imple-
mented as binary trees (really tries), which in actuality
are one-dimensional analogs of the MX-CIF quadtree.
For example, Figure 6 illustrates the binary tree
associated with the y axes passing through the root
and the NE son of the root of the MX-CIF quadtree
of Figure 5. Interestingly, the MX-CIF quadtree is a
two-dimensional analog of the interval tree
(EDELSBRUNNER 1980, McCREIGHT 1980}, which
is a data structure that is used to support optimal
solutions based on the plane-sweep paradigm to
some rectangte problems.

The R-tree (GUTTMAN 1984, BECKMANN et al.
1990) is a hierarchical data structure that is derived
from the B-tree (COMER 1979). Each node in the
tree is a d-dimensional rectangle corresponding to
the smallest rectangle that encloses its son nodes
which are also d-dimensional rectangles. The leaf
nodes are the actual rectangles in the database.
Often, the nodes correspond to disk pages and,
thus, the parameters defining the tree are chosen
so that a small number of nodes is visited during a
spatial query. Note that rectangles corresponding
to different nodes may overlap.

Also, a rectangle may be spatially contained in se-
:e:jal nod_es, yet it can only be associated with one
r e0 e. This means that a spatial query may often
: iagt}!re Several nodes to be visited before ascer-
rectgg [the Presence or absence of a particular
the Reps This problem can be alleviated by using
al, 1gg7 ¢, (PALOUTSOS et al. 1987, SELLIS et
evels b)t hfsr which all bounding rectangles (i.e., at
is mon er than the leaf) are non-overlapping.
Sociateq ns that a given rectangle will often be as-
case ret:mh Several bounding rectangles. In this
77 incre'ase ineva! time is sped up at the cost of an
. Deriormana e eight of the tree. Note that B-tree
ie., pa c;e Quarantees are not valid for the R*-tree
Without vg S are not guaranteed to be 50 % full
'y complicated record update procedures.

6. Line data

Section 3 was devoted to the region quadiree, an
approach to region representation that is based on
a description of the region's interior. In this section,
we focus on a representation that specifies the
boundaries of regions. We concentrate on use of
the PM quadtree family (SAMET et al. 1985, NEL-
SON et al. 1986), see also edge-EXCELL (TAMMI-
NEN 1981) in the representation of collections of
polygons (termed polygonal maps). There are a
number of variants of the PM quadtree. These variants
are either vertex-based or edge-based. They are
all built by applying the principle of repeatedly brea-
king up the collection of vertices and edges (forming
the polygonal map) until obtaining a subset that is
sufficiently simpie so that it can be organized by
some other data structure.

The PM quadtrees of SAMET and WEBBER (1985)
are vertex-based. We illustrate the PM, quadtree. It
is based on a decomposition rule stipulating that
partitioning occurs as long as-a block contains more
than one line segment unless the line segments
are all incident at the same vertex which is also in
the same block (e.g., Figure 7).

SAMET, SHAFFER, and WEBBER (1987) show how
to compute the maximum depth of the PM, quadtree
for a polygonal map in a limited, but typical, envi-
ronment. They consider a polygonal map whose
vertices are drawn from a grid (say 2" x 2"), and do
not permit edges to intersect at points other than
the grid points (i.e., vertices). In such a case, the
depth of any leaf node is bounded from above by
4n + 1. This enables a determination of the maxi-
mum amount of storage that will be necessary for
each node. '

A similar representation has been devised for three-
dimensional images (AYALA et al. 1985, CARL-
BOM et al. 1985, FUJIMURA et al. 1985, HUNTER
1981, NAVAZO et al. 1986b, QUINLAN et al. 1982,
TAMMINEN 1981, VANDERSCHEL 1984). The de-
composition criteria are such that no node contains
more than one face, edge, or vertex unless the
faces all meet at the same vertex or are adjacent
to the same edge. For example, Figure 8b is a PM,
octree decomposition of the object in Figure 8a.
This representation is quite useful since its space
requirements for polyhedral objects are significant-
ly smaller than those of a conventional octree. An-
other approach (NAVAZO et al. 1986b, BRUNET et
al. 1987) extends the concepts of face node, edge
node, and vertex node to handle faces represen-
ted by biquadratic Bezier primitives. The use of bi-

- 30 Samet, H.: Hierarchical Data Structures for Spatial Databases

quadratic Bezier patches enables a better fit with
fewer primitives than can be obtained with planar
faces, thereby reducing the size of the octree.

The PMR quadtree (NELSON et al. 1986) is an
edge-based variant of the PM quadtree. It makes
use of a probabilistic splitting rule. A node is per-
mitted to contain a variable number of line segments.
A line segment is stored in a PMR quadtree by
inserting it into the nodes corresponding to all the
blocks that it intersects. During this process, the
occupancy of each node that is intersected by the
line segment is checked to see if the insertion causes
it to exceed a predetermined splitting threshold. If
the splitting threshold is exceeded, then the node's
block is split once, and only once, into four-equal
quadrants.

On the other hand, a line segment is deleted from
a PMR quadiree by removing it from the nodes
corresponding to all the blocks that it intersects.
During this process, the occupancy of the node and
its siblings is checked to see if the deletion causes
“the total number of line segments in them to be
less than the predetermined splitting threshold. If
the splitting threshold exceeds the occupancy of
the node and its siblings, then they are merged and
the merging process is reapplied to the resulting
node and its siblings. Notice the asymmetry between
the splitting and merging rules.

Members of the PM quadtree family can be easily
adapted to deal with fragments that result from set
operations such as union and intersection so that
there is no data degradation when fragments of
line segments are subsequently recombined. Their
use yields an exact representation of the lines - not
an approximation. To see how this is achieved, let
us define a g-edge to be a segment of an edge of
the original polygonal map that either spans an entire
block in the PM quadtree or extends from a boundary
of a block to a vertex within the block.

Each g-edge is represented by a pointer to a record
containing the endpoints of the edge of the polygonal
map of which the g-edge is a part (NELSON et al.
19886). The line segment descriptor stored in a node
only implies the presence of the corresponding g-
edge - it does not mean that the entire line segment
is present as a lineal feature. The result is a consis-
tent representation of line fragments since they are
stored exactly and, thus, they can be deleted and
reinserted without worrying about errors arising from
the roundoffs induced by approximating their inter-
section with the borders of the blocks through which
they pass. ~

7. Concluding remarks

The use of hierarchical data structures in spatj
databases enables the focusing of computatio
resources on the interesting subsets of data. Thu
there is no need to expend work where the pa
is small. Although many of the operations for wh
they are used can often be performed equally
efficiently, or more so, with other data structy
hierarchical data structures are attractive beca
of their conceptual clarity and ease of mpleme
tion.

When the hierarchical data structures are based
the principle of reqular decomposition, we have:
added benefit of a spatial index. All feature
they regions, points, rectangles, lines, volumes
can be represented by maps which are in registr.
In fact, such a system, known as QUILT, has
built (SAMET et al. 1984b, SHAFFER et al. 19
for representing geographic information. In
case, the quadtree is implemented as a colle
of leaf nodes where each leaf node is repres
by its locational code. The collection is in turn n
sented as a B-tree (COMER 1979). There aré
nodes corresponding to region, point, and line‘data

The disadvantage of quadtree methods is that
are shift sensitive in the sense that their s
requirements are dependent on the position o
origin. However, for complicated images the op
positioning of the origin will usually lead to
improvement in the space requirements. Tl
cess of obtaining this optimal positioning i
putationally expensive and is usually not wort
effort (LI et al. 1982). - ,

The fact that we are working in a digitized 5
may also lead to problems. For example, the rot
operation is not generally invertible. In particul
rotated square usually cannot be represented 2
rately by a collection of rectilinear squares. How:
when we rotate by 90°, then the rotation is.i
tible. This problem arises whenever one uS!
digitized representation. Thus, it is also com
the array representation.

8. References

ABEL D J (1988), Relational data managem
cilities for spatial information systems. In
of the Third Int. Symp on Spatial Data !
ling, pp 9 - 18. Sydney, Australia.

ABEL D J, SMITH J L (1983}, A data structu
algorithm based on a linear key foran

31

retriaval problem. In: Comp. Vision, Graphics,
and Image Processing, 24, 1, pp 1 - 13.

AREF W G, SAMET H (1980a), Efficient proces-
sing of window queries in the pyramid data
structure. In: Proc. of the 9th ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of
Database Systems (PODS), pp 265 - 272.
Nashville, Tennessee.

AREF W G, SAMET H (1990b), Design of an inte-
grated database system to support geogra-
phical applications. In: Proc. of the Fourth
Int. Symp. on Spatial Data Handling, pp 589
- 598. Zurich. .

AREF W G, SAMET H (1991a), Extending a DBMS
with spatial operations. In: GUNTHER O,
SCHEK H J (ed.), Advances in Spatial Da-
tabases - 2nd Symp., SSD'91, Lecture Notes
in; Comp. Science, 525, pp 299 - 318. Springer-
Verlag, Berlin.

AREF W G, SAMET H (1991¢), Optimization strate-
gies for spatial query processing. In: LOHMAN
G (ed.), Proc. of the Seventeenth Int. Conf.
on Very Large Data Bases, pp 81 - 90.
Barcelona.

AREF W G, SAMET H (1991c), Loading spatial
features into the incomplete pyramid data
structure. In: Proc. of the Int. Workshop on
DBMS's for Geographical Applications. Ca-
pri, Haly. :

AYALA D, BRUNET P, JUAN R, NAVAZO [(1985),
Objec_t representation by means of nonmini-
mal division quadtrees and octrees. in: ACM
Transactions on Graphics, 4, 1, pp 41 - 59.

BECKMANN N, KRIEGEL H P, SCHNEIDER R,
SEEGER B {1990), The R*-tree: an efficient
and robust access method for points and
rectangles. In: Proc. of the SIGMOD Conf.,
pp 322 - 331. Atlantic City, NJ.

BRUNET P, AYALA D (1987), Extended octtree

ggr;eseg_tgtlgnc;of free form surfaces. In:
~Aide sometric Desi -

oD 141 - og ic Design, 4, 1-2,

B : ‘

| UCHTﬁ\:NN A, GUNTHER O, SMITH T R, WANG

o L(9d3‘) (1990}, Design and Implementation
-arge Spatial Databases. In: Lecture No-

tesin Comp. Scien .
lag, Berlin.. ce, No. 409.- Springer-Ver-

CAREY M, DeWITT D, GRAEFE G, HAIGHT D,
RICHARDSON J, SCHUH D, SHEKITA E,
VANDENBERG S (1988), The EXODUS
extensible DBMS project: an overview,
Techn. Report 808. Univ. of Wisconsin, Ma-
dison, WI.

CARLBOM |, CHAKRAVARTY |, VANDERSCHEL
D (1985), A hierarchical data structure for
representing the spatial decomposition of 3-
D objects. In: IEEE Comp. Graphics and
Applications, 5, 4, pp 24 - 31.

"COMER D (1979), The Ubiquitous B-tree. In: ACM

Comp. Surveys, 11, 2, pp 121 - 137.

DEUX O et al. {1990), The story of O2. In: [EEE
Transactions on Knowledge and Data Engi-
neering, 2, 1, pp 91 - 108.

EDELSBRUNNER H (1980), Dynamic rectangle
intersection searching. In: Inst. for Inform.
Proc. Report, 47. Techn. Univ. of Graz, .
Craz.

FALOUTSOS C, SELLIS T, ROUSSOPOULOS N
(1987), Analysis of object oriented spatial
access methods. In: Proc. of the SIGMOD
Conf., pp 426 - 439. San Francisco.

FINKEL R A, BENTLEY J L (1974), Quad trees: a
data structure for retrieval on composite keys.
In: Acta Informatica, 4, 1, pp 1 - 9.

FUJIMURA K, KUNII T L {1985), A hierarchical
space indexing method. In: Proc. of Comp.
Graphics '85, T1-4, pp 1 - 14. Tokyo.

GARGANTINI | (1982), An effective way to repre-
sent quadtrees. In: Communications of the
ACM, 25, 12, pp 905 - 810.

GUNTHER O, SCHEK H J (eds.) (1991), Advances
in Spatial Databases - 2nd Symp., SSD'31.
In: Lecture Notes in Comp. Science, 525.
Springer-Verlag, Berlin.

GUTING R H (1989), Gral: an Extensible relational
system for geometric applications. In: APERS
P M G, WIEDERHOLD G (eds.), Proc. of the
Fifteenth Int. Conf. on Very Large Data Bases,
pp 33 - 44. Amsterdam.

GUTTMAN A (1984}, R-trees: a dynamic index
structure for spatial searching. in: Proc. of
the SIGMOD Contf., pp 47 - 57. Boston.

32

Samet, H.: Hierarchical Data Structures for Spatial Databases

HINRICHS K (1985), The grid file system: imple-
mentation and case studies of applications.
Ph.D. diss., Inst. f. Informatik, ETH, Zurich.

HINRICHS K, NIEVERGELT J (1983}, The grid
file: a data structure designed to support
proximity queries on spatial objects. In;
NAGL M, PERL J (eds.), Proc. of the WG
'83 (Int. Workshop on Graphtheoretic
Concepts in Comp. Science), pp 100 - 113.
Trauner Verlag, Linz.

HOEL E G, SAMET H (1981), Efficient processing
of spatial queries in line segment databases
In: GUNTHER O, SCHEK H J (eds.), A
vances in Spatial Databases - 2nd Symp,
SSD'91, Lecture Notes in Comp. Science,
525, pp 237 - 256. Springer-Verlag, Berlin.

HOROWITZ S L, PAVLIDIS T (1976), Picture
segmentation by a tree traversal algorithm.
In: Journ. of the ACM, 23, 2, pp 368 - 388.

HUNTER G M (1978), Efficient computation and
data structures for graphics. Ph.D. diss.,
Dep. of Electrical Engineering and Comp.
Science. Princeton Univ., Princeton, NY.

HUNTER G M (1981), Geometrees for interactive
visualization of geology: an evaluation. Sy-
stem Science Dep., Schiumberger-Doll
Research, Ridgefield, CT.

HUNTER G M, STEIGLITZ K (1979), Operations
on images using quad trees. in: IEEE Trans-
actions on Pattern Analysis and Machine
Intelligence, 1, 2, pp 145 - 153,

JACKINS C L, TANIMOTO S L (1980), Oct-trees
and their use in representing three-dimensio-
nal objects. In: Comp. Graphics and Image
Proc., 14, 3, pp 249 - 270.

KAWAGUCHI E, ENDO T (1980}, On a method of
binary picture representation and its appli-
cation to data compression. In: [EEE Trans-
actions on Pattern Analysis and Machine In-
telligence, 2, 1, pp 27 - 35.

KEDEM G (1982), The Quad-CIF tree: a data
structure for hierarchical on-line algorithms.
in: Proc. of the Nineteenth Design Automa-
tion Conf., pp 352 - 357. Las Vegas.

KIM W W, GARZA J F, BALLOU N, WOELK D
(1990), Architecture of the ORION nexi-ge-

neration database system..n: IEEE Tra
actions on Knowledge and Data Engineeri
2,1, pp 109 - 124.

KLINGER A (1971), Patterns and search statisti
In: RUSTAGI J S (ed.}, Optimizing Methods
in Statistics, pp 303 - 337. Academic Preg
New York.

KLINGER A, DYER C R (1976), Experiments;
picture representation using regular deco
position. In: Comp. Graphics and ima;
Proc., 5, 1, pp 68 - 105. E

KLINGER A, RHODES M L (1979), Organiz
and access of image data by areas
_|[EEE Transactions on Pattern Analysis
Machine Intelligence, 1, 1, pp 50 - 60

LI M, GROSKY W I, JAIN R (1982), Normal
quadtrees with respect to translations:
Comp. Graphics and Image Proc., 2
pp 72 - 81.

LORIE R, MEIER A (1984), Using a relatior
DBMS for geographical databases. In:-G
Proc., 2, pp 243 - 257.

MATSUYAMA T, HAO L V, NAGAO M (19
file organization for geographic inf
systems based on spatial proximity. In
Vision, Graphics, and Image Proc.,
pp 303 - 318.

McCREIGHT E M (1980), Efficient algorithn
enumerating intersecting intervals
rectangles. Xerox Palo Alto Research
ter Report CSL-80-09, Palo Alto, CA!

MEAGHER D (1980), Octree encodin
technique for the representation, th
pulation, and display of arbitrary 3-d
by computer. Electrical and System
neering Techn. Report IPL-TR-80-111
selaer Polytechnic Inst., Troy, NY. -

MEAGHER D (1982), Geometric modeling usif
encoding. In: Comp. Graphics and
Proc., 19, 2, pp 129 - 147. '

MORTON G M (1966), A computer oriented g
data base and a new technique |
quencing. IBM Ltd., Ottawa, Canada

NAVAZO | (1986a), Contribuci6 a les tecmq
modelat geometric d'objectes poliedric

33

la codificacié amb arbres octals. Ph.D. diss.,
Escola Técnica Superior d'Enginyers Indu-
~ strials, Dep. de Metodes Informatics, Univ.
Politécnica de Catalunya, Barcelona, Spain.

NAVAZO-|, AYALA D, BRUNET P (1986b), A geo-
metric modeller based on the exact octree
representation of polyhedra. In: Comp. Gra-
phics Forum, 5, 2, pp 91 - 104.

NELSON R C, SAMET H (1986), A consistent
hierarchical representation for vector data.
In: Comp. Graphics, 20, 4, pp 197 - 206
(also in: Proc. of the SIGGRAPH'86 Conf,,
Dallas).

NIEVERGELT J, HINTERBERGER H, SEVCIKK C
(1984), The grid file: an adaptable, sym-
metric multikey file structure. In: ACM Trans-
actions on Database Systems, 9, 1, pp 38 -
71.

ORENSTEIN J A (1982}, Multidimensional tries used
for associative searching. In: Inform. Proc.
Letters, 14, 4, pp 150 - 157.

ORENSTEIN J A, MANOLA F A (1988), PROBE:
spatial data modeling and query processing
in an image database application. In: IEEE
Transactions on Software Engineering, 14,
5, pp 611 - 629,

PREPARATA F P, SHAMOS M | (1985), Computa-
% tional Geometry: An Introduction. Springer-
Verlag, New York.

QUINLAN K M, WOODWARK J R (1982), A spa-
tially-segmented solids database - justifica-
tion and design. In: Proc. of CAD'82 Cont.,

PP 126 - 132. Butterworth, Guildford, Great
Britain.

REDD;(} D R, RUBIN S (1978), Representation of
ree-dimensional objects. CMU-CS-78-113,

Comp. Science De ie- '
Pittsburgh_ D., Camegle Mellon Univ.,

0
USagggULos N, FFALOUTSOS, SELLIS T
for b S)bAn efficient pictorial database system
Enc L. In: IEEE Transactions on Software
Naneering, 14, 5, pp 639 - 650.

S R, l[_!IcDONELL K J, 001 B C

1 - aquery language for geo-

g.'aﬁggam;ormgtlon Systems. Tecgn. Regort,
S0 Univ; Victoria, Australia.

SAMET H (1984a), The quadtree and related hier-
archical data structures. In: ACM Comp. Surveys,
16, 2, pp 187 - 260.)

SAMET H (1988a), Hierarchical representations of
collections of small rectangles. In: ACM Comp.
Surveys, 20, 4, pp 271 - 309.

SAMET H (1990a), The Design and Analysis of
- Spatial Data Structures. Addison-Wesley,
Reading, MA. :

SAMET H (1990b), Applications of Spatial Data
Structures: Comp. Graphics, Image Proc.,
and GIS. Addison-Wesley, Reading, MA.

SAMET H, ROSENFELD A, SHAFFER C A, WEBBER
R E (1984b), A geographic information system
using quadtrees. In: Pattern Recognition,.17,
B, pp 647 - 656. .

SAMET H, SHAFFER A, WEBBER R E (1987),
Digitizing the plane with cells of non-uni-
form size. In: Inform. Proc. Letters, 24, 6,
pp 369 - 375.

SAMET H, WEBBER R E (1985), Storing a collection
of polygons using quadtrees. In: ACM Trans-
actions on Graphics, 4, 3, pp 182 - 222 (also
in: Proc. of Comp. Vision and Pattern Recogni-
tion, 83, pp 127 - 132. Washington, DC; and
Univ. of Maryland Comp. Science TR-1372).

| SAMET H, WEBBER R E (1988b), Hierarchical data

structures and algorithms for computer gra-
phics. Partl. Fundamentals. In: IEEE Comp.
Graphics and Applications, 8, 3, pp 48 - 68.

SAMET H, WEBBER R E {1988c}), Hierarchical data
structures and algorithms for computer gra-
phics. Part Il. Applications. In: IEEE Comp.
Graphics and Applications, 8, 4, pp 59 - 75.

SAMET H, WEBBER R E (1989), A comparison of
the space requirements of multi-dimensional
quadtree-based file structures. In: Visual
Comp., 5, 6, pp 349 - 359.

SAMET H, WEBBER R E (1991), Data structures
to support Bézier-based modeling. in: Comp.-
Aided Design, 23, 3, pp. 162-176.

SELLIS T, ROUSSOPOULOS N, FALOUTSOS C
(1987), The R*-tree: a dynamic index for multi-
dimensional objects. Comp. Science, TR-1795.
Univ. of Maryland, College Park, MD.

34 .Samet, H.: Hierarchical Data Structures for Spatial Databases

SHAFFER C A, SAMET H (1990a), Set operations
for unaligned linear quadtrees. In: Comp. Vi-
sion, Graphics, and Image Proc., 50, 1,
pp 29 - 49.

SHAFFER C A, SAMET H, NELSON R C (1990b),
QUILT: a geographic information system
based on quadtrees. In: Int. Journ. of Geogr.
Inform. Systems, 4, 2, pp 103 - 131.

SHNEIER M (1981), Calculations of geometric pro-
perties using quadtrees. in: Comp. Graphics
and Image Proc., 16, 3, pp 296 - 302.

STONEBRAKER M, ROWE L (1986), The design
of POSTGRES. In: Proc. of the SIGMOD Conf.,
pp 340 - 355. Washington, DC.

“TAMMINEN M (1981), The EXCELL method for effi-
cient geometric access to data. In: Acta Poly-
technica Scandinavica, Mathematics and
Comp. Science Series, No. 34. Helsinki.

TANIMOTO S, PAVLIDIS T {1975), A hierarchical
data structure for picture processing. In:

Comp. Graphics and Image Proc., 4, 2,

pp 104 - 119,

VANDERSCHEL D J (1984), Divided leaf octal
trees, Research Note. Schlumberger-Doll
Research, Ridgefield, CT.

WARNOCK J E (1969}, A hidden surface algorithm
for computer generated half tone pictures. In:
Comp. Science Dep., TR 4-15. Univ. of Utah,
Salt Lake City.

WOLF A (1990), The DASDBS GEOQ-kernel: con-
cepts, experiences, and the second step. In:
BUCHMANN A, GUNTHER O, SMITH T R,
WANG Y-F {eds.), Design and Implementa-
tion of Large Spatial Databases, Lecture No-
tes in Comp. Science, No. 409, pp 67 - 88.
Springer-Verlag, Berlin.

Acknowledgements

This work was supported by the National Science
Foundation under Grant IR[-9017393.

Abstract

'An overview is presented of the use of hierarchical
spatial data structures such as the quadiree in spatial
databases. They are based on the principle of re-

cursive decomposition. The focus is on the repre- .
sentation of data used in geographic information .
systems. There is a greater emphasis on region
data (i.e., 2-dimensional shapes) and to a lesser
extent on point, curvilinear, and 3-dimensional data.

Zusammenfassung

Der Beitrag bietet einen Uberblick tber die Ver-
wendung von hierarchischen raumbezogenen Da-
tenstrukturen, wie etwa den Quadtree in raumbe- -
zogenen Datenbanken. Sie beruhen auf dem Prin-
zip der rekursiven Unterteilung. Der Schwerpunkt
liegt in der Darstellung von Daten in Geographi-
schen Informationssystemen. Fl&chenhafte Daten
(d.h. 2-dimensionale Gebilde) werden stérker be-
tont als Punkte, Linien und 3-dimensionale Daten.

List of BW-tables {pp 36 - 39)

Page 36

Figure 1.: A region, its binary arfay, its maximal
blocks, and the corresponding quadtree.
{a) Region. (b} Binary array. (c) Block
decomposition of the region in (a).
Blocks in the region are shaded. (d)
Quadtree representation of the blocks
‘in {c).

Figure 2: (a) Example three-dimensional object;
(b} its octree block decomposition; and
(c) its tree representation.

Page 37

Figure 3: | Example illustrating the neighboriné ob-
ject problem. P is the location of the
pointing device. The nearest object is
represented by point B in node 6.

Figure 5: MX-CIF quadtree. (a) Collection of
rectangles and the block decompositi-
on induced by the MX-CIF quadtree.
(b) The tree representation of (a).

Page 38

Figure 4: A PR quadtree (b} and the records it

: represents (a).

Page 39

Binary trees for the y axes passing

Figure 6: /
, through (a) the-root -of-the MX-CIF

35

Figure 7:

Figure 8:

quadtree in Figure 5 and {b) the NE
son of the root of the MX-CIF quadtree
in Figure 5.

Example PM, quadtree.

{a) Example three-dimensional object;
and (b) its corresponding PM, octree.

35 Samet, H.: Hierarchical Data Structures for Spatial Databases

0j0]10{010{0|0]0
0{0]|0|0|0|0|0]|0
o|o|o|Oo] 1|11}
ojojo|Oofi|I1]1]!I
olo(of1|11i|1]] 6
OfojLftijtitgl
OlOfI|I]I]I]{O[0O ¥
O|0|I|1]1]0O]O]|0O
(a) 3 (b)
. A
Level 3 -~ —————-——=—-————— Q
NW
; NE
Level 2--- 0 B QO C
D
Level | - —————=-0 0O "0 O
2 3 4 5 6 1 12
Level| 0 m = === === —— — — = — — ——f] b
7 8 910
(d) :

Figure 1

5 B N 1L
567829I0

Figure 2

37

2 |l0 |6 7 :
D
4
I 9 | oy
.C P- I’8[° |
13 8
Figure 3 o ,
A

{a)

(b)

{F}

rigure 5

38 Samet, H.: Hierarchical Data Structures for Spatial Databases

(0,100) (100,100)
(60, 75)
TORONTO
® .
‘(80, 65)
| BUFFALO
Yy | ¢(5:45) |ss,40
DENVER cu-ucm?
(25,35) §
OMAHA
{85, 15)
ATLANTA
L J
A {90,55
(50,10) I\:IAMI
1 MoBILE
(0,0) ‘ (100,0)
X— '
oA
0 B¢ QC 5D
] L] E [] L 2 L] F
TORONTO BUFFALO DENVER MOBILE
L] L] L]]
CHICAGO OMAHA ATLANTA MIAMI]

Figure 4

39

D B
E
(a) ' (b)
Figure 6
: Al B
H. 1 /
G 17/
, Fi& o
pd
‘ A4
\L
E
D

Figure 7

Figure 8

