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ABSTRACT

An overview of hierarchical data structures for representing images, such as the
quadtree, is presented. They are based on the principle of recursive decomposu;lon The
emphasis is on the representation of data used in applications in image processing,
computer vision, computer graphics, robotics, ‘and geographic information systems.
There is a greater emphasis on region data (i.e., 2-dimensional shapes) and to a 1esser

. extent on pomt line, and 3-dimensional data. - : - :

1. INTRODUCTION

- Hierarchical data structures are becoming increasingly important representation
techniques in the domains of computer vision, image processing, computer graphics,
robotics, and geographic information systems. They are based on the principle of
recursive decomposition (similar to divide and conguer methods). One such data
structure is the quadtree. As we shall see, the term quadtree has taken on a generic
meaning. In this overview it is our goal to show how a number of data structures used
in different domains are related to each other and to quadtrees. Our presentation
concentrates on these different representations and illustrates how some basic operations
which use them are performed. For a more extensive treatment of this subject, including
a comprehensive set of references, see {Same84a, Same87].

This overview is organized as follows. Section 2 discusses the historical
background of the origins of hierarchical data structures. Section 3 shows how some key
operations are performed on region data. Section 4 describes hierarchical representations
for point data while Section 5 does the same for line data. Section 6 contains concluding
remarks in the context of a geographic 1nf0rma,t10n system that makes use of these
concepts.

*The support of the National Science Foundation under Gra.nt DCR-86-05557 is gratefully ack-
nowledged.
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2. BACKGROUND

The term quadiree is used to describe a class of hierarchical data structures
whose common property is that they are based on the principle of recursive
decomposition of space. They can be differentiated on the following bases: (1) the type
of data that they are used to represent, (2) the principle guiding the decomposition
process, and (3) the resolution (variable or not). Currently, they are used for point data,
regions, curves, surfaces, and volumes. The decomposition may be into equal parts on
each level (i.e., regular polygons and termed a regular decomposition), or it may be
governed by the input. The resolution of the decomposition (i.e., the number of times
that the decomposition process is applied) may be fixed beforehand or it may be
governed by properties of the input data.

Our first example of quadtree representation of data is concerned with the
representation of region data. The most studied quadtree -approach to region
representation, termed a. region gquadiree, is-based on the successive subdivision of the
image array into four equal-size quadrants. If the array does not consist entirely of 1’s
or entirely of 0’s (i.e., the region does not cover the entire array), it is then subdivided
into quadrants, subquadrants, etc., until blocks are obtained (possibly single pixels) that
consist entirely of 1’s or entirely of 0s; i.e., each block is entirely contained in the region
or entirely disjoint from it.- Thus the region quadtree can be characterized as a variable
resolution data structure. As an example, consider the region shown in Figure 1a which
is represented by the 2% by 2% binary array in Figure 1b. Observe that the 1s
correspond to picture elements (termed pizels) that are in the region and the O%s
correspond to picture elements that are outside the region. The resulting blocks for the
array of Figure 1b are shown in Figure le. This process is represented by a tree of
degree 4 (i.e., each non-leaf node has four sons). The root node corresponds to the entire
array. Each son of a node represents a quadrant (labeled in-order NW, NE, SW, SE) of
the region represented by that node. The leaf nodes of the tree correspond to those
blocks for which no further subdivision is necessary. A leaf node is said to be BLACK or
WHITE, depending on whether its corresponding block is entirely inside or entirely
outside of the represented region. All non-leaf nodes are said to be GRAY. The
quadtree representation for Figure 1c is shown in Figure 1d.

The example described in Figure 1 corresponds to a binary image. The extension
to non-binary images is straightforward. There are two choices. First, we can apply the
. same merging criteria to each color. For example, in the case of a landuse map that is

represented as a region quadtree, we would merge all wheat growing regions, and
likewise for corn, rice, etc. This is the approach taken by Samet ef al. [Same84b]. In the
case of gray-scale images we can take advantage of the fact that the image is continuous
"and thus adjacent image elements will usually have gray level values that are almost
identical. For example, in a 256-level image, we would expect elements with codes 127
and 128 to be adjacent. In fact, this is the approach taken by Kawaguchi ef al
[Kawa83] who use a sequence of m binary-valued quadtrees to encode image data of 2™
gray levels, where the various gray levels are encoded by use of Gray codes. This should
lead to compaction (i.e., larger sized blocks), since the Gray code guarantees that
adjacent gray level values differ by only one binary digit.
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Figure 1. A region, its binary array, its maximal blocks, and the corr.espc?nding
quadtree. (a) Region. (b) Binary array. (c} Block decomposition of the_ region in (a).
Blocks in the region are shaded. (d) Quadtree representation of the blocks in (¢).

Unfortunately, the term gquadiree has taken on more than one meaning. The
region quadtree, as shown above, is a partition of space into a set of squares whose sides
are all a power of two long. This formulation is due to Klinger [Klin71] who used the
term Q-tree, whereas Hunter [Hunt78] was the first to use the term quadtree in such a
context. A similar partition of space into rectangular quadrants, also termed a quadtree,

“was used by Finkel and Bentley [Fink74]. It is an adaptation of the binary search tree to
" two dimensions (which can be easily extended to an arbitrary number of dimensions). It

is' primarily used to represent multidimensional point data and we shall refer to it as a
point quadiree where confusion with a region quadtree is possible. As an example,
consider the point quadtree in Figure 2, which is built for the sequence Chicago, Mobile,
Toronto, Buffalo, Denver, Omaha, Atlanta, and Miami. Note that its shape is highly
dependent on the order in which the points are added to it. '

The origin of the principle of recursive decomposition is difficult to ascertain.
Below, in order to give some indication of the uses of the quadtree, we briefly, and
incompletely, trace some of its applications to image data. Morton [Mort66] used it 2s a
means of indexing into a geographic database. Warnock [Warn68| implemented a hidden
surface elimination algorithm using a recursive decomposition of the picture area. The
picture area is repeatedly subdivided into successively smaller rectangles while searching
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Figure 2. A point quadtree (b) and the records it represents (a).

for areas sufficiently simple to be displayed. Horowitz and Pavlidis [Horo76] used the
quadtree as an initial step in a “split and merge” image segmentation algorithm.

The pyramid of Tanimoto and Pavlidis [Tani75] is a close relative of the region
quadtree. It is. a multiresolution representation. A pyramid is an exponentially tapering
stack of arrays, each one-quarter the size of the previous array. It has been applied to
the problems of feature detection and segmentation. In contrast, the region quadtree is
a variable resolution data structure. For more details on pyramids, see the collection of
papers edited. by Rosenfeld [Rose83].

Quadtree;lilc_e. data structures can also be used to represent images in three
‘dimensions and higher. The octree [Hunt78, Meag82] data structure is the three-
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dimensional analog of the quadtree. It is constructed in the following manner. We start
with an image in the form of a cubical volume and recursively subdivide it into eight
congruent disjoint cubes (called octants) until blocks of a uniform color are obtained, or
a predetermined level of decomposition is reached. Figure 3a is an example of a simple
three-dimensional object whose octree block decomposition is given in Flgure 3b and
whose tree representation is given in Figure 3c.
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Figure 3. (a) Example three-dimensional object; {b) its octree block decomposition; and
{c) its tree representation. :

There are a number of different planar deéomposition methods. We use a
quadtree in the form of squares because it is a pla,nar decomposition that satisfies the .
following two properties:

(1) It yields a partition that is an infinitely repetitive pattern and thus it can be used
for images of any size.

(2) It yields a partition that is mﬁmtely decomposable into 1ncreasmgly finer patterns
(i.e., higher resolution).

A quadtree-like decomposition into four equilateral triangles (see Figure 4a) also
satisfies these criteria. However, unlike the decomposition into squares, it does not have
a uniform orientation - ie., all tiles with the same orientation cannot be mapped into
each other by translations of the plane which do not involve rotation or reflection. In
contrast, a decomposition into hexagons (see Figure 4b) has a uniform orientation but it

does not satisfy property {2). For more details on the properties of decomp051t10ns see
Bell et al. [Bell83]. :

One of the motivations for the development of hierarchical data structures such
as the quadtree is a desire to save space. The original formulation of the gquadtree
encodes it as a tree structure that uses pointers. This requires additional overhead to
encode the internal nodes of the tree. In order to further reduce the space requirements,
two other approaches have been proposed. The first, termed the linear quadiree
[{Garg82], treats the image as a collection of leaf nodes where each leaf is encoded by a
base 4 number termed a locational code, corresponding to a sequence of directional codes -
that locate the leaf along a path from the root of the quadtree. It is analogous to taking
“the binary representation of the z and y coordinates of a designated pixel in the block
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Figure 5. Example of set-theoretic operations. (a) sarhple image and its quadtree; (b)
sample image and its quadtree; (c) intersection of the images in (a) and (b); union of the
images in {a) and (b). .

The ability to perform set operations quickly is one of the primary reasons for
the popularity of quadtrees over alternative representations such as the chain code. The
chain code can be characterized as a local data structure, since each segment of the
‘chain code conveys information only about the part of the image to which it is adjacent
- ie., that the image is to its right. Performing an overlay operation on two images
represented by chain codes thus requires a considerable amount of work. In contrast,
the quadtree is a hierarchical data structure that ylelds successive reﬁnements at lower
levels in the tree. ' ' '
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3.2. BOTTOM-UP NEIGHBOR FINDING

Many quadtree algorithms involve more work than just traversing the tree. In
particular, in several applications we must perform a computation at each node that
depends on the values of its adjacent neighbors. Thus we must be able to locate these
neighbors. There are several techniques for achieving this result. One approach (Klin79]
makes use of the coordinates and the size of the node whose neighbor is being sought in
order to compute the Jocation of a point in the neighbor. For a 2" X2" image, this can
require n steps corresponding to the path from the root of the quadtree to the desired
neighbor. An alternative approach, and the one we describe below, only makes use of
father links and computes a direct path to the neighbor by following links in the tree.
This method is termed boftom-up neighbor finding and has been shown to require an
average of four links to be followed for each neighbor that is sought [Same821.

In this section we shall limit ourselves to neighbors in the horizontal and vertical
direction that are of size equal to or greater than the node whose neighbor is being
sought. For neighbors in the diagonal direction, see [Same82]. Finding a node’s neighbor
in a specified horizontal or vertical direction requires us to follow father links until a
common ancestor of the two nodes is found. Once the common ancestor is located, we
descend along a path that retraces. the previous path with the modification that each
step is a reflection of the corresponding prior step about the axis formed by the common
boundary between the two nodes. The general flow of such an algorithm is given in
Figure 6. For example, when attempting to-locate the eastern neighbor of node A (i.e.,
node G) in Figure 6, node D is the common ancestor of nodes A and G, and the eastern
edge of the block corresponding to node A is the common boundary between node A and
its neighbor. The main idea behind bottom-up neighbor finding can be understood by
examining more closely how the nearest common ancestor of a node, say P, and its
eastern neighbor of greater than or equal size, say @, is located. In particular, the
nearest. common ancestor has P as one of the eastern-most nodes of one of its western
subtrees, and ¢ as one of the western-most nodes of one of its eastern subtrees. Thus
as-long as an ancestor X is in a subtree that is not an eastern son (i.e., NE or SE), we
must ascend -the tree at least one more level before locating the nearest common
-ancestor. :
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Figure 6. The process of locating the eastern neighbor of node A (ie, G). (a) Block
decomposﬂzlon and (b} Tree representatlon '
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southern neighbor, have yet been labeled and thus label B is assigned to them. When
block 20 is processed, it has no label but its southern neighbor, 31, has already been
assigned B as a label and thus block 20 is assigned label B as well. Second, Figure 8b
shows the status of the image at the conclusion of the second step of the algorithm. It
has three different labels (i.e., A, B, and C) with B equivalent to C. This equivalence was
generated when the eastern adjacency of block 23 was explored. In essence, block 23 was
labeled with C when block 22’s eastern adjacency was explored, whereas block 31 was
labeled with B when block 15’s southern adjacency was explored. Thus we see that the
third step of the algorithm will have to be applied thereby relabeling all C blocks with
B.

The execution time of this connected component labeling algorithm is almost
linear in the number of BLACK blocks. Thus it is dependent only on the number of
blocks in the image and not on their size. In contrast, the analogous algorithm for the
binary array has an execution fime that is proportional to the number of pixels and
hence to the area of the blocks. Therefore, we see that the hierarchical structure of the

“quadtree data structure saves not only space but time.

‘ The first step of the connected.component labeling algorithm {i.e., the adjacency

determination) can be used to compute the perimeter of an image represented by a
quadtree [Same8lc| as well as component counting [Dyer80]. Component countmg is very
closely related to the computation of the genus (i.e., Euler number) of an image. In the
case of an image represented by a quadtree, the genus is determined by simply
computing the quantity V—-E +F where V corresponds to the number of BLACK blocks
in the image, £ is the number of pairs of adjacent BLACK blocks in the horizontal and
vertical directions, and F is the number of cases where three or four BLACK blocks
touch at a common point. This result is due to Dyer iDyer80].

4. POINT DATA

Multidimensional point data can be represented in a variety of ways. The
representation ultimately chosen for a specific task will be heavily influenced by the type -
of operations to be performed on the data. Our focus is on dynamic files (i.e., the
number of data can grow and shrink at will) and on applications involving search. In
Section 2 we briefly mentioned the point quadtree of Finkel and Bentley [Fink74| and
‘showed its use. In this section we discuss the PR quadtree (P for point data and R for
region) |Oren82, Same84al. It is an adaptation of the region quadtree to point data
which associates data points with quadrants. The PR quadtree is organized in the same
way as the region quadtree. The difference is that leaf nodes are either empty (ie.,.
- WHITE) or contain a data point (i.e., BLACK) and its coordinates. A quadrant contains
at most one data point. For example Figure 9 is the PR quadtree corresponding to the
:data of Figure 2.

Data points are inserted into PR quadtrees in a manner analogous to that used
to insert in a point quadtree - i.e., a search is made for them. Actually, the search is for
the quadrant in which the data point, say A, belongs (i.e., a leaf node). If the quadrant
is already  occupied by another data point with different z and y coordinates, say B,
then the quadrant must repeatedly be subdivided (termed splitting) until nodes A and B
no longer occupy the same quadrant. This may result in many subdivisions, especially if
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the Euclidean distance between A and B is very small. The shape of the resulting PR
quadtree is independent of the order in which data points are inserted into it. Deletion
of nodes is more complex and may require collapsing of nodes - ie., the direct
counterpart of the node splitting process outlined above. o -

PR quadtrees, as well as other quadtree-like representations for point data, are
especially attractive in applications that involve. search. A typical query is one that
requests the determination of all records within a specified distance of a given record -
Le., all cities within 100 miles of Washington, DC. The efficiency of the PR quadtree lies
In its role as a pruning device on the amount of search that is required. Thus many
records will not need to be examined. For example, suppose that in the hypothetical
database of Figure 9 we wish to find all cities within 8 units of a data, point with
coordinates (84,10). In such a case, there is no need to search the NW, NE, and SW
quadrants of the root (i.e., (50,50)). Thus we can restrict our search to the SE quadrant
of the tree rooted at root. Similarly, there is no need to search the NW, NE, and SW
quadrants of the tree rooted at the SE quadrant (i.e., (75,25)). ' :
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Figure 9. A PR quadtree (b) and the records it represenfs (a).
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Figure 12. An edge quadtree. - " Figure 13. The PM quadtree of Figure 12.

"The PM quadtree of Samet and Webber {Same85b] {(see also edge-EXCELL
[Tamm81|) represents an attempt to overcome some of the problems associated with the
edge quadtree in the representation of collections of polygons (termed polygonal maps).
In particular, the edge quadtree is an approximation because vertices are represented by
pixels. Moreover, it is impossible for five or more line segments to meet at a vertex.
There are a number of variants of the PM quadtree. The one we describe is based on a
decomposition rule that stipulates that partitioning occurs as long as a quadrant
contains more than one line segment unless the line segments are all incident at the same
vertex which is also in the same quadrant {e.g., Figure 13). We define a g-edge to be a
segment of an edge of the original polygonal map that either spans an entire block in the
PM quadtree or extends from a boundary of a block to a vertex within the block (ie.,
when the block contains a vertex) In such a case, each g-edge is represented by a pomter
to a record containing the endpoints of the edge of the polygonal map of which the g-
edge is a part [Nels86]. The line segment descriptor stored in a node only implies the
presence of the corresponding g-edge - it does not mean that the entire line segment is
present as a lineal feature. The result is a consistent representation of line fragments
since they are stored exactly and thus they can be deleted and reinserted without
worrying about errors arising from the roundoffs induced by apprommatmg their
1ntersect10n with the borders of the blocks throngh which they pass.

'57._ CONCLUDING REMARKS

The use of hierarchical data structures in image databases enables us to focus
computational resources on the interesting subsets of data. Thus there is no need to
expend work where the payoff is small. Moreover, algorithms based on such methods are
“easy to develop and maintain. When the hierarchical data structures are based on the
principle of recursive decomposition, we have the added benefit of a spatial index. All
features, be they regions, points, or lines, can be represented by maps. which are in
‘tegistration. In fact, such a system has been built [Same84b] for representing geographic
information. In this case, the quadtree is implemented as a collection of leaf nodes where
each leaf node is represented by its locational code. The collection is in turn represented
‘as a B-tree. There are leal nodes corresponding to region, point, and line data. Point
data is implemented using a PR quadtree and line data is implemented using a PM
quadtree. '

402



The disadvantage of quadtree methods is that they are shift sensitive in the sense
that their space requirements are dependent on the position of the origin. However, for
complicated images the optimal positioning of the origin will usually lead to little
improvement in the space requirements. The process of obtaining this optimal
positioning is computationally expensive and is usually not worth the effort (Lig2].

The fact that we are working in a digitized space may also lead to problems. For
example, the rotation operation is not generally invertible. In particular, a rotated square
usually cannot be represented accurately by a collection of rectilinear squares. However,
when we rotate by 90°, then the rotation is invertible. This problem arises whenever one
uses a digitized representation. Thus it is also common to the array representation.
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