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ABSTRACT 

An overview of hierarchical data structures for representing images, such as the 
quadtree and octree, is presented. They are based on the principle of recursive 
decomposition. The emphasis is on the representation of data used in applications in 
computer graphics, computer-aided design, robotics, computer vision, and cartography. 
There is a greater emphasis on region data (i.e., 2-dimensional shapes) and to a lesser 
extent on point, lin.e, and 3-dimension-al data. 
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1. INTRODUCTION 

"""""'" · Hierarchical data structures are becoming increasingly important representation 
techniques in the domains of computer graphics, computer-aided design, robotics, 
computer vision, and cartography. They are based on the principle of recursive 
decomposition (similar to divide and conquer methods). One such data structure is the 
quadtree. As we shall see, the term quadtree has taken on a generic meaning. In this 
overview it is. our goal to show how a number of data structures used in different 
domains are related to each other and to quadtrees. Our presentation concentrates on 
these different representations and illustrates how some basic operations which use them 
are performed. Whenever possible, we give examples from the domain of .computer 
graphics. For a more extensive treatment of this subject, including a comprehensive set 
of references, see [Same84a, Same87]. 

This overview is organized as follows. Section 2 discusses the historical 
background of hierarchical data structures. Section 3 points out the key properties of 
hierarchical space decompositions. Section 4 shows how some basic operations are 
performed on region data. Section 5 describes hierarchical representations for point data 
while Section 6 does the same for line data. In each section we also mention how the 
techniques can be applied to 3-dimensional data. Section 7 contains concluding remarks 
that inclu.de a summary of the advantages and disadvantages of hierarchical methods. 
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2. BACKGROUND 

The term quadtree is used to describe a class of hierarchical data structures 
whose common property is that they are based on the principle of recursive 
decomposition of space. They can be differentiated on the following bases: (1) the type 
of data that they represent, (2) the principle guiding the decomposition process, and (3) 
the resolution (variable or not). Currently, they are used for point data, regions, curves, 
surfaces, and volumes. The decomposition may be into equal parts on each level (i.e., 
regular polygons, termed a regular decomposition), or it may be governed by the input. 
ln computer graphics this distinction is often phrased in terms of image-space hierarchies 
versus object-space hierarchies, respectively. The resolution of the decomposition (i.e., 
the number of times that the decomposition process is applied) may be fixed beforehand 
or it may be governed by properties of the input data. 

Our first example of quadtree representation of data is concerned with the 
representation of region data. The most studied quadtree approach to region 
representation 1 termed a region quadtree,_ is based on the successive subdivision of the 
image array into four equal-size quadrants. If the array does not consist entirely of l's 
or entirely of O's (i.e., the region does not cover the entire array), it is then subdivided 
into quadrants, subquadrants, etc., until blocks are obtained (possibly single pixels) that 
consist entirely of l's or entirely of O's, i.e., each block is entirely contained in the region 
or entirely disjoint from it. Thus the region quadtree can be characterized as a variable 
resolution data structure. As an example 1 consider the region shown in Figure la which 
is represented by the 23 x23 binary array in Figure lb. Observe that the l's correspond 
to picture elements (termed pixels) that are in the region and the O's correspond to 
picture elements that are outside the region. The resulting blocks for the array of Figure 
1 b are shown in Figure le. This process is represented by a tree of degree 4 (i.e., each 
non-leaf node has four sons). The root node corresponds to the entire array. Each son 
of a node represents a quadrant (labeled in order NW, NE, SW, SE) of the region 
represented by that node. The leaf nodes of the tree correspond to those blocks for 
which no further ·subdivision is necessary. A leaf node is said to be BLACK or WHITE, 
depending on whether its corresponding block is entirely inside or entirely outside of the 
represented region. Non-leaf nodes are GRAY. The quad tree representation for Figure 
le is shown in Figure ld. Although the example described in Figure 1 corresponds to a 
binary image, the extension to non-binary images is straightforward. 

The region quadtree is easily extended to represent 3-dimensional data and the 
resulting data structure is termed an octree. It is constructed in the following manner. 
We start with an image in the form of a cubical volume and recursively subdivide it into 
eight congruent disjoint cubes (called octants) until blocks of a uniform color are 
obtained, or a predetermined level of decomposition is reached. Figure 2a is an example 
of a simple 3-dimensional object whose octree block decomposition is given in Figure 2b 
and whose tree representation is given in Figure 2c. 

Unfortunately, the term quadtree has taken on more than one meaning. The 
region quadtree, as shown above, is a partition of space into a set of squares whose sides 
are all a power of two long. This formulation is due to Klinger [Klin71] who used the 
term Q-tree, whereas Hunter [Hunt78] first used the term quadtree in this context. A 
s_imilar partition of space into rectangular quadrants, also termed a quadtree, was used 
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by Finkel and Bentley [Fink74J. It is an adaptation of the binary search tree to two 
dimensions (which can be easily extended to an arbitrary number of dimensions). It is 
primarily used to represent multidimensional point data. We shall refer to it as a point 
quadtree when confusion with a region quadtree is possible. 

The origin of the principle of recursive decomposition is difficult to ascertain. 
Below 1 in order to give some indication of the origins of quadtrees and octrees, we 
briefly, and incompletely, trace some of their applications. Mort<>n [Mort66] used it as a 
means of indexing into a geographic database. Warnock [Warn68] implemented a hidden 
surface elimination algorithm using a recursive decomposition of the picture area. The 
picture area is repeatedly subdivided into successively smaller rectangles while searching 
for areas sufficiently simple to be displayed. The pyramid of Tanimoto and Pavlidis 
[Tani75] is a close relative of the region quad tree. It is an exponentially tapering stack of 
arrays, each one-quarter the size of the previous array. The pyramid is a multiresolution 
representation whereas the region quadtree is a variable resolution data structure. 

The octree was developed independently by various researchers. Hunter [Hunt78] 
mentioned it as a natural extension of the quadtree. Reddy and Rubin [Redd78] 
proposed the octree as one of three representations for solid objects. The second is a 3-
dimensional generalization of the point quadtree of Finkel and Bentley [Fink74J - i.e., a 
decomposition into rectangular parallelepipeds (as opposed to cubes) with planes 
perpendicular to the x, y, and z axes. The third breaks the object into rectangular 
parallelepipeds of an arbitrary size that are not necessarily aligned with an axis. Jackins 
and Tanimoto [Jack80] adapted Hunter's and Steiglitz's quadtree translation algorithm 
to objects represented by octrees. Meagher [Meg82] developed numerous algorithms for 
performing solid modeling where the octree is the underlying representation. 

3. PROPERTIES OF QUADTREE AND OCTREE SPACE DECOMPOSITIONS 

A number of different planar decomposition methods exist. We use a quadtree in 
the form of squares because it is a planar decomposition that satisfies these two 
properties: (1) Since it yields a partition that is an infinitely repetitive pattern, it can he 
used for images of any size. (2) It yields a partition that is infinitely decomposable into 
increasingly finer patterns (i.e., higher resolution). 

A quadtree-like decomposition into four equilateral triangles also satisfies these 
criteria. However, unlike the decomposition into squares, it does not have a uniform 
orientation - i.e., all tiles with the same orientation cannot be mapped into each other by 
translations of the plane that do not involve rotation or reflection. In contrast, a 
decomposition into hexagons has a uniform orientation but does not satisfy property (2). 
Nevertheless, triangular quadtrees have been used - e.g., Yamaguchi et al. [Yama84] use 
them to generate an isometric view from an octree representation of an object. For more 
details on properties of decompositions see Bell et al. [Bell83]. 

One of the motivations for the development of hierarchical data structures such 
as the quadtree is a desire to save space. The original formulation of the quadtree 
encodes it as a tree structure that uses pointers. This requires additional overhead to 
encode the internal nodes of the tree. To further reduce the space requirements, two 
other approaches have been proposed. The first, termed the linear quadtree [Garg82], 
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treats the image as a collection of leaf nodes where each leaf is encoded by a base 4 
nurnber termed a locational code 1 corresponding to a sequence of directional codes that 
lornte the leaf along a path from the root of the quad tree. It is analogous to taking the 
[,,nary representation of the x and y coordinates of a designated pixel in the block (e.g., 
the one at the lower left corner) and interleaving them (i.e., alternating the bits for each 
rnordinate). The second, termed a DF-expression, represents the image in the form of a 
traversal of the nodes of its quadtree [Kawa80]. It is very compact as each node type can 
be encoded with two bits. However, it is not always easy to use when random access to 
nodes is desired. Interestingly, Samet and Webber [Same86] show that for a static 
rnllection of nodes, an efficient implementation of the pointer-based representation will 
often be more economical spacewise than a locational code representation. This is 
especially true for images of higher dimension. 

Nevertheless, depending on the particular implementation of the quadtree we 
rnay not necessarily save space (e.g., in many cases a binary array representation may 
still be more economical than a quadtree). However, the effects of the underlying 
hierarchical aggregation on the execution time of the algorithms are more important. 
Most quadtree algorithms are simply preorder traversals of the quadtree and thus their 
execution time is generally a linear function of the number of nodes in the quadtree. In 
this case, our discussion assumes a tree representation in the sense that the number of 
nodes in the quad tree includes the internal nodes. 

A key to the analysis of the execution time of quadtree algorithms is the 
Quadtree Complexity Theorem [Hunt78, Hunt79], which states that, except for 
pathological cases, the number of nodes in the quadtree representation of a region is 
proportional to the perimeter of the region. An alternative interpretation of this result is 
that for a given image, if the resolution doubles and hence the perimeter doubles 
(ignoring fractal effects), then the number of nodes will double. On the other hand, for 
the 2-dimensional array representation, when the resolution doubles, the size of the array 
quadruples. The Quadtree Complexity Theorem holds for 3-dimensional data [Meag80] 
where perimeter is replaced by surface area, as well as higher dimensions. 

Aside from its implications on storage requirements, the Quadtree Complexity 
Theorem also directly impacts the analysis of the execution time of algorithms. In 
particular, most algorithms that execute on a quadtree representation of an image 
instead of an array representation have an execution time that is proportional to the 
number of blocks in the image rather than the number of pixels. Generally, this means 
that the application of a quadtree algorithm to a problem in d-dimensional space 
executes in time proportional to the analogous array-based algorithm in the (d-1)­
dimensional space of the surface of the original d-dimensional image. Thus quadtrees are 
somewhat like dimension-reducing devices. 

4. ALGORITHMS USING QUADTREES AND OCTREES FOR REGION DATA 

In this section we describe how a number of operations can be implemented using 
quadtrees and octrees. In particular, we discuss set operations, quadtree and octree 
construction, polygon coloring, and display. We also expand on the concept of neighbor 
finding which serves as a basis for many algorithms using quadtrees and octrees. 
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Figure 3. Example of set-theoretic operations. (a) sample image and its 
~uadtree; (b) sample image and its quadtr.ee; (c) intersection of the images 
m (a) and (b); union of the images in (a).and (b). 

4.1. SET OPERATIONS 

For a binary image, set-theoretic operations such as union and intersection are 
quite simple to implement [Hunt79, Shne81]. For example, the intersection of two 
quadtrees yields a BLACK node only when the corresponding regions in both quadtrees 
are BLACK. Figur~ 3c is the result of the intersection of th~'quadtrees of Figur,es 3a and 
3b. This operation is performed by simultane()usly traversirg ~hree quadtrees. The first 
two trees correspond to the trees being intersected while 'the third tree represents the 
result of the operation. At each step in· the traversal .{Ile of the following actions is 

taken: 



(I) If either input quadtree node is WHITE, then the output quadtree node 1s 
WHITE. 

(2) If both input quadtree nodes are BLACK, then the output quadtree node 1s 
BLACK. 

(3) If one input quadtree node is BLACK while the other input quadtree node 1s 
GRAY (i.e., an internal node), then the GRAY node's subtree is copied into the 
output quad tree. 

(4) If both input quadtree nodes are GRAY, then the output quadtree node is 
GRAY, and these four actions are recursively applied to each pair of 
corresponding sons. Once the sons have been processed, we must check to see if 
they are all leaf nodes of the same color in which case a merge takes place (e.g., 
the sons of nodes B and E in Figures 3a and 3b respectively). Note that for the 
intersection operation, a merge of four BLACK leaf nodes is impossible and thus 
we must only check for the mergibility of WHITE leaf nodes. 

The worst-case execution time of this algorithm is proportional to the sum of the 
number of nodes in the two input quadtrees. Note that as a result of actions (I) and (3), 
it is possible for the intersection algorithm to visit fewer nodes than the sum of the 
nodes in the two input quadtrees. 

The union operation is implemented easily by applying DeMorgan's law to the 
above intersection algorithm. For example, Figure 3d is the result of the union of the 
quadtrees of Figures 3a and 3b. When the set-theoretic operations are interpreted as 
Boolean operations, union and intersection become '<or" and <'and" operations, 
respectively. Other operations, such as "exclusive or" and "set-difference", are coded in 
an analogous manner with linear-time algorithms. The extension of these algorithms to 
octrees is straightforward. 

The ability to perform set operations quickly is one of the primary reasons for 
the popularity of quadtrees over alternative representations such as the chain code or 
vectors. The chain code can be characterized as a local data structure, since each 
segment of the chain code conveys information only about the part of the image to 
which it is adjacent - i.e., that the image is to its right. Performing an overlay operation 
on two images represented by chain codes thus requires a considerable amount of work. 
In contrast, the quadtree is a hierarchical data structure that yields successive 
refinements at lower levels in the tree. 

4.2. BOTTOM-UP NEIGHBOR FINDING 

Many quadtree algorithms involve more work than just traversing the tree. In 
particular,- in several applications we must perform a computation at each node that 
depends on the values of its adjacent neighbors. Thus we must be able to locate these 
neighbors. There are several techniques for achieving this result. One approach [Klin79] 
makes use of the coordinates and the size of the node whose neighbor is being sought in 
order to compute the location of a point in the neighbor. For a 2" X2" image, this can 
require n steps corresponding to the path from the root of the quadtree to the desired 
neighbor. An alternative approach described below only makes use of father links and 
computes a direct path to the neighbor by following links in the tree. This method, 



58 

C})~E -NE o"'. NW 

NW 
,.,-;; 8 F~ 

NE 

c""' / E . c 
SE 

~ .......... / ® 

D 

. 

NE NW 
CD ® 

A G 

(a) (b) 

Figure 4. The process of locating the eastern neighbor of node A (i.e., G). 
(a) Block decomposition; and (b) Tree representation. 

termed bottom-up neighbor finding, has been shown to require an average of four links to 
be followed for each neighbor sought [Same82]. 

In this section we limit ourselves to neighbors in the horizontal and vertical 
direction that are of size equal to or greater than .the node whose neighbor .is being 
sought. This requires us to follow father Jinks until a common ancestor of the two nodes 
is found. Once the common ancestor is located, we descend along a path that retraces 
the previous path with the modification that each step is a reflection of the 
corresponding prior step about the axis formed by the common .bound.ary between the 
two nodes. The general flow of such an algorithm is given in Figure 4 .• For example, 
when attempting to locate the eastern neighbor of node A (i.e., node G) in Figure 4, 
node D is the common ancestor of nodes A and G, and the eastern edge of the block 
corresponding to node A is the common boundary between node A and its neighbor. The 
main idea behind bottom-up neighbor finding is understood by examining more closely 
how the nearest common ancestor of a node, say P, and its easter11 neighbor of greater 
than or equal size, say Q, is located. In particular, the nearest common ancestor has P 
as one of the eastern-mos.t nodes of one of its western subtrees, and, Q as one of t]i.e 
western-most nodes of one of its eastern subtrees. Thus as long as an ancestor Xis in a 
subtree that is not an eastern son (i.e., NE or SE), we must ascend the. tree ·at le.ast one 
more level before locating the nearest common ancestor. For neighbors in the diagonal 
direction, see [Same82]. 

4.3. CONSTRUCTING QUADTREES 

Before we can operate on an image represented by a quadtree, we must first build 
the quadtree. This involves being able to convert. between a number of different data 
formats and the quad tree. In this section we briefly ·describe the construction of region 
quadtrees from raster data. · 

When building a quadtree from raster data presented in raster scan order-(i.e., 
the array is processed row by row) [Same8la] we use bottom-up neighbor-finding to 
move through· the quad.tree in the order in which the data is encountered. Such an 



algorithm takes time proportional to the number of pixels in the image. Its execution 
time is dominated by the time necessary to check if nodes should be merged. This can be 
avoided by use of predictive techniques that assume the existence of a homogeneous 
node of maximum size whenever a pixel that can serve as an upper left corner of a node 
is scanned (assuming a raster scan from left to right and top to bottom). In such a case, 
merging is reduced and the algorithm's execution time is dominated by the number of 
blocks in th.e image [Shaf87] rather than by the number of pixels. However, this 
algorithm does require the use of an auxiliary I-dimensional array of size equal to the 
width of the image. 

Building an octree from a raster representation is a computationally expensive 
process because of the large amount of data that must be examined. This can be 
lessened in part by using the predictive techniques described above. However, the storage 
requirements for the auxiliary array are as large as a cross-section of the image, but they 
could be overcome by using a quadtree to represent the cross-section. Most often the 
octree is built from. alternative 3-dimensional representations, such as the boundary 
method [Tamm84] and CSG trees [Same85c, Wood82], which are more compact. 

4.4. POLYGON COLORING 

Bottom-up neighbor finding can be used to implement the seed-filling approach 
to polygon coloring. The idea is to start at a block corresponding to the starting point 
and then use bottom-up neighbor finding to propagate the color to the remaining blocks 
in the polygon. Polygon coloring is a special case of connected component labeling. It is 
analogous to finding the connected components of a graph. In the case of a quadtree, the 
result is the assignment of a different label to each of the distinct BLACK regions in an 
image. Given a binary array representation of an image, the traditional method of 
performing this operation would be a "breadth-first" approach which scans the image 
row by row from left to right and assigns the same label to adjacent BLACK pixels that 
are found to the right and in the downward direction. During this process, pairs of 
equivalences may be generated, thus necessitating two more steps: one to merge the 
equivalences and the second to update the labels associated with the various pixels to 
reflect the merger of the equivalences. 

Using a quadtree to perform the same operation involves an analogous three-step 
process [Same8lb]. The first step is a tree traversal where for each BLACK node that is 
encountered, say A, all adjacent BLACK nodes on the southern and eastern sides of A 
are found, and assigned the same label as A. The adjacency exploration is done by using 
bottom-up neighbor finding. At times, the adjacent node may already have been 
a.'lSigned a label, in which case the equivalence is noted. The second step merges all the 
equivalence pairs generated during step one. The third step performs another traversal of 
the quadtree and updates the labels on the nodes to reflect the equivalences generated by 
the first two steps of the algorithm. Often, the first and second steps can be combined 
into one step [Same85a]. 

The execution time of this connected component labeling algorithm is almost 
linear in the number of BLACK blocks. Thus it is dependent only on the number of 
blocks in the image and not on their size. In contrast, the analogous algorithm for the 
binary array has an execution time that is proportional to the number of pixels and 
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hence to the area of the blocks. Therefore, we see that the hierarchical structure of the 
quad tree data structure saves not only space but time. 

4.5. DISPLAY 

A basic graphics operation is the conversion of an internal model of a 3-
dimensional scene into a 2-dimensional scene that lies on the viewplane for the purpose 
of display on a 2-dimensional screen. This is known as the hidden-surface operation. 
Although there are many possible mappings between a 3-dimensional space and a 2-
dimensional space, in this section we only discuss projections. Each pixel of the 
viewplane determines a pyramid that is formed by the set of all rays originating at the 
viewpoint and intersecting the viewplane within the boundary of the pixel. In the 
simplest case, a color is assigned to each pixel that corresponds to the. color of the object 
that is closest to the viewpoint while also lying within the pixel's pyramid. 

There are three approaches to the hidden-surface task that are relevant to our 
discussion. First, the 3-dimensional scene can be viewed as a sequence of overlays of 2-
dimensional scenes each of which is represented by a quadtree 1Kauf83J. Second, 
quadtrees can be used to model the viewplane even when the 3-dimensional scene 
consists of polygons of arbitrary orientation and placement in the 3-dimensional space. 
This solution was first proposed by Warnock [Warn68J and is known as Warnock's 
algorithm. Third, the parametric space of the surface of a 3-dimensional object can be 
modeled by a quad tree 1Catm75J. 

When an octree is used to represent a collection of objects, displaying it is 
straightforward. The easiest method is the parallel projection 1Doct81]. Of course, 
implicit in this task is the solution of the hidden-surface problem for the interaction 
among the objects. Since the octree imposes a spatial ordering on objects, in this case 
the hidden-surface problem can be solved more efficiently than the general hidden­
surface problem for arbitrary polygons. In particular, any opaque object in the four front 
octants of an octree will occlude any opaque object in the back four octants. This 
property holds recursively within each of the suboctants. The display of the scene is 
facilitated by the construction of a display quadtree which corresponds to a partial 2-
dimensional view of the scene. The display quadtree is updated as the nodes of the 
octree are traversed from back-to-front. Of course, the nodes could also be processed 
from front-to-back, thereby allowing for the possibility of visiting fewer nodes. 
Generalizations of the parallel projection to planes of arbitrary position and orientation 
are described by Meagher [Meag82] and Yau IYau84J. 

Although projection display techniques are suitable for computer-aided design, 
realistic modeling of lighting effects generally requires using some variant of ray tracing. 
The necessary intersection calculations can be speeded up by using octrees or their 
variants. The key operation is to locate a neighboring node that contains a particular 
point. One approach is to calculate a point that lies in the neighbor and then search the 
octree for that point [Glas84, Kapl85, Wyvi85, Fuji86]. Alternatively, bottom-up 
neighbor-finding can be used 1Jans86]. As the complexity of the scene increases, bottom­
up neighbor-finding methods should be more efficient. 



5. POINT DATA 

Multidimensional point data can be represented in a variety of ways. The 
representation ultimately chosen for a specific task will be heavily influenced by the type 
of operations to be performed on the data. Our focus is on dynamic files (i.e., the 
number of data points can grow and shrink at will) and on applications involving search. 
Although in Section 2 we briefly mentioned the point quadtree of Finkel and Bentley 
[Fink74j, in this section we discuss the PR quad tree (P for point data and R for region) 
[Oren82, Same84a). It is an adaptation of the region qU:adtree to point data which 
associates data points with quadrants. The PR quad tree (see Figure 5) is organized in 
the same way as the region quadtree. The difference is that leaf nodes are either empty 
(i.e., WHITE) or contain a data point (i;e., BLACK) and its coordinates. A quadrant 
contains at most one data point. 
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Data points are inserted into PR quadtrees by searching for them. Actually, the 
search is for the quadrant in which the data point, say A, belongs (i.e., a leaf node). If 
the quadrant is already occupied by another data point with different x and y 
coordinates, say B, then the quadrant must repeatedly be subdivided (termed splitting) 
until nodes A and B no longer occupy the same quadrant. This may result in many 
subdivisions, especially if the Euclidean distance between A and B is very small. The 
shape of the resulting PR quadtree is independent of the order in which data points are 
inserted into it. Deletion of nodes is more complex and may require collapsing of nodes -
i.e., the direct counterpart of the node splitting process outlined above. 

PR quadtrees, as well as other quadtree-like representations for point data, are 
especially attractive in applications that involve search. A typical query is one that 
requests the determination of all records within. a specified distance of a given record -
i.e., all cities within 100 miles of Washington, DC. The efficiency of the PR quad tree lies 
in its role as a pruning device on the amount of search that is required. Thus many 
records will not need to be examined. For example, suppose that in the hypothetical 
database of Figure 5 we wish to find all cities within 8 units of a data point with 
coordinates (84,10). In such a case, there is no need to search the NW, NE, and SW 
quadrants of the root (i.e., (50,50)). Thus we can restrict our search to the SE quadrant 
of the tree rooted at root. Similarly, there is no need to search the NW, NE, and SW 
quadrants of the tree rooted at the SE quadrant (i.e., (75,25)). 

6. LINE DATA 

Section 4 was devoted to the region quadtree which is an approach to region 
representation that is based on a description of the region's interior. In this section we 
focus on representations that specify boundaries of regions. This is done in the more 
general context of data structures for line data. The simplest representation is the 
polygon in the form of vectors which are usually specified in the form of lists of pairs of 
x and y coordinate values corresponding to their start and end points. One of the most 
common representations is the chain code which is an approximation of a polygon. 
There also. is a considerable amount of interest currently in hierarchical representations. 
These are primarily based on rectangular approximations to the data as well as on a 
regular decomposition in two dime_nsions. 

The strip tree [Ball81] is a hierarchical representation of a single curve that is 
obtained by successively approximating segments of it by enclosing rectangles. For 
example, consider the curve between points P and Q in Figure 6a. The data structure 
consists of a binary tree (see Figure 6b) whose root represents the bounding rectangle of 
the entire curve. The rectangle associated with the root, A in this example, corresponds 
to a rectangular strip, that encloses the curve, whose sides are parallel to the line joining 
the endpoints of the curve (i.e., P and Q). The curve is then partitioned in two at one 
of the locations where it touches the bounding rectangle. Each subcurve is then 
surrounded by a bounding rectangle and the partitioning process is applied recursively. 
This process stops when the width of each strip is less than a predetermined value. 

Like point and region quadtrees, strip trees are useful in applications involving 
search and set operations. For example, suppose we wish to determine whether a road 
crosses a river. Representing such features with a strip tree, answering this query 
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Figure 6. A curve between points P and Q. (a) Its decomposition into 
strips; and (b) the corresponding strip tree. 

requires performing an intersection of the corresponding strip trees. Three cases are 
possible as shown in Figure 7. Figures 7a and 7b correspond to the answers NO and 
YES respectively while Figure 7c requires us to descend further down the strip tree. 
This method saves a lot of work when an intersection is impossible. 

The PM quadtree of Samet and Webber [Same85b] (see also edge-EXCELL 
[Tamm81]) is an adaptation of the region quadtree to represent collections of polygons 
( t.ermed polygonal maps). There are a number of variants of the PM quad tree. The one 
described is based on a decomposition rule that stipulates that partitioning occurs as 
long as a quadrant contains more than one line segment unless the line segments are all 
incident at the same vertex which is also in the same quadrant (e.g., Figure 8). We define 
:i q-edge to be a segment of an edge of the original polygonal map that either spans an 
•·ntire block in the PM quadtree or extends .from a boundary of a block to a vertex 
within the block (i.e., when a block contains a vertex). In such a case, each q-edge is 

D 

OR 

I I 
(a) NULL (bl CLEAR (c) POSSIBLE 

Figure 7. Three possible results of intersecting two strip trees. 
(a) Null. (b) Clear. (c) Possible. 
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represented by a pointer to a record containing the endpoints of the edge of the 
polygonal map of which the q-edge is a part [Nels86]. The line segment descriptor stored 
in a node only implies the presence of the corresponding q-edge - it does not mean that 
the entire line segment is present. The result is a consistent representation of line 
fragments since they are stored .exactly and thus they can be deleted and reinserted 
without worrying about errors arising from the roundoffs induced by approximating their 
intersection with the borders of the blocks that they pass through. 

The PM quadtree has also been adapted to represent polyhedra [Ayal85, Carl85, 
Fuji85J. Decomposition stops when a node is intersected by exactly one edge, or one face, 
or all edges that intersect the node meet at a common vertex in the node. For example, 
Figure 9b is the PM octree corresponding to the 3-dimensional object in Figure 9a. This 
representation is considerably more compact than the raster octree. 

7. CONCLUDING REMARKS 

The use of hierarchical data structures enables us to focus computational 
resources on the interesting subsets of data. Thus there is no need to expend work where 
the payoff is small. Moreover, algorithms based.on such me.thods are easy to develop and 
maintain. When the hierarchical data structures are based on the principle of recursive 
decomposition, we have a spatial index. All features, be they regions, points, or lines, are 
represented with respect to a comm.on origin. A system representing. geographic 
information that makes use of the region quadtree, PR quadtree, and PM quadtree to 
represent region, point, and line data respectively has been built. [Same84b]. 

The disadvantage of quadtree methods is that they are shift sens.itive .in that 
their space requirements are dep~ndent on the. position of theorigin. However, for 
complicated images the optimal positioning of the origin will usually lead to litt.le 
improvement in the space requirements. The. process of obtaining this ·optimal 
positioning is computationally expensive and is usually not worth the effort [Li82]. 

A B 

Figure 8. A PM quadtree. 

c 

Figure 9. (a) Example 3-dimensional object; 
(b) its corresponding PM octree. 



Another disadvantage for some applications (not display) is that some variants of 
the quadtree and octree are approximations. The fact that we are working in a digitized 
space also may lead to problems. For example, the rotation operation is not generally 
invertible. In particular, a rotated square usually cannot be represented accurately by a 
collection of rectilinear squares. However, when we rotate by 90 •, then the rotation is 
invertible. This problem arises whenever one uses a digitized representation. Thus it is 
also common to the array representation. Interestingly, the impact of both the 
digitization and shifting problems is lessened considerably by use of representations such 
as the PM quadtree for 2-dimensional and 3-dimensional data, in which case the 
representation is not an approximation. 
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