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ABSTRACT

An overview of hierarchical data structures for representing images, such as the
quadtree and .octree, is presented. They  are based on the principle of recursive
decomposition. The emphasis is on the representation of data used in applications in
computer graphics, computer-aided design, robotics, computer vision, and cartography.
There is a greater emphasis on region data (i.e., 2-dimensional shapes) and to a lesser
extent on point, line, and 3-dimensional data. ' ‘
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1. INTRODUCTION

| .wsiiiz- Hierarchical data structures are becoming increasingly important representation
' techniques in the domains of computer graphics, computer-aided design, robotics,
computer vision, and cartography. They are based on the principle of recursive
decomposition (similar to divide and conguer methods). One such data structure is the
quadtree. As we shall see, the term quadtree has taken on a generic meaning. In this
overview it is our goal to show how a number of data structures used in different
domains are related to each other and to quadtrees. Our presentation concentrates on
these different representations and illustrates how some basic operations which use them
are performed. Whenever possible, we. give examples from the domain of computer
graphics. For a more extensive treatment of this subject, including a comprehensive set
of references, see [Same84a, SameB7]. - '

This overview is organized as follows. Section 2 discusses t}he historical
background of hierarchical data structures. Section 3 points out the key properties.of
hierarchical space decompositions. Section 4 shows how some basic operations are
performed on region data. Section 5 describes hierarchical representations for point data
while Section 6 does the same for line data. In each section we also mention how the
techniques can be applied to 3-dimensional data. Section 7 contains concluding remarks
that include a summary of the advantages and disadvantages of hierarchical methods.
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2. BACKGROUND

The term quadiree is used to describe a class of hierarchical data structures
-whose common property is that they are based on the principle of recursive
decomposition of space. They can be differentiated on the following bases: (1) the type
of data that they represent, (2) the principle guiding the decomposition process, and (3)
the résolution {variable or not). Currently, they are used for point data, regions, curves,
surfaces, and volumes. The decomposition may be into equal parts on each level (ie.,
regular polygons, termed a regular decomposition), or it may be governed by the input.
In computer graphics this distinction is often phrased in terms of image-space hierarchies
versus object-space hierarchies, respectively. The resolution of the decomposition (i.e.,
the number of times that the decomposition process is applied) may be fixed beforehand
- or it may be governed by properties of the input data.

Our first example of quadtree representation of data is concerned with the
representation of region data. The most studied quadtree approach to region
representation, termed a region gquadiree, 1s based on the successive subdivision of the
image array into four equal-size quadrants. "If the array does not comsist entirely of 1’s
or entirely of 0’s (i.e., the region does not cover the entire array), it is then subdivided
into quadrants, subquadrants, etc., until blocks are obtained (possibly single pixels) that
" consist entirély of 1’s or entirely of 0’s, 1.e., each block is entirely contained in the region
or entirely disjoint from it. Thus the region quadtree can be characterized as a variable
resojution data structure. As an example, consider the region shown in Figure Ia which
is represented by the 2°% 2% binary array in Figure ib. Observe that the 1’s correspond
tc picture elements (termed pizels) that are in the region and the O’s correspond to
plcture elements that are outside the region. The resulting blocks for the array of Figure
1b ‘are shown in Figure lc. This process is represented by a tree of degree 4 {i.e., each
non-leaf node has four sons). The root node corresponds to the entire array. Each son
of a node represents a quadrant (labeled in order NW, NE, SW, SE} of the region
represented by that node. The leaf nodes of the tree correspond to those blocks for
which no further subdivision is necessary. A leaf node is said to be BLACK or WHITE,
depending on whether its corresponding block is entirely inside or entirely outside of the
represented region. Non-leaf nodes are GRAY. The quadtree representation for Figure
lc is shown in Figure 1d. Although the example described in Figure 1 corresponds to a
binary image, the extension to non-binary images is straightforward. '

The region quadtree is easily extended to represent 3-dimensional data and the
resulting data structure is termed an octree. It is constructed in the following manner.
We start with an image in the form of a cubical volume and recursively subdivide it into
eight congruent disjoint cubes (called octants) until blocks of a uniform color are
obtained, or a predetermined level of decomposition is reached. Figure 2a is an example
of a simple 3-dimensional object whose octree block decomposition is given in Figure 2b
and whose tree representation is given in Figure 2c.

Unfortunately, the term quadiree has taken on. wmore than one meaning. The
region quadtree, as shown above, is a partition of space into a set. of squares whose sides
are all a power of two long. This formulation is due to Klinger [Klin71] who used the
term Q-tree, whereas Hunter [Hunt78] first used the term quadtree in this context. A
‘similar partition of space into rectangular quadrants, also termed a . quadtree, was used
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by Finkel and Bentley |Fink74]. It is an adaptation of the binary search tree to two
dimensions (which can be easily extended to an arbitrary number of dimensions). It is
primarily used to represent multidimensional point data. We shall refer to it as a point
quadiree when confusion with a region quadtree is possible.

The -origin of the principle of recursive decomposition is difficult to ascertain.
Below, -in order to give some indication of the origins of quadtrees and octrees, we
briefly, and incompletely, trace some of their applications. Morten [Mort66! used it as a
means of indexing into a geographic database. Warnock [Warn68| implemented a hidden
surface elimination algorithm using a recursive decomposition of the picture area. The
picture area is repeatedly subdivided into successively smaller rectangles while searching
for areas sufficiently simple to be displayed. The pyramid of Tanimoto and Pavlidis
[Tani75} is a close relative of the region quadtree. It is an exponentially tapering stack of
arrays, each one-quarter the size of the previous array. The pyramid is a multiresolution
representation whereas the region quadtree is'a variable resolution data structure.

‘The octree was developed independently by various researchers. Hunter [Hunt78]
mentioned it as a natural extension of the quadtree. Reddy and Rubin [Redd78]
proposed the octree as one of three representations for solid objects. The second is a 3-
dimensional generalization of the point quadtree of Finkel and Bentley [Fink74] - ie., a
decomposition into rectangular parallelepipeds (as opposed to cubes) with planes
perpendicular to the z, y, and 2z axes. The third breaks the object into rectangular
parallelepipeds of an arbitrary size that are not necessarily aligned with an axis. Jackins
and Tanimoto [Jack80] adapted Hunter’s and Steiglitz’s quadtree translation algorithm
to objects represented by octrees. Meagher [Meg82] developed numerous algorithms for
performing solid modeling where the octree is the underlying representation.

3. PROPERTIES OF QUADTREE AND CCTREE SPACE DECOMPOSITIONS .

A number of different planar decomposition methods exist. We use a quadtree in

the form of squares because it is a planar decomposition that satisfies these two

_properties: (1) Since it ylelds a partition that is an infinitely repetitive pattern, it can be

used for images of any size. (2) It yields a partition that is infinitely decomposable into
increasingly finer patterns (i.e., higher resolution).

A quadtree-like decomposition into four equilateral triangles also satisfies these
criteria. However, unlike the decomposition into squares, it does not have a uniform
orientation - i.e., all tiles with the same orientation cannot be mapped into each other by
translations of the plane that do not involve rotation or reflection. In contrast, a
decomposition into hexagons has a uniform orientation but does not satisfy property (2).
Nevertheless, triangular quadtrees have been used - e.g., Yamaguchi et al. [Yama84] use
them to generate an isometric view from an octree representation of an object. For more
details on properties of decompositions see Bell et al. [Bell83].

One of the motivations for the development of hierarchical data structures such
as the quadtree is a desire to save space. The origina! formulation of the quadtree
encodes it as a tree structure that uses pointers. This requires additional overhead to
encode the internal nodes of the tree. To further reduce the space requirements, two
other approaches have been proposed. The first, termed the linear quadtree [Garg82],
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treats the image as a collection of leaf nodes where each leaf is encoded by a base 4
number termed a locational code, corresponding to a sequence of directional codes that
locate the leafl along a path from the root of the quadtree. It is analogous to taking the
binary representation of the z and y coordinates of a designated pixel in the block {e.g.,
the one at the lower left corner) and interleaving them (i.e., alternating the bits for each
coordinate). The second, termed a DF-expression, represents the image in the form of a
traversal of the nodes of its quadtree [Kawa80|. It is very compact as each node type can
be encoded with two bits. However, it is not always easy to use when random access to
nodes is desired. Interestingly, Samet and Webber [Same86] show that for a static
collection of nodes, an efficient implementation of the pointer-based representation will
often be more economical spacewise than a locational code representation. This is
especially true for images of higher dimension.

Nevertheless, depending on the particular implementation of the quadtree we
may not necessarily save space (e.g., in many cases a binary array representation may
still be more economical than a quadtree). However, the effects of the underlying
hierarchical aggregation on the execution time of the algorithms are more important.
Most quadtree algorithms are simply preorder traversals of the quadtree and thus their
execution time is generally a linear function of the number of nodes in the quadtree. In
~ this case, our discussion assumes a tree representation in the sense that the number of
nodes tn the quadtree includes the internal nodes. ' '

A key to the analysis of the execution time of - quadtree algorithms is the
Quadtree Complexity Theorem [Hunt78, Hunt79], which states that, except for
pathological cases, the number of nodes in the quadtree representation of a region is
proportional to the perimeter of the region. An alternative interpretation of this result is
that for a given image, if the resolution doubles and henee the perimeter doubles
(ignoring fractal effects), then the number of nodes will double.” On the other hand, for
the 2-dimensional array representation, when the resolution doubles, the size of the array
quadruples. The Quadtree Complexity Theorem holds for 3-dimensional data [Meag80]

~where perimeter is replaced by surface area, as well as higher dimensions.

Aside from its implications on storage requirements, the Quadtree Complexity
Theorem also directly impacts the analysis of the execution time of algorithms. In
particular, most algorithms that execute on a quadtree representation of an image
instead of an array representation have an execution time that is proportional to the
number of blocks in the image rather than the number of pixels. Generally, this means
that the application of a quadtree algorithm to a problem in J-dimensional space
executes in time proportional to the analogous array-based algorithm in the (d-1}-
~ dimensional space of the surface of the original d-dimensional image. Thus quadtrees are
somewhat like dimension-reducing devices. '

4. ALGORITHMS USING QUADTREES AND OCTREES FOR REGION DATA

In this section we describe how a number of operations can be implemented using
quadtrees and octrees. In particular, we discuss set operations, quadtree and octree
construction, polygon coloring, and display. We also expand on the concept of neighbor
finding which serves as a basis for many algorithms using quadtrees and octrees.
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Figure 3. Example of set-theoretic operations. (a) sample fmag'& and 'ité e
:qua.d&t‘re_e; (b) sa,m_ple image -and its quadtree; (c} intersection of the images
in (2) and {b); union of the images in (a):and-(b). : .- LR

4.1, SET OPERATIONS . - e

For a binary image, set-theoretic operations such as union and intersection -are
quite simple to implement [Hunt79; Shne8l}. For’ example, the. intérsection of two
quadtrees yields a BLACK node only when the corresponding regions in both quadtrees .
are BLACK. Figure 3c is the result of the intersection of the quadtrees of Figures 3a and
3b. This operation is performed by simultaneos sly ‘traversing three quadtrees. The first
two trees correspond to the trees being intersected whilé ‘the third ‘tree represents the
result of the operation. At each step in the traversal one of the following actions is
taken: :
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(1) If either input quadiree node is WHITE, then the output quadtree node is
WHITE.

(2) If both input quadtree nodes are BLACK, then the output quadtree node is
BLACK. '

(3) If one input quadtree node is BLACK while the other input quadtree node is
GRAY (i.e., an internal node), then the GRAY node’s subtree is copied into the

. output quadtree.

(4) If both input quadtree nodes are GRAY, then the output quadtree node is -
GRAY, and these four actions are recursively applied to each pair of
corresponding sons. Once the sons have been processed, we must check to see if
they are all leaf nodes of the same color in which case a merge takes place (e.g.,
the sons of nodes B and E in Figures 3a and 3b respectively). Note that for the
intersection operation, a merge of four BLACK leaf nodes is impossible and thus
we must only check for the mergibility of WHITE leaf nodes.

The worst-case execution time of this algorithm is proportional to the sum of the
number of nodes in the two input quadtrees. Note that as a result of actions (1) and (3),
it is possible for the intersection algorithm to visit fewer nodes than the sum of the
nodes in the two input quadtrees.

The union operation is implemented easily by applying DeMorgan’s law to the
- above intersection algorithm. For example, Figure 3d is the result of the union of the
quadtrees of Figures 3a and 3b. When the set-theoretic operations are interpreted as
Boolean operations, - union and intersection become “or” and “and” operations,
respectively. Other operations, such as “exclusive or” and “set-difference”, are coded in
an analogous manner with linear-time algorithms. The extension of these algorithms to
octrees is straightforward. '

The ability to perform set operations quickly is one of the primary reasons for
the popularity of quadtrees over alternative representations such as the chain code or
vectors. The chain code can be characterized as a local data structure, since each
segment. of the chain code conveys information only about the part of the image to
which it is adjacent - i.e., that the image is to its right. Performing an overlay operation
on two images represented by chain codes thus requires a considerable amount of work.
In contrast, the quadtree is a hierarchical data structure that yields successive

refinements at lower levels in the tree.

4.2. BOTTOM-UP NEIGHBOR FINDING

Many quadtree algorithms involve more work than just traversing the tree. In
particular, in several applications we must perform a computation at .each node that
depends on the values of its adjacent neighbors. Thus we must be able to locate these
neighbors. There are several techniques for achieving this result. One approach {Klin79]
makes use of the coordinates and the size of the node whose neighbor is being sought in
order to compute the location of a point in the neighbor. For a 2" X2" image, this can
~ require n steps corresponding to the path from the root of the quadtree to the desired
neighbor. An alternative approach described below only makes use of father links and
_computes a direct path to the neighbor by following links in the tree. This method,
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Figure 4. The process of locating the eastern neighbor of node A (i.e., G).
(a) Block decomposition; and (b} Tree representation. :

termed Ibottorr'z-up neighbor finding, has been shown to require an average of four links to -
be followed for each neighbor sought [Same82]. :

In this. section we limit ourselves to neighbors in the horizontal and:vertical

“direction that are of size equal to-or greater than the node whose neighbor is being

sought. This requires us to follow father links until a common ancestor of the two.nodes
is found. Once the common ancestor is located, we descend aiong a pa,t.h that retraces
the previous path with the modification that each step is a reflection of the
corresponding prior step about the axis formed by the common boundary between. the
two nodes. The general flow of such an aigorlthm is given in. Figure 4. For example
when attemptmg to locate the eastern neighbor of node A (i.e., node G) in Figure 4,
node D is the common ancestor of nodes A and G, and the eastern edge of the block
corresponding to node A is the common boundary between node A and-its nexghbor The
main idea behind bottom-up neighbor finding is understood by examining more closely

. how the nearest common ancestor .of a node, say P, and its eastern neighbor of greater
. tha.n or equal size, say @, is located. In particular, the nearest common ancestor has-P

as one of the eastern-most nodes of one of its western subtrees, and. Q as_one: of the
western-most nodes of one of its eastern subtrees. Thus as long as an ancestor, X is in a
subtree that is not an eastern son (i.e., NE or SE), we must ascend the tree at least one

-more level before locating the nearest. common ancestor For neighbors in the dlagona.l'

direction, see [Same82}.

4.3, CONSTRUCTING QUADTREES

Before we can operate on an image represented by a quadtree we must ﬁrst bu1]d
the quadtree. This involves being able to convert between a number of different. data
formats and the quadtree. In this section we briefly -describe the construction of ; reglon
quadtrees from raster data. :

When building 2 quadtree from raster data presented in 1‘85,'3.61” scan ordgr'e-z(i.é;.,
the array is processed row by row) {Same8la] we use bottom-up neighbor-finding to
move through the quadtree.in the-order in which the data is encountered. Such an
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algorithm takes time proportional to the number of pixels in the image. Its execution
time is dominated by the time necessary to check if nodes should be merged. This can be
avoided by use of predictive techniques that assume the existence of a homogeneocus
node of maximum size whenever a pixel that can serve as an upper left corner of a node
is scanned (assuming a raster scan from left to right and top to bottom). In such a case,
merglng is reduced and the algorithm’s execution time is dominated by the number of
blocks in the image [Shaf87) rather than by the number of pixels. However, this
algorithm does require the use of an auxiliary 1-dimensional array of size equal to the
width of the image.

Building an octree from a raster representation is a computationally expensive
process because of the large amount of data that must be examined. This can be
lessened in part by using the predictive techniques described above. However, the storage
requirements for the auxiliary array are as large as a cross-section of the image, but they
could be overcome by using a quadtree to represent the cross-section. Most often the
octree is built from . alternative 3-dimensional representations, such as the boundary
method [Tamm84] and CSG trees [Same85¢c, Wood82|, which are more compact.

4.4. POLYGON COLORING

Bottom-up neighbor finding can be used to implement the seed-filling approach
to polygon coloring. The idea is to start at a block corresponding to the starting point
and then use bottom-up neighbor finding to propagate the color to the remaining blocks
in the polygon. Polygon coloring is a special case of connected component labeling. Tt is
analogous to finding the connected components of a graph. In the case of a quadtree, the
result is the assignment of a different label to each of the distinet BLACK regions in an
image. Given a binary array representation of an image, the traditional method of
performing this operation would be a “breadth-first” appreoach which scans the image
row by row from lelt to right and assigns the same label to adjacent BLACK pixels that
are found to the right and in the downward direction. During this process, pairs of
equivalences may be generated, thus necessitating two more steps: one to merge the
eéquivalences and the second to update the labels associated with the various pixels to
reflect the merger of the equivalences.

" Using a quadtree to perform the same operation involves an analogous three-step
process [Same81b]. The first step is a tree traversal where for each BLACK node that is
encountered, say A, all adjacent BLACK nodes on the southern and eastern sides of A

“are lound, and assigned the same label as A. The adjacency exploration is done by using
bottom-up neighbor finding. At times, the adjacent node may already have been
assigned a label, in which case the equivalence is noted. The second step merges all the
equivalence pairs generated during step one. The third step performs another traversal of
the quadtree and updates the labels on the nodes to reflect the equivalences generated by
the first two steps of the algorithm. Often the first and second sﬁeps can be combmed
into one step [Same85a).

The execution time of this connected component labeling algorithm is almost
finear in the number of BLACK blocks. Thus it is dependent only on the number of
blocks in the image and not on their size. In contrast, the analogous algorithm for the
binary array has an execution time that is proportional to the number of pixels and
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hence to the area of the blocks. Therefore, we see that the hierarchical structure of the
quadtree data structure saves not only space but time.

4.5. DISPLAY

A basic graphics operation is the conversion of an internal model of a 3-
dimensional scene into a 2-dimensional scene that lies on the viewplane for the purpose
of display on a 2-dimensional screen. This is known as the hidden-surface operation.
Although there are many possible mappings between a 3-dimensional space and a 2-
dimensional space, in this section we only discuss projections. Each pixel of the
viewplane determines a pyramid that is formed by the set of all rays originating at the
viewpoint and intersecting the viewplane within the boundary of the pixel. In the
simplest case, a color is assigned to each pixel that corresponds to the color of the object
that is closest to the viewpoint while also lying within the pixel’s pyramid.

There are three approaches to the hidden-surface task that are relevant to our
discussion. First, the 3-dimensional scene can be viewed as a sequence of overlays of 2-
dimensional scenes each of which is represented by a quadtree [Kauf83]. Second,
quadtrees can be used to model the viewplane even when the 3-dimensional scene
consists of polygons of arbitrary orientation and placement in the 3-dimensional space.
This solution- was first proposed by Warnock [Warn68] and is known as Warnock’s
algorithm. Third, the parametric space of the surface of a 3- dlmensmnai object can be-

modeled by a quadtree [Catm75]

When an octree is used to represent a collection of objects, displaying it is
straightforward. The easiest method is the parallel projection [Doct81]. Of course,
implicit in this task is the solution of the hidden-surface problem for the interaction
among the objects. Since the octree imposes a spatial ordering on objects, in this case
the hidden-surface problem can be solved more efficiently than the general hidden-
surface problem for arbitrary polygons. In particular, any opaque object in the four front
octants of an octree will occlude any opaque object in the back four octants. This
property holds recursively within each of the suboctants. The display of the scene is
facilitated by the construction of a display quadtree which corresponds to a partial 2-
dimensional view of the scene. The display quadtree is updated as the nodes of the
octree are traversed from back-to-front. Of course, the nodes could also be processed
from front-{o-back, thereby allowing for the possibility of visiting fewer nodes.
Generalizations of the paralle] projection to planes of arbitrary position and orientation
are described by Meagher [Meag82] and Yau [Yau84].

Although projection display techniques are suitable for computer-aided design,
realistic modeling of lighting effects generally requires using some variant of raytracing.
The necessary intersection calculations can be speeded up by using octrees or their
variants. The key operation is to locate a neighboring node that contains a particular
point. One approach is to calculate a point that lies in the neighbor and then search the
octree for that point [Glas84, Kapl85, Wyvi85, Fuji86]. Alternatively, bottom-up
neighbor-finding can be used [Jans86]. As the complexity of the scene increases, bottom—
up neighbor-finding methods should be more efficient.




5. POINT DATA

“Multidimensional point data can be represented in a-variety of ways. The

- representation ultimately chosen for a specific task will be heavily influenced by the type
of operations to -be performed onthe“data. Our focus is on dynamic files (i.e., the
number of data poiiits can grow and shrink at will}’and or applications involving search.
Although in Section 2 we briefly mentioned the point:quadtreée of Finkel and Bentley
[Fink74); in this section' we discuss the PR quadtree (P for point data and R for region)
[Oren82, Same84a]. It is an adaptation ‘of the ‘region quadtree to point data which
associates data points  with quadrants: The PR quadtree (see Figure 5)'is organized in
the same way as the region quadtree. The difference is that leal nodes are either empty
(i.e., WHITE) or contain a data point’ (1 e., BLACK) and its coordinates. A quadrant

conta.ms at' most-one’ data pomt B - ' '
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Data points are inserted into PR quadtrees by searching for them. Actually, the
search is for the quadrant in which the data point, say A, belongs (i.e., a leaf node). If
the quadrant 1s already occupied by another data point with different r and y
coordinates, say B, then the quadrant must repeatedly be subdivided. (termed splitting)
until nodes A and B no longer occupy the same quadrant. This may result in many
subdivisions, especially if the Euclidean distance between A and B is very small. The
shape of the resulting PR quadtree is independent of the order in which data points are
inserted into it. Deletion of nodes is more complex and may require collapsing of nodes -
1.e., the direct counterpart of the node splitting process outlined above.

PR quadtrees, as well as other quadtree-like répresentations for point data, are
especlally attractive in applications that involve search. A typical query is one that
requests the determination of all records within a specified distance of a given record -
i.e., all cities within 100 miles of Washington, DC. The efficiency of the PR quadtree lies
in its role as a pruning device on the amount of search that is required. Thus many
records will not need to be examined. For example, suppose that in the hypothetical

- database of Figure 5 we wish to find all cities within 8 units of a data point with
coordinates (84,10). In such a case, there is no need to search the NW, NE, and SW
quadrants of the root (i.e., {50,50)). Thus we can restrict our search to the SE quadrant
of the tree rooted at root. Similarly, there is no need to search the NW, NE, and SW
quadrants of the tree rooted at the SE quadrant (i.e., (75,25)). -

6. LINE DATA

~ Section 4 was devoted to the region quadtrée which is an approach to region
representation that is based on a description of the region’s interior. In this section we
focus on representations that specify boundaries of regions. This is done in the more
general context of data structures for line data. The simplest representation is the
polygon in the form of vectors which are usually specified in the form of lists of pairs of
z and y coordinate values corresponding to their start and end points. One of the most
common representations is the chain code which is an approximation of a polygon.
There also is a considerable amount of interest currently in hierarchical representations.
These are primarily based on rectangular approximations to the data as well as on a
regular decomposition in two dimensions.

The strip tree {Ball81] is a hierarchical representation of a single curve that is
obtained by successively approximating segments of it by enclosing rectangles. For
example, consider the curve between points P and Q in Figure 6a. The data structure
consists of a binary tree (see Figure 6b) whose root represents the bounding rectangle of
the entire curve. The rectangle associated with the root, A in this example, corresponds
to a rectangular strip, that encloses the curve, whose sides are parallel to the line joining
the endpoints of the curve (i.e., P and Q). The curve is then partitioned in two at one
of the locations where it fouches the bounding rectangle. Each subcurve is then
surrounded by a bounding rectangle and the partitioning process is applied recursively.
This process stops when the width of each strip is less than a predetermined value.

Like point and region quadtirees, strip trees are useful in applications involving
search and set operations. For example, suppose we wish to determine whether a road
crosses a river. Representing such features with a strip tree, answering this query



63

(b)

Figure 6. A curve between points P and Q. (a) Its decomposition into
strips; and {b) the corresponding strip tree.

requires performing an intersection of the corresponding strip trees.. Three cases are
possible as shown in Figure 7. Figures 7a and 7b correspond to the answers NO and
YES respectively while Figure 7c¢ requires us to descend further down the strip tree.
This method savés a lot of work when an intersection i1s impossible.

The PM quadtree of Samet and Webber [Same85b| (see also edge-EXCELL
) is an adaptation of the region quadtree to represent collections of polygons
(termed polygonal maps). There are a number of variants of the PM quadtree. The one
deseribed is based on a decomposition rule that stipulates that partitioning occurs as
long as a quadrant contains more than one line segment unless the line segments are all
incident at the same vertex which is also in the same quadrant (e.g., Figure 8). We define
2 q-edge to be a segment of an edge of the original polygonal map that either spans an
“entire block in the PM quadtree or extends from a boundary of a block to a vertex
within the block (i.e., when a block contains a vertex). In such a case, each g-edge is

=N
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<&

(o) NULL 7 (b1 CLEAR (c} POSSIBLE

Figure 7. Three possxble results of 1ntersect,1ng two strlp trees
(2) Null. (b) Clear. (c) Possible.
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represented by a pointer to a record containing the endpoints of the edge of the
polygonal map of which the g-edge is a part [Nels86]. The line segment descriptor stored
in-a node only implies the presence of thé correspondmg g-edge - it does'not mean that
the entire line segment is present. The result is a consistent representation of line
fragments since they are stored .exactly and thus they can be deleted and reinserted
without . worrying about errors arising from the roundoffs induced by approximating their
mtersectlon with the borders of the blocks that they pass through.

The PM quadtree has also been adapted to represent polyhedra [Ayal85, Carl8s,
Fuji85). Decomposition stops when a node is intersected by exactly one edge, or one face,
or all edges that intersect the node meet at a common vertex in the node. For example,
Figure 9b is the PM octree corresponding to the 3-dimensional object in Figure 9a. This
representation is considerably more compact than the raster octree.

7. CONCLUDING REMARKS

The use of hierarchical data strictures enables us ‘to focus computational’
resources on the interesting subsets of data. Thus there is no need to expend work where
the payoff is small. Moreover, algorithms based.on such methods are easy o develop and
maintain. .When the hierarchical data structures are based on the prm(:lple of recursive-
decomposition, we have a spatial index. All features be they regions, points, or lines, are
represented with respect to a common orlgm A .System representing. geogra.phlc
information that makes use of the region quadtree, PR quadtree, and PM quadtree to
represent region, point, and line data respectively has been builg, [Same84b] .

The dlsadvantage of qua,dtree methods is that they are shift sensntwe in that
their space requirements are dependent. on the posmon of. the ~origin.’ However, for
comphca.ted 1ma.ges tbe optlma.l posmonmg of the origin w111 usua,lly lead to hbtle
1mprovement in the. space requnrements The process of obtammg this” optlmal
positioning is computatlona.lly expens;ve and is usually not worth the eﬁ'ort [L182]

Figure 8. A PM quadtree. . Figure 9. (a) Example 3-dimensional object;
- - (b) its corresponding PM octree.




Another disadvantage for some applications {not display) is that some variants of
the quadtree and octree are approximations. The fact that we are working in a digitized
space also may lead to problems. For example, the rotation operation is not generally
invertible. In particular, a rotated square usually cannot be represented accurately by a
collection of rectilinear squares. However, when we rotate by 90°, then the rotation is
invertible. This problem arises whenever one uses a digitized representation. Thus it is
also common to the array representation. Interestingly, the impact of both the
digitization and shifting problems is lessened considerably by use of representations such
as the PM quadtree for 2-dimensional and 3-dimensional data, in which case the
representation is not an approximation.
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