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ABSTRACT

The advent of special purpose hardware incorporating large core memories requires
the reorganization of databases to take maximum advantage of new processing capabili-
ties. This paper describes the data representation for a geographic system which main-
tains a large static database on disk with the data of current interest stored in core or-
ganized by a pyramid data structure for fast access.
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1. INTRODUCTION

The quadtree data structure [Same84a] has received much attention lately as to
its usefulness as the underlying data structure fo? map representation in Geographic
Information Systems (GIS) [Same84b, Call86, Gargs82, Abel83]. For example, the
QUILT system [Shaf87b] was designed to support a general purpose geographic data-
base on a conventional VAX-class machine. The advent of special purpose hardware
incorporating large amounts of core memory demands a reassessment of the design deci-
sions made when implementing database systems on conventional, relatively limited core
memory machines, By making use of the larger internal memory to store additional
information, we hope to reduce the amount of disk I/O required when fetching parts of
the database to perform a specific operation. Note that this situation is different than
that encountered on machines with a large virtual memory. Our experience has shown
that it is better to explicitly manage the disk I/O required to access portions of maps
rather than to allow the operating system to do it [Shaf87b]. It is important to realize,
however, that even in the case where available core memory has greatly increased, it is
- still not unlimited. While the data structures used for a given application may change,

effective use of space is still necessary.

Ha.rryr Diamond Labofatories (HDL) is in the process of developing a processor to
handle geographic information (GP) [Anto85a, Anto85b]. The GP project aims to
deliver a processing unit composed of custom hardware and supporting software that
manipulates a geographic database, along with target tracking and planning capabilities.
Current specifications for the GP project require support for a static geographic data-
base representing an area 64 kilometers square at 8 meter resolution; this database

should contain the current area of brigade operations. The GP processing ability is



provided by a small number of independent CPU’s (17 68000-based processors are
currently planned). These processors will share a common core memory, with each pro-

cessor dedicated to a specific task.

From the standpoint of the database design for this project, the most significant
aspect of the hardware configuration is the unusually large core memory. Approximately
40 megabytes of memory are available in the prototype model. While even this large
memory cannot contain the entire geogra,phic’ database, it should be possible to design a
database organization maintaining a significant subset of the geographic information in
core ‘at all times. The GP hardware also includes a Raster Technology Model 1/80
display device. An important design consideration is the ease with which the user may

display selected features from the database.

This paper examines the use of hierarchical data structures for the GP system.
In particular, we examine use of the region quadtree, which decomposes an image into
homogeneous blocks. Figure 1 illustrates the region quadtree. If the image is all one
color, then it is represented by a single block. If not, then the image is decompqsed into
quadrants, subquadra,hts, ..., until each block is homogeneous. The region of Figure 1a
-is represented by a binary array in Figure 1b. The resulting quadtree block decomposi-
tion is shown in Figure l¢, with the tree structure represented in Figure 1d. This tree
structure will be referred to as a pointer-based quadtree. This is the traditional method

of representing a quadtree, and is most useful when storing an image in core.

The lincar quadiree [Garg82] is a quadtree storage variant that allows for a
reduction in storage space by eliminating the GRAY nodes and pointers required by the

pointer-based quadtree. More importantly, the linear quadtree converts the traditional



pointer-based tree structure into a sorted list. This allows for the use of standard list
processing techniques. In particular, organizing the list by means of a B-tree [Come79]
allows for efficient access of the quadtree when stored on disk. Thus, when memory con-
siderations force the quadtree to reside on disk, ‘the linear quadtree has proven to be a

popular design choice (this approach is used in [Abel83, Call86, Shaf87b)).

The DF (Depth First) -expression [Kawa80] is a compact representation which
simply stores the quadtree’s node values in preorder traversal order. It is very efficient
in that it does not need l;o store pointers (which are required by the pointer-based quad-
tree), nor does it need to store address values (which are required by the linear quad-
tree). The major drawback when using the DF-expression is that it does not allow ran-
dom access to arbitra.ry regions of the map. To find a particular node in the tree, it is

necessary to search from the beginning of the DF-expression until that node is reached.

Previous researchers have used the pointer-based quadtree when sufficient core
memory was available to store the entire tree. The unusually large amount ':of core
memory available to the GP system suggests that a new approach may be desirable
which trades some of this additional space for reduced proc.essing time. In particuiar,
the database system design outlined in this report makes use of a variant of the pyraniid
data structure [Tani80| to improve memory access. The pyramid can be viewed as a
stack of arrays which stores at the bottom level the entire image of size 2" X 2", At the
next level, each disjoint 2X2 pixel block is represented by a single cell, with the entire
image at this level represented by 2°1x 2"-! cells. This process continues until the nth

level which contains a single cell.



This paper does not use the term ‘pyramid’ in its classic sense as a multiresolu-
tion stack of arrays. Instead, the pyramid can be viewed as reserving the space required
by a complete quadtree—i.e., one in ﬁhich all nodes of the quadtree have been expanded
down to the pixel level. This requires (4-2%" — 1)/3 cells or nodes for the entire pyramid.
The quadtree to be represented would be stored within this space. Those subtrees of the
pyramid which correspond to a leaf in the quadtree may be ignored during processing.
An important aspect of this representation is that node pointers a;re no longer required.
Of more importance, such an arré,ngement allows for direct access to any node of the
quadtree. When using a normal pointer-based quadtree, the nodes can be at an arbi-
trary location in memory, depending on the interaction between the quadtree building
procedure and the node memory allocation procedure. There is no required relationship
between the location of a node and its child. Thus, the poiﬁter between them must be
traversed, which may require up to n pbinter traversals when we need to get from the
root to a single pixel-sized node at the bottom of the tree representing an image of size
2" X2". When stored in a pyramid, the location of any node of a given size and position
can be directly calculated as an offset from the root of the pyramid. Of course, the user
may still need to determine the size of the leaf node containing a specified pixel in the
actual quadtree; this process may require searching several levels of the pyramid. How-
ever, many applications may be speeded by direct access to nodes based on spatial posi-
tion. Tucker [Tuck84] used the pyramid as a means of direct access to quadtree nodes
when stored on disk, and also investigated efficient neighbor finding operations by means

of direct addressing of nodes.

The remainder of this report is organized as follows. Section 2 presents our pro-

posal for organization of the GP’s geographic database. Section 3 describes algorithms



for traversing and displaying the data stored in the pyramid. Section 4 describes an
algorithm for computing the field of view from a given point in the database. Section 5

contains our conclusions and future plans.

2. GP DATABASE ORGANIZATION

This section contains our proposal for the organization of the geographic data-
base in the GP workstation. This database will be divided into five logical parts as fol-
lows.

e The Static Geographic Database (SGD) contains the complete, high resolution source of
geographic data for the GP system. This data is maintained on disk; little modification
of this data will be made by the user.

o The Working Geographic Database (WGD) contains a subset of the SGD which the
user(s) have indicated is of current interest. This data is maintained in core, with
pointers to appropriate portions of the SGD on disk. Updates occur when a user
specifies that a new feature type is tq be examined.

e The Attribute Database (AD) contains non-geographic data describing geographic enti-
ties. Its organization is unspecified at this time.

® The Target Database (TD) contains target sightings and predictions. This data is
maintained in core, and is continuously updated by sensor reports.

e The Temporary Geographic Database (TGD) contains masks and intermediate pro-

ducts produced on-the-fly by queries to the GP system. This data is maintained in core.

The interaction between these five modules is indicated in Figure 2. During this
phase of the project, little attention has been paid to the organization of the Attribute

Database; the AD is treated in this report as a “black box.” As shown in Figure 3, the



SGD maintains “pointers’ to the AD. This does not necessarily mean actual pointers to
specific memory locations, but rather some unspecified form of access. One possibility

for an AD implementation is to use an off-the-shelf commercial database system.

This proposal concentrates on the design for the Static and Working Geographic
Databases. In addition, a data structure to represent maps in the Temporary Geo-
graphic Database is proposed. No suggestions for the implementation of the Target
Database are made at this time since we feel that we do not yet have sufficient under-
standing of the operations which this database must support. Design of the TD will be

a high priority for future work.

2.1. THE STATIC GEOGRAPHIC DATABASE

The Static Geographic Database design assumes that the geographic database
represents a 64 kilometer square to 8 mete;- resolution. Thel SGD actually contains a col-
lection of maps. Each map represents a single feature type, possibly with feature sub-
types, e.g., a forest map (possibly with differing forest sub-types such as pine and oak) or
an interstate highway map.- The SGD maintains region, point, and linear features; how-
ever, an individual map contains only one of these data types. An organizational sketch
for a map in the SGD is shown in Figure 3. Since each map represents a 64 kilometer
square at 8 ﬁleter resolution (ie., a resolution of 8192 X 8192 units), the representation
must be compact. At the same time, each map represents only one feature type; thus
we can expect homogeneity among adjacent pixels. A variable resolution data structure
is therefore desirable. We choose to use the DF-expression [Kawa80] implementation of
a quadtree. As mentioned in Section 1, the DF-expression does not normally allow ran-

dom access to individual nodes. As we shall see, this is not a problem in our implemen-



tation.

Associated with each map is a Feature Array (FA). The FA for an area map
stores for each feature sub-type a link to the Attribute Database representation of that
feature sub-type. For point and linear feature maps, the FA stores a list containing a
record for every point or line segment stored in the map. The decomposition of the DF-
expression for point features is derived from a PR quadtree [Oren82, Same84a]. Leaf
nodes of the DF-expression point to the appropriate record in the FA. For linear
features, the decomposition of the DF-expression is derived from the PM quadtree
[Same85, Nels86]. Thus, a single leaf node of the DF-expression must be able to store
more than one line segment. The varying size required by these nodes to indicate multi-
ple features is handled by reserving one bit to indicate continuation. If the continuation
bit belonging to a leaf node N is set, then the next “node” is interpreted as a continua-

tion of N, storing an additional line segment which is contained in N.

Leaf nodes in the DF-expression store an index into the corresponding FA. For
area maps, ﬁode va,iues need only distinguish the feature sub-type; thus area maps may
require only 8 bits per node, allowing 256 distinct feature sub-types in a single map. On
the other hand, for point and line maps, the FA stores a description of each point or line
feature (plus the continuation bit). Thus DF-expressions for point and line feature maps
are given 32 bit nodes to allow for storage of many point and line features in a given

map.

The SGD also maintains a table referred to as the Feature Description Table
(FDT). This table contains a record for each feature type known to the database. A

feature record contains such information as the name of the feature as known to the



user; the names of the disk files containing the DF-expression and the Feature Array for
that feature type; and the display color and display priority (explained in Section 3) for

that feature type.

2.2. THE WORKING GEOGRAPHIC DATABASE

The Working Geographic Database is composed primarily of a pyramid and the
Working Feature Table (WFT). The pyramid will contain data to 11 levels (i.e., 1024 by
1024 pixels at the lowest level). Thus, the SGD contains data three levels below that of
the WGD. Normally, the WGD will store the top 11 levels of the SGD, i.e., it stores a
64 kilometer square at 64 meters/pixel resolution. However, the WGD data structures
are sufficiently flexible that the SGD could be represented in the WGD at a grosser level
(for increased processing speed at lower resolution). Alternatively, specified subsections
of the SGD could be represented at higher resblution; This topic is discussed further in

Section 3.

The pyramid’s levels are labeled 0 (for the root) through 10, with identical nodes
at all levels (except for level 10, which contains additional information as described
below). Each pyramid node contains a bitmap indicating which of the selected feature
types are actually contained in that node. Associated with the pyramid is the Bitmap
Interpretation Table (BIT). This table contains N records where N is the number of
bits available in each pyramid node (i.e., the maximum number of feature types that
may be represented at one time). Each record of the BIT describes the feature
represented by the corresponding bit position in a pyramid node. An organizational

sketch of the WGD is shown in Figure 4.



Each node at Level 10 of the pyramid is augmented by further information (this
will be referred to as Level 10*). Level 10* contains elevation and slope data, as well as
a pointer to the corresponding record in the Woi'king Feature Table for that pixel.
Elevation data will be maintained in the database at 64 meter horizontal resolution.
The elevation data can alternatively be viewed as being a part of the SGD stored at 64
meter resolution; when creating the initial pyramid, the elevation data is automatically

included as part of level 107,

A number of design options are available for representing elevation data. This
discussion will assume that elevation data is maintained to 1 meter vertical resolution.
One option is to simply store 16 bits of data with each Level 10* pixel. 16 bits of datra.
gives a range of 0 to 65535 meters, much more than necessary. For our application, 13
bits is sufficient (yielding a range of 0 to 8191 meters). This leaves 3 bits which can be
used to store slope.. information. For our application (i.e., primarily trafficability con-
siderations), only 3 few slope values are necessary. The available 3 bits can represent 8
distinct slope categories. Thus, we can store both raw elevation and slope data at level

10" for a total requirement of 2 megabytes of storage.

An alternative scheme is to store at each cell in the pyramid the minimum and
maximum elevations (or minimum and range) for all child pixels of that cell. Using 32
bits at the higher levels and 16 bits at the bottom level, this will require 3 1/3 mega-

bytes of memory for the elevation data alone.

A third alternative would store the average elevation for the entire map in 16
bits at Level O (the root). At the lower levels, each node would contain average eleva-

tion for that section of the map. This would continue to the bottom level, where the



expected difference between adjacent pixels is smaller. Assuming a maximum difference
of 256 meters in the average elevation of adjacent Level 10 pixels (i.e., 64 meter squé,res),
the diﬂ"c;rence between the pixel’s elevation and the average elevation value stored with
its father can be maintained at Level 10 in only 8 bits. Thus, the total cost of the eleva-
tion data for this scheme would be 1 2/3 megabytes of memory space. One advantdge of
the third scheme is that average elevation data is stored for all levels of the pyramid.
This scheme would not impede tﬁe efficiency of slope calculating algorithms (assuming
that in this case we prefer to calculate slope on the fly rather than store it explicitly).
Caléulation of absolute elevation for a Level 10 pixel would require simply adding its

difference value to the average value stored with its father.

As mentioned above, each pixel at Level 10* will maintain a pointer to the
Working Feature Table. The WFT stores information about ea.ch‘ feature contained
withinithe area covered by the corresponding pixel.” Records in the WF'T are of variable
length, reflecting the fact that pixels of the pyramid contain varying numbers of
features. The first sub-record of a WFT record contains the length of the record. The
remaining sub-records are pointers to features in the SGD which are contained in that
pixel. The first few bits of each such sub-record indicate the feature type. This
corresponds to a record in the Bit Interpretation Table. BIT records contain the start
position in the SGD for the DF-expression containing that particular feature; they also
indicate whether that feature type is area, line, or point data. The remainder of the
WFT sub-record is the offset into that feature’s DF -expression in the SGD. One design

- alternative for the WFT sub-records would be to add a pointer to the attribute data for
each feature’s record in the WFT. This would allow direct access from the WGD to the

AD. Without this additional pointer, it would first be necessary to fetch the feature’s

10



recqrd in the FA (which for area feature types is indexed by the DF-expression).

For each area feature type, the pointer fror_n the WFT sub-record will point to
the corresponding node in the SGD’s DF-expression for that feature type’s map. If this
node is a leaf, then the entire pixel will be filled by a single feature of that feature type
(or no feature of that type if the node value is WHITE). If the SGD node is GRAY,
then the feature’s shape will be described by the DF-expression’s subtree extending from
that GRAY node. Thus, random accessing of the DF-expression is supported by main-
taining direct pointers to f.he desired data. For line or point feature types, it is not
necessary that the WFT point to the DF-expression. Instead, the WFT can point
directly to the Feature Array record for the given feature. However, this option may
require a WFT record to contain several pointers to different individual FA records, since
more than one point or a line feature may lie within the area represented by a single

pyramid pixel.

2.3. CREATING AND UPDATING THE WORKING GEOGRAPHIC DATABASE

When a user specifies that a feature type is to be added (or deleted) to (from) the
WGD, the pyramid and WFT must be updated. Once a bit slot within the pyramid has
been selected to represent the new feature, updating the pyramid is a simple matter of
traversing the DF-expression for that feature. As each node of the DF-expfession is pro-
cessed, the appropriate bit position for the corresponding cells of the pyramid are turned
on or off. Section 3.1 describes two coding schemes for representing a feature type in the

pyramid.

Updating the WFT is done by processing the old WFT in parallel with processing

of the pyramid (note that the WFT records are stored in the same order as that in

11



which the Level 10 pixels of the pyramid are visited when traversing the corresponding
DF-expression). As each pixel is processed, a record is created in the new version of the
WFT. For example, assume that we are repiacing feature type A in the pyramid by
feature type B. As the DF-expression is traversed, the first Level 10 pixel visited will be
the upper left pixel of the pyramid. The sub-records for the first rec_:ord of the old WFT
are copied to the new table, leaving space é,t the beginning of the record to store the
total length of the record. Any sub-records dealing with feature type A are not copied.
Any features of type B occurring in that node of the DF-expression will have a sub-
record entered into the ﬁew WFT. Finally, the length field at the beginning of the WFT
record is set. When the next pixel is processed, a new record is added to the new copy
of the WFT. After the entire pyramid (and the new feature’s DF-expression in the SGD)
is processed, the new WFT replaces the old version, and the old version’s storage is

released to the free memory pool.

Note that when the pyramid is.constructed, the WFT sub-records for point and
linear features point directly to the Feature .Array, not to the corresponding DF-
expression as for area maps. Thus, it would be possible to eliminate the DF-expression
for these feature types entirely. The pyramid would then be generated by processing
each line segment (or point) stored in the FA, turning on those pixels which contain the
line segment (or point). However, this will involve some calculation to determine which
pixels actually contain the line segment. In effect, the DF-expression pre-stores the
results of these calculations. In addition, updating the WFT will be much harder since
the line features will not be located in the same order as the WFT normally stores pixel

descriptions (i.e., in quadtree traversal order). Thus, the DF-expressions for point and

12



linear feature maps are maintained to support efficient construction of the pyramid and

WFT.

2.4. THE TEMPORARY DATABASE

It is expected that during operation of the GP system, temporary maps will be
constructed to support user queries. For example, one expected query type will list a set
of polygons such that the user is ﬁo be notified whenever a target enters these polygons.
Another query might ask to display all portions of the map visible from a given location,

or all portions of the map having a certain set of properties.

Such queries would best be answered by first generating a Mask Map. A Mask
Map would be a region map stored in core for efficient manipulation. Since many masks
may be active, each must be compact. The mask contains homogeneous regions (and
will typically be a binary image), making variable resolution desirable. Random access
will be necessary (e.g., to determine if 2 given point, such as a target sighting, lies in the
mask), so a DF-expression is not appropriate. The standard pointer-based region quad-
tree (as shown in Figure 1d) seems adequate for this task. The linear quadtree [Garg82]
is not as desirable since it requires slightly more storage and access time for in-core
representations than the pointer-based qua,dtreé [Same86]. After a query is completed,

the memory for any associated Mask Maps is freed.

3. PYRAMID TRAVERSAL AND DISPLAY

Pyramid traversal algorithms should take advantage of the hierarchical nature of
the pyramid data structure so as to minimize the number of pyramid cells visited. The

number of cells which must be visited during a traversal depends in part on how the
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feature type quadtrees are encoded when stored in the pyramid.

When the GP is initialized, a subset of all feature types available to the SGD are
placed in the WGD. Some, but not necessarily all, of these feature types will be
displayed. During a work session, the set of features stored in the WGD may be
changed, swapping a given feature with another feature from the SGD. (It is expected
that the SGD will be divided into between 50 and 100 features, and that the WGD will

contain up to 32 features at one time.

3.1. ONE BIT/NODE QUADTREE CODING SCHEMES

We can view a singie bit position ¢ from all cells of the pyramid as making up a
separate pyramid (i.e., if there are 32 bit positions, then 32 individual maps are
represented). A single bit is therefore available for each node of a quadtree representa-
tion which must describe a p:;u'ticular feature type map. Two interpretation schemes are
proposed for encoding these node values, each with relative advantages and disadvan-

tages.

Consider the binary-valued quadtree corresponding to the DF-expression
representing a specified feature type. This binary quadtree is made up of internal
GRAY nodes and leaf nodes whose values are either BLACK (indicating the existence of
this feature type within the node) or WHITE (indicating that this feature type is not

contained within the node).

Our first coding scheme turns on the bit value for each pyramid cell which con-
tains the specified feature type. If a given node is marked 1, then any sub-portion of the

node may contain the feature. In other words, the GRAY and BLACK leaf nodes of the

14



original quadtree are each represented as 1 in the pyramid; WHITE leaf nodes (and their
descendant cells in the pyramid) are represented by 0. For this reason, this scheme will

be referred to as GW (GRAY/WHITE) coding.

GW coding yields a straightforward bit interpretation; the disadvantage comes
when traversing the pyramid during execution of a process such as image display. When
encountering a O during the traversal, the node’s descendants need not be examined
since they must also be 0. The display algorithm may output a WHITE block of the
node’s size and position. If a 1 is encountered, however, then one or more descendants
may contain O-valued pixels. Thus, the algorithm must repeat for each child. Eventu-
ally, every pixel containing the feature must be processed, allowing no effective aggrega-

tion of BLACK pixels.

The second coding scheme stores a value of 1 for a GRAY node, and a value of 0
for a leaf node; it will thus be referred to as GL (GRAY/leaf) coding. Since it is neces-
sary to determine the actual value (BLACK or WHITE) of a leaf node, this value will be
stored in all descendants of the leaf node. Thus, it is only necessary to examine one of
these descendants upon first encountering a O value (i.e., the leaf node indicator) to
determine the actual leaf value. Note that non-traversal algorithms may be simplified if
the single-pixel (bottom) le:v.el of the pyramid contains at every pixel the actual value for
that pixel (i.e., BLACK or WHITE). In both the GW and GL schemes this will be true,
since a value of 1 (whether interpreted as GRAY or BLACK) means that the pixel con-
tains the feature. This is achieved by a slight modification to the GL encoding scheme
such that all Level 10 cells store a 1 if the feature type exists in that cell, and 0 other-
wise (i.e., the equivalent GW code value). In practice, this modifies the value only for

those cells which correspond to Level 10 leaf nodes in the feature type’s DF-expression as
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stored in the SGD. Both schemes would store 2 value of 1 for those pixels corresponding
to a Level 10 GRAY node in the DF expression, indicating that the feature type does

appear within that pixel.

The advantage of GL coding over GW coding is that, during tree traversal, full
quadtree pixel aggregation is supported. Upon encountering a leaf node of either value,
processing may stop. The disadvantages of the GL coding scheme are 1) it is inghtly
more complica,ted to interpret node values during traversal and 2) if the pyramid is
entered at any level other than the root or pixel levels, the node value may distinguish
either GRAY/leaf or BLACK/WHITE depending on the values of its ancestors. The
most likely time to examine the pyramid at a middle level occurs after locating a leaf
node for a given feature type. At this point, it may be desirable to determine the
existence of other feature types at that positioﬁ in the pyramid. To determine a middle
level node’s value, it is necessary to visit one or more of the node’s ancestors. If the
node’s bit value is 0, then its true value is WHITE when its parent is 0, and the value of
its child otherwise. If the bit value is 1, then multiple ancestors may need to be visited
by moving up the pyramid until either a 0 value or the root is encountéred. If a 0 value
is first encountered, then the node’s true value is BLACK; otherwise the node’s true
value is GRAY. rIn general, a value of 1 means that at least some portion of the node

contains the feature; a value of 0 has the value of its child (or WHITE if at the bottom).

Loading a new feature into the pyramid under either coding scheme is straight-
forward. Using the GW coding scheme, when a GRAY node is encountered, the
corresponding node in the pyramid at that level is turned on (recall that when the DF-
expression is GRAY, at least one child of that node must contain the feature). If a

WHITE node is reached in the DF-expression, then the corresponding node at that level
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in the pyramid and all of its descendants have their bit turned off. If a node containing
a feature is reached, the corresponding pyramid node and its descendants have their bit
turned on. Using the GL scheme, if a GRAY node is encountered, the corresponding
node in the pyramid at that level is turned on. If a leaf is encountered, the bit is turned

off, and all descendants are set to the value of the leaf node (ie., BLACK or WHITE).

3.2. DATABASE DISPLAY

As an example of a pyramid’traversa‘.l algorithm, we will discuss display algo-
rithms. This is particularly interesting since the Raster Technologies display device used
in the GP allows display of arbitrary rectangles as a primitive operation. The system
architecture is organized such that the display device is on the system bus; it must be
accessed by system write commands. Minimizing the number of display primitives writ-

ten will therefore minimize the (relatively slow) I/O processing required.

Given a specified fea,ture. type corresponding to a particular bit plane in a
pyramid encoded by the GL coding scheme, the display algorithm is very simple. The
pyramid’s cells are processed in preorder traversal order. If a node with value 1 (ie.,
GRAY) is encountered, then the algorithm recursively visits the node’s 4 children. If a
node of value 0 (i.e., a leaf) is encountered, then a square of size and position matching
that of fhe leaf is output on the display. The value of this square is that of the node’s

NW child. No other descendants of the node need be visited.

If the GW coding scheme is used, an efficient display algorithm is somewhat more
complicated. Basically, the idea is to initialize the entire display to BLACK (requiring
only a single display primitive) and then change to WHITE those portions of the screen

corresponding to WHITE nodes. Thus, the number of display primitives is minimized;
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however, the number of pyramid cells processed is much larger than that required by the
GL coding scheme. The algorithm works as follows. Initially the entire screen is
BLACK. If the node encountered contains a value of 1, than no block is displayed and
all 4 children of the node are recursively visited by the display algorithm. If the node
encountered has value 0, then a WHITE block of the appropriate size and positibn is

displayed; however, no descendants of this node need be processed.

Notice that this algorithm for GW processing actually writes fewer display primi-
tives than the number of leaf nodes in the tree. In fact, the algorithm for either coding
scheme can be modified to minimize the number of display primitives. This is done by
first initializing the entire screen to the value of the first pixel in the pyramid, and then
always keeping track of the current “displayed” pixel value. If the “displayed” value is
different than the true pixel value, then the largest block for which this pixel is the
upper left corner should be displayed. This technique is used in [Shaf86, Shaf87a,
Shaf87¢| to greatly reduce the work required to build and manipulate quadtreeé. The
minimum number of display primitives required will thus be the same for both coding
schemes; however, the number of pyramid cells visited will be less for the GL coding

scheme.

We now address the issue of displaying a pyramid in which several features are
- stored. This is a difficult problem to solve efficiently since a given pixel may contain
several feature types. We wish to select from among these feature types the one with
the highest predetermined display priority. In other words, given a vector of n bits, we
need to determine which of the turned-on bits has the highest'priority. One wa& to do
this would be to consider each possible bit pattern as an index into a lookup4tab1e. The

value of the lookup table for a particular pattern would be the color of the bit with
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priority. Unfortunately, for a 32 bit pyramid cell (i.e., where 32 feature types are stored
simultaneously), this would require a table of 232 values. Our alternative approach
amounts to a search in a list of n items for the greatest (highest priority) value. Note,
however, that the list contains n fixed values, each value in a fixed position. The only
factor not fixed is whether a given value is in the list, or left out (i.e., whether or not the

corresponding bit is turned on).

There are two basic approaches to étoring the feature types in the pyramid with
respect to selecting the display bit for a pixel. One approach is to assign feature types
to bit slots by order of their display priority. This may simplify determining which
feature has display priority (it would correspond to the position of the most significant
“1” bit in the word). However, it greatly complicates insertion and deletion of feature
types in the pyramid. Both insertion and deletion operations would require that each
node of the pyramid be re-ordered to reflect the change. The other alternative is to
ignore display priority when assigning feature types to bit slots. This greatly simplifies
adding and deleting feature types in the pyramid, since a quadtree with a given display

priority may go into any available bit slot.

Fortunately, the best algorithm developed so far to compute display priority does
not require that the pyramid nodes be ordered with respect to priority. This algorithm
will first be described assuming ordered priority, for clarity. We will then show how it
can be modified for an arbitrary ordering. The naive approach to determining priority is
to execute what amounts to a sequential search on the bit vector. In other words, look
ab the first bit, and remember its priority if the bit is on. Then look at the next bit, and
remember its priority if the bit is on and of higher priority than the first bit. This con-

tinues until each bit of the vector has been examined.
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A more efficient algorithm performs a binary search to find the greatest value in
the vector. We view the pyramid word containing the bit vector as an integer value. At
the first step, we compare the value of the vector (as an integer) to an integer with the
first » /2 bits on, and the last n/2 bits off. If the result of a logical AND operation
between the pyramid value and the test value is non-0, then the priority bit is in the
first half of the word. At the second step, we check /4 bits {whether in the high half
or low half of the word depends on the first step) and so on until we find the priority bit

in logn steps.

If the pyramid cell is unordered with respect to display priority, we simply need
to generate test values depending on the display priorities of the bits. The n /2 bits
- with the highest priority would be tested first, and so on. A table of size n—1 would be
>maintained containing the test values; it would be modified whenever the bit priorities

change.

From the above discussion we see that calculating priorities is expensive, since
this operation must be performed for a large number of pyramid cells. We therefore pro-
pose the alternate strategy of avoiding the problem whenever possible. This is done by
maintaining at all times a quadtree representing the image corresponding to the display
state of the pyramid. In other words, we pre-compute the image that would be
displayed by the initial state of the GP. This image is stored on disk and retrieved
when the GP is initialized. When features are added to or deleted from the set of
features to be displayed, this display quadiree is modified to reflect the current display

situation.
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Adding a feature type for display simply requires a traversal of the display quad-
tree in parallel with the DF-expression for that feature type. Those nodes containing the
feature type are compared against the display quadtree to determine which value has
priority. This requires only a single test, with the tree being modified as appropriate.
No priority search through the corresponding pyramid cell’s bit vector is required.
Deleting a feature requires that the display quadtree be traversed, replacing those nodes
which had the deleted feature as priority with the priority value of the remaining
features. This requires a search of the corresponding pyramid cell to determine the new

priority value.

Another difficulty occurs when the user wishes to change the display window.
Recall that the GP database represents a 64 kilometer square. The pyramid stores an
image of 10241024 pixels at a resolution of 64 meters/pixel. The ‘SGD stc;res the data-
base at 8 meters/pixel resolution. If the user wishes to rescale, or visit a different section
of the map at high resolution, then the display image will change. We can take one of
two approaches with the image quadtree. First, we ca,h store a 10241024 pixel quad-
tree representing just what is currently on the display screen. The disadvantage is that
when the display window shifts, an entirely new display image, and its associated display
priorities, must be reca;.lcula,ted from scratch. The other alternative is to store the
display quadtree at the full resolution, i.e., a 8192X8192 pixel image. When the display
window is shifted, it is easy to display the appropriate section. The disadvantage of this
approach is that when features are added or deleted, more work must be done to update
the display image since a larger quadtree is required to maintain the higher resolution
data. If features are updated rarely, and display windows change frequently, than this is -

not a significant problem.

21



This second approach is also amenable to solution within a multiprocessor sys-
tem. We can assign one processor the job of constantly reading the display quadtree
and updating the display (updates need only be performed if the display quadtree has
been modified since the beginning of the last display update). A second processor has
the task of updating the display quadtree whenever a feature is added or deleted. This
processor would first update that section of the display quadtree within the display win-
dow (alternatively, the upper nodes of the quadtree if the display is currently at coarse
resolution). Thus, we get the best of both worlds by only needing to wait for the local
display window to be updated when a feature is added/deleted, but having a complete
display quadtree when the window is shifted. The cost of maintaining the larger quad-
tree will in most cases be hidden from the user since the additional processing time does

not interfere with the display process.

Display window shifting should be restricted so as not to break up quadtree
nodes. This will make the process more efficient since less work will be required both to
display a node, and to determine which nédes are contained in the window. Ideally, the
window should correspond td one, or at most a few, subtrees in the display quadtree.
This is accomplished by allowing the window to shift by a mulsiple of some basic step.
For our application, a step of 2048 meters (equivalent to 256 pixels #t the SGD’s 8 meter
resolution, and 32 pixels at the pyramid’s 64 meter resolution) might be appropriate. In
this case, the image window will correspond to a number of 2048 meter wide nodes in
the display quadtree. Such a restriction on the position of the display window should

present no serious difficulty to the user.
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4. FIELD OF VIEW

This section describes a field of view algorithm for elevation data represented by
an array. Since the elevation data for the GP project is stored at level 10* in the
pyramid (ie., essentially in an array format), the algorithm is easily applicable. The
field of view algorithm, given a position X, returns a binary array where a pixel value is

BLACK if the pixel is visible from X, and WHITE otherwise.

Our algorithm works as follows. A ray is cast from X to ea;.ch pixél along the
edge of the image array. For each such ray, we travel from X out to the border pixél,
visiting each pixel C' crossed during this process. We look at the value of the elevation
for €, and compare the angle formed between C , X, and a point with C’s position and
X’s elevation. If this angle is greater than any angle value for all pixels closer to X

along the ray, then C is visible from X.

The field of view operation can be made more efficient by repIacing‘ the angle cal-
culation function with a simpler function which is monotonically increasing as the
corresponding angle value increases. The actual function used in our implementation
divides the difference in height between ¢ and X by the sum of the z and y distances
from ¢ to X. If C’s value under this function is greater than the value of any pixel

between C' and X, then C is visible from X.

5. CONCLUSIONS AND FUTURE PLANS

Further results await completion of our implementation, and testing on GP
hardware. An empirical comparison should be performed for the bitplane coding
schemes described in Section 8.2. The Attribute Database and the Target Databaée also

require further contemplation. However, this work cannot be continued until a detailed
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description of the target database requirements has been obtained from HDL.

Our database organization is expected to support the implementation of the fol-
lowing algorithms, each of which are either discussed in this paper, or are implemeénted
elsewhere [Shaf87b]: 1) compute all pixels within 2 given distance of a polygon; 2) com-
pute all pixels visible from a specified point; 3) quadtree image display; 4) subset and set
operations on mask maps; and 5) rotation/translation of images. Implementations must
also be developed for many functions, including: 1) compute all pixels reachable from a
specified point in a specified amount of time; 2) compute all pixels which may be

traversed by a given vehicle; and 3) a path-planning algorithm.
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Figure 1. BAn example (a) region, (b) its binary array,
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are shaded), and (d) the corresponding quadtree.
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