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Abstract

An overview is presented of object-based and image-based representations of objects by their interiors. The
representations are distinguished by the manner in which they can be used to answer two fundamental queries
in database applications: (1) Feature query: given an object, determine its constituent cells (i.e., their locations
in space). (2) Location query: given a cell (i.e., a location in space), determine the identity of the object
(or objects) of which it is a member as well as the remaining constituent cells of the object (or objects).
Regardless of the representation that is used, the generation of responses to the feature and location queries
is facilitated by building an index (i.e., the result of a sort) either on the objects or on their locations in space,
and implementing it using an access structure that correlates the objects with the locations. Assuming the
presence of an access structure, implicit (i.e., image-based) representations are described that are good for
finding the objects associated with a particular location or cell (i.e., the location query), while requiring that
all cells be examined when determining the locations associated with a particular object (i.e., the feature
query). In contrast, explicit (i.e., object-based) representations are good for the feature query, while requiring
that all objects be examined when trying to respond to the location query. The goal is to be able to answer both
types of queries with one representation and without possibly having to examine every cell. Representations
are presented that achieve this goal by imposing containment hierarchies on either space (i.e., the cells in the
space in which the objects are found), or objects. In the former case, space is aggregated into successively
larger-sized chunks (i.e., blocks), while in the latter, objects are aggregated into successively larger groups
(in terms of the number of objects that they contain). The former is applicable to image-based interior-
based representations of which the space pyramid is an example. The latter is applicable to object-based
interior-based representations of which the R-tree is an example. The actual mechanics of many of these
representations are demonstrated in the VASCO JAVA applets found at
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1 Introduction

The representation of spatial objects and their environment is an important issue in building and maintaining

databases (e.g., [135]) to support applications in computer graphics, game programming, computer vision,

image processing, robotics, pattern recognition, computational geometry, and geographic information sys-

tems (GIS). In this survey our goal is to introduce practitioners and researchers in these areas to these rep-

resentations. Bearing these goals in mind, whenever there are several ways of explaining a concept we use

the terminology and notation that is common to these fields rather than that which is more commonly used

in spatial databases (e.g., [121, 148]). Thus the survey is not necessarily aimed at database researchers (as is

for example [41]) although we hope that they will also find it useful. Please note also that we are focussing

on the representation of spatial objects which means that the objects have extent (e.g., [13, 133, 134, 153])

rather than being merely points. The representation of multidimensional points has been much studied in the

database literature (e.g., [26, 61, 134]).

We assume that the objects are connected1 although their environment need not be. The objects and their

environment are usually decomposed into collections of more primitive elements (termed cells) each of which

has a location in space, a size, and a shape. These elements can either be subobjects of varying shape (e.g., a

table consists of a flat top in the form of a rectangle and four legs in the form of rods whose lengths dominate

their cross-sectional areas), or can have a uniform shape. The former yields an object-based decomposition

while the latter yields an image-based or cell-based decomposition. Another way of characterizing these two

decompositions is that the former decomposes the objects while the latter decomposes the environment in

which the objects lie. This distinction is commonly used to characterize algorithms in computer graphics

(e.g., [55]).

Each of the decompositions has its advantages and disadvantages. They depend primarily on the nature

of the queries that are posed to the database. The most general queries ask where, what, who, why, and how.

The ones that are relevant to our application are where and what. They are stated more formally as follows:

1. Feature query: given an object, determine its constituent cells (i.e., their locations in space).

2. Location query: given a cell (i.e., a location in space), determine the identity of the object (or objects)

of which it is a member as well as the remaining constituent cells of the object (or objects).

Not surprisingly, the queries can be classified using the same terminology that we used in the character-

ization of the decomposition. In particular, we can either try to find the cells (i.e., their locations in space)

occupied by an object or find the objects that overlap a cell (i.e., a location in space). If objects are associ-

ated with cells so that a cell contains the identity of the relevant object (or objects), then the feature query is

analogous to retrieval by contents while the location query is analogous to retrieval by location.

The feature and location queries are the basis of two more general classes of queries. In particular, the

feature query is a member of a broader class of queries described collectively as being feature-based (also

object-based), while the location query is a member of a broader class of queries described collectively as
1Intuitively, this means that a d-dimensional object cannot be decomposed into disjoint subobjects so that the subobjects are not

adjacent in a � d � 1 � -dimensional sense.
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being location-based (also image-based or cell-based). The location query is also commonly referred to as a

point query in databases (e.g., [96]), the point location problem in computational geometry (e.g., [25, 119]),

and a “pick” operation in computer graphics (e.g., [55]) which is actually used to find the nearest object to a

given location. The class of location-based queries include the numerous variants of the window query which

retrieves the objects that cover an arbitrary region (often rectangular). All of these queries are used in several

applications including geographic information systems (e.g., [6, 138]) and spatial data mining (e.g., [162]). It

is important to note that the only reason that we discuss these particular queries is that they are the motivation

for the different representations that we present. Of course, there are many other possible queries such as a

more generalized formulation of neighbor finding, Boolean set operations, spatial joins, etc. However, their

discussion is beyond the scope of this survey.

The most common representation of the objects and their environment is as a collection of cells of uniform

size and shape (termed pixels and voxels in two and three dimensions, respectively) all of whose boundaries

(with dimensionality one less than that of the cells) are of unit size. Such a representation is used in many

applications in image processing, computer graphics, remote sensing, and geographic information systems

(GIS) where it is known as a raster representation. In fact, it forms the basis of the map algebra system of

Tomlin [159] which has been implemented in a number of GIS systems (e.g., ARC/INFO). Since the cells are

uniform, there exists a way of referring to their locations in space relative to a fixed reference point (e.g., the

origin of the coordinate system). An example of a location of a cell in space is a set of coordinate values that

enable us to find it in the d-dimensional space of the environment in which it lies. Note that the concept of the

location of a cell in space is quite different from that of the address of a cell, which is the physical location

(e.g., in memory, on disk, etc.), if any, where some of the information associated with the cell is stored. This

distinction between the location in space of a cell and the address of a cell is important and we shall make

use of it often.

In most applications, the boundaries (i.e., edges and faces in two and three dimensions, respectively) of

the cells are parallel to the coordinate axes. In our discussion, we assume that the cells comprising a particular

object are contiguous (i.e., adjacent), and that a different unique value is associated with each distinct object,

thereby enabling us to distinguish between the objects. Depending on the underlying representation, this

value may be stored with the cells. For example, Figure 1 contains three two-dimensional objects � , � , and
�

and their corresponding cells. Note that in this example there exist two hyperplanes that will separate

the objects; however, this is not crucial to our discussion. We also observe that, although not the case in this

example, objects are allowed to overlap which means that a cell may be associated with more than one object.

Here we assume, without loss of generality, that the volume of the overlap must be an integer multiple of the

volume of a cell (i.e., pixels, voxels, etc.).

The shape of an object o can be represented either by the interiors of the cells comprising o, or by the

subset of the boundaries of those cells comprising o that are adjacent to the boundary of o. In particular,

interior-based methods represent an object o by using the locations in space of the cells that comprise o,

while boundary-based methods represent o by using the locations in space of the cells that are adjacent to the

boundary of o. In general, interior-based representations make it very easy to calculate properties of an object

such as its mass, and, depending on the nature of the aggregation process, to determine the value associated
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with any point (i.e., location) in the space covered by a cell in the object. On the other hand, boundary-based

representations make it easy to obtain the boundary of an object. The first boundary representation was the

chain code [57], which is a digitized version of a vector representation. Other more commonly used boundary

representations are those known collectively as the boundary model (also referred to as BRep) among which

are included a number of variants of the winged-edge data structure (e.g., [17, 70, 87, 134]), as well as

representations such as the BSP tree (denoting Binary Space Partitioning) [60] which is mentioned briefly

in Section 3. In this paper the focus is on interior-based representations and thus further discussion of these

representations is beyond our scope.

The simplest representation represents the objects by use of collections of unit-size cells. The collection

can be represented either explicitly or implicitly. The representation is explicit if the identities of all the

contiguous cells that form the object are hardwired into the representation (characterized as being object-

based), while the representation is implicit if we can only determine the cells that make up the object by

examining the contiguous cells of a given cell and determining if they are associated with the same object

(characterized as being image-based).

These representations can be made more compact by aggregating similar elements (i.e., unit-size cells).

These elements are usually identically-valued contiguous cells, or even objects which, ideally, are in proxim-

ity. The result is that the cells that make up the object collection no longer need to be of unit size and their

sizes can vary. The varying-sized cells are termed blocks.

Regardless of the representation that is used, the generation of responses to the feature and location

queries is facilitated by building an index (i.e., the result of a sort) either on the objects or on their locations in

space, and implementing it using an access structure that correlates the objects with the locations. Assuming

the presence of an access structure, the implicit (i.e., image-based) representations described in Sections 2

and 3 are good for finding the objects associated with a particular location or cell (i.e., the location query),

while requiring that all cells be examined when determining the locations associated with a particular object

(i.e., the feature query). In contrast, the explicit (i.e., object-based) representations described in Sections 2

and 3 are good for the feature query, while requiring that all objects be examined when trying to respond to

3



the location query. Our goal is to be able to answer both types of queries with one representation and without

possibly having to examine every cell. This is the main focus of this paper.

We achieve our goal by imposing containment hierarchies on the representations. The hierarchies differ

depending on whether the hierarchy is of space (i.e., the cells in the space in which the objects are found), or

of objects. In the former case, we aggregate space into successively larger-sized chunks (i.e., blocks), while

in the latter, we aggregate objects into successively larger groups (in terms of the number of objects that they

contain). The former is applicable to implicit (i.e., image-based) interior-based representations, while the

latter is applicable to explicit (i.e., object-based) interior-based representations.

The basic idea is that in image-based representations, we propagate objects up the hierarchy, with the

occupied space being implicit to the representation. Thus we retain the property that associated with each

cell is an identifier indicating the object of which it is a part. In fact, it is this information that is propagated

up the hierarchy so that each element in the hierarchy contains the union of the objects that appear in the

elements immediately below it.

On the other hand, in the object-based representations, we propagate the space occupied by the objects

up the hierarchy, with the identities of the objects being implicit to the representation. Thus we retain the

property that associated with each object is a set of locations in space corresponding to the cells that make up

the object. Actually, since this information may be rather voluminous, it is often the case that an approxima-

tion of the space occupied by the object is propagated up the hierarchy rather than the collection of individual

cells that are spanned by the object. The approximation is usually the minimum bounding box for the object

that is customarily stored with the explicit representation. Therefore, associated with each element in the

hierarchy is a bounding box corresponding to the union of the bounding boxes associated with the elements

immediately below it. The bounding box is quite general in the sense that it can be used to approximate all

types of data rather than just objects with axis-parallel boundaries as in this paper.

The use of the bounding box approximation has the drawback that the bounding boxes at a given level in

the hierarchy are not necessarily disjoint, which means that responding to the location query may require all

of the bounding boxes to be visited as the space spanned by an object may be included in several bounding

boxes; however, the object is only associated with one of the bounding boxes. This can be overcome by

decomposing the bounding boxes so that disjointness holds. The drawback of this solution is that an object

may be associated with more than one bounding box, which may result in the object being reported as

satisfying a particular query more than once. For example, suppose that we want to retrieve all the objects

that overlap a particular region (i.e., a window query) rather than a point as is done in the location query.

It is very important to note that the presence of the hierarchy does not mean that the alternative query (i.e.,

the feature query in the case of a space hierarchy and the location query in the case of an object hierarchy) can

be answered immediately. Instead, obtaining the answer usually requires that the hierarchy be descended. The

effect is that the order of the execution time needed to obtain the answer is reduced from linear to logarithmic.

Of course, this is not always the case. For example, the fact that we are using bounding boxes for the space

spanned by the objects rather than the exact space occupied by them means that we do not always have a

complete answer when reaching the bottom of the hierarchy. In particular, at this point, we may have to
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resort to a more expensive point-in-polygon test [55].

It is worth repeating that the only reason for imposing the hierarchy is to facilitate responding to the

alternative query (i.e., the feature query in the case of a space hierarchy on the implicit representation, and the

location query in the case of an object hierarchy on the explicit representation). Thus the base representation

of the hierarchy is still usually used to answer the original query, because often, when using the hierarchy,

the inherently logarithmic overhead incurred by the need to descend the hierarchy may be too expensive

(e.g., when using the implicit representation with an array access structure to respond to the location query).

Of course, other considerations such as space requirements may cause us to modify the base representation

of the hierarchy, with the result that it will take longer to respond to the original query (e.g., the use of a

tree-like access structure with an implicit representation). Nevertheless, as a general rule, in the case of the

space hierarchy, we use the implicit representation (which is the basis of this hierarchy) to answer the location

query, while in the case of the object hierarchy, we use the explicit representation (which is the basis of this

hierarchy) to answer the feature query.

The rest of this paper is organized as follows. Section 2 examines both image-based and object-based

representations that consist of collections of unit-size cells, while Section 3 reviews how these representations

are made more compact by aggregating similar elements into blocks. Sections 4 and 5 describe how to modify

the image-based and object-based representations, respectively, to be hierarchical. Section 6 briefly discusses

some disjoint object-based representations, while concluding remarks are drawn in Section 7. Note that all

of the representations that we discuss can be used in a dynamic environment although some more easily in

the sense that updates are less costly to process as less of the representation needs to be rebuilt in the case

of an update. The actual mechanics of many of these representations are demonstrated in the VASCO JAVA

applets found at
���������	����
�
�

����������� � �	�����������������  ��!�����"�������#�$�����% ������� ' [28].

In order to simplify matters, the representations described in Sections 2 and 3 assume that the objects

can be decomposed into cells whose boundaries are parallel to the coordinate axes. Moreover, it is assumed

that each unit-size cell or block is contained entirely in one or more objects — that is, a cell or block cannot

be partially contained in two objects. This means that either each cell in a block belongs to the same object

or objects, or all of the cells in the block do not belong to any of the objects. Of course, as we pointed out

before, more complex objects are possible (e.g., arbitrary polyhedra as well as collections of objects whose

boundaries do not coincide with the boundaries of the underlying blocks) and also a cell or a block could be

allowed to overlap several objects without being completely contained in them. In this case, the hierarchical

object-based representations which are presented in Section 5 are the most appropriate and the discussion

therein is applicable.

2 Unit-size Cells

Interior-based representations aggregate identically-valued cells by recording their locations in space. When

the aggregation is explicit, the identities of the contiguous cells that form the object are hardwired into the

representation. An example of an explicit aggregation is one that associates a set with each object o that
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contains the location in space of each cell that comprises o. In this case, no identifying information (e.g.,

the object identifier corresponding to o) is stored in the cells. Thus there is no need to allocate storage for

the cells (i.e., no addresses are associated with them). One possible implementation of this set is a list. For

example, consider Figure 1 and assume that the origin ����� ��� is at the upper-left corner. Assume further that

this is also the location of the pixel that abuts this corner. Therefore, the explicit representation of object � is

the set of locations ���
	�� 
 ���

�� �����

�� 
 ������� ��������� 
 ��� . It should be clear that using the explicit representation,

given an object o, it is easy to determine the cells (i.e., locations in space) that comprise it (the feature query).

Of course, even when using an explicit representation, we must still be able to access object o from

a possibly large collection of objects, which may require an additional data structure such as an index on

the objects (e.g., a table of object-value pairs where value indicates the entry in the explicit representation

corresponding to object). This index does not make use of the spatial coverage of the objects and thus may be

implemented using conventional searching techniques such as hashing [96]. In this case, we will need O � N �
additional space for the index, where N is the number of different objects. We do not discuss such indexes

here.

The fact that no identifying information as to the nature of the object is stored in the cell means that the

explicit representation is not suited for answering the inverse query of determining the object associated with

a particular cell at location l in space (i.e., the location query). Using the explicit representation, the location

query can be answered only by checking for the presence of location l in space in the various sets associated

with the different objects. This will be time-consuming, as it may require that we examine all cells in each

set. In other words, the explicit representation is primarily suited to retrieval on the basis of knowledge of the

objects rather than of the locations of the cells in space and this is the rationale for characterizing it as being

object-based.

Note that since the explicit representation consists of sets, there is no particular order for the cells within

each set although an ordering could be imposed based on spatial proximity of the locations of the cells in

space, etc. For example, the list representation of a set already presupposes the existence of an ordering.

Such an ordering could be used to obtain a small, but not insignificant, decrease in the time (in an expected

sense) needed to answer the location query. In particular, now whenever cell c is not associated with object o,

we will be able to cease searching the list associated with o after having inspected half of the cells associated

with o instead of all of them, which is the case when no ordering exists.

An important shortcoming of the use of the explicit representation, which has an effect somewhat related

to the absence of an ordering, is the inability to distinguish between occupied and unoccupied cells. In

particular, in order to detect that a cell c is not occupied by any object we must examine the sets associated

with each object, which is quite time-consuming. Of course, we could avoid this problem by forming an

additional set which contains all of the unoccupied cells, and examine this set first whenever processing the

location query. The drawback of such a solution is that it slows down all instances of the location query that

involve cells that are occupied by objects.

We can avoid examining every cell in each object set, thereby speeding up the location query in certain

cases, by storing a simple approximation of the object with each object set o. This approximation should
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be of a nature that makes it easy to check if it is impossible for a location l in space to be in o. One such

approximation is a minimum bounding box whose sides are parallel to the coordinate axes of the space in

which the object is embedded. For example, for object � in Figure 1 such a box is anchored at the lower-left

corner of cell �
	�� 
 � and the upper-right corner of cell ����� ��� . The existence of a box b for object o means that

if b does not contain l, then o does not contain l either, and we can proceed with checking the other objects.

This bounding box is usually a part of the explicit representation.

There are several ways of increasing the quality of the approximation. For example, the minimum

bounding box may be rotated by an arbitrary angle so that the sides are still orthogonal while no longer

having to be parallel to the coordinate axes and known as an OBB-tree denoting oriented bounding box

(e.g., [29, 67, 120]). These representations adaptations of the strip tree [16] and the Douglas-Peucker gener-

alization algorithm [45, 46, 130] for curves in two dimensions. The number of sides as well as the number

of their possible orientations may be expanded so that it is arbitrary (e.g., a convex hull [29]), or bounded

although greater than the dimensionality of the underlying space (e.g., the P-tree [86] and k-DOP [93] where

the number of possible orientations is bounded, and the minimum bounding polybox [30] which attempts

to find the optimal orientations). The most general solution is the convex hull which is often approximated

by a minimum bounding polygon of a fixed number of sides having either an arbitrary orientation (e.g., the

minimum bounding n-corner [44, 140, 141]) or a fixed orientation usually parallel to the coordinate axes

(e.g., [51]). Restricting the sides (i.e., faces in dimension higher than 2) of the polyhedron to be paral-

lel to the coordinate axes (termed an axis-parallel polygon) enables simpler point-in-object tests (e.g., the

vertex representation [49, 50, 51]). The minimum bounding box may also be replaced by a circle, sphere

(e.g., [81, 82, 110, 111, 112, 164]), ellipse, intersection of the minimum bounding box with the minimum

bounding sphere (e.g., [91]), as well as other shapes (e.g., [29]). Interestingly, many of these solutions arose

in applications in collision detection (e.g., [67, 93]).

In the rest of this paper we restrict our discussion to minimum bounding boxes that are rectangles with

sides parallel to the coordinate axes, although, of course, the techniques we describe are applicable to other

more general bounding objects. Nevertheless, in the interest of brevity, we often use the term bounding box

even though the terms minimum bounding box or minimum bounding object would be more appropriate.

The location query can be answered more directly if we allocate an address a in storage for each cell c

where an identifier is stored that indicates the identity of the object (or objects) of which c is a member. Recall

that such a representation is said to be implicit as in order to determine the rest of the cells that comprise

the object associated with c (and thus complete the response to the location query), we must examine the

identifiers stored in the addresses associated with the contiguous cells and then aggregate the cells whose

associated identifiers are the same. However, in order to be able to use the implicit representation, we must

have a way of finding the address a corresponding to c, taking into account that there is possibly a very large

number of cells, and then retrieving a.

Finding the right address requires an additional data structure, termed an access structure, such as an

index on the locations in space. An example of such an index is a table of cell-address pairs where address

indicates the physical location where the information about the object associated with the location in space

corresponding to cell is stored. The table is indexed by the location in space corresponding to cell. The
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index is really an ordering and hence its range is usually the integers (i.e., one-dimensional). When the

data is multidimensional (i.e., cells in d-dimensional space where d � 0), it may not be convenient to use

the location in space corresponding to the cell as an index since its range spans data in several dimensions.

Instead, we employ techniques such as laying out the addresses corresponding to the locations in space of the

cells in some particular order and then making use of an access structure in the form of a mapping function

to enable the quick association of addresses with the locations in space corresponding to the cells. Retrieving

the address is more complex in the sense that it can be a simple memory access or it may involve an access to

secondary or tertiary storage if virtual memory is being used. In most of our discussion, we assume that all

data is in main memory, although, as we will see, several representations do not rely on this assumption.

Such an access structure enables us to obtain the contiguous cells (as we know their locations in space)

without having to examine all of the cells. Therefore, we will know the identities of the cells that comprise

an object thereby enabling us to complete the response to the location query with an implicit representation.

In other words, the implicit representation lends itself to retrieval on the basis of knowledge only of the cells

rather than of the objects, and this is the rationale for characterizing it as being image-based. In the rest of

this section, we discuss several such access structures.

The existence of an access structure also enables us to answer the feature query with the implicit repre-

sentation, although this is quite inefficient. In particular, given an object o, we must exhaustively examine

every cell (i.e., location l in space) and check if the address where the information about the object associated

with l is stored contains o as its value. This will be time-consuming, as it may require that we examine all

the cells.

There are many ways of laying out the addresses corresponding to the locations in space of the cells

each having its own mapping function. Some of the most important ones for a two-dimensional space are

illustrated in Figure 2 for an 8 � 8 portion of the space and are described briefly below. To repeat, in essence,

what we are doing is providing a mapping from the d-dimensional space containing the locations of the cells

to the one-dimensional space of the range of index values (i.e., integers) which are used to access a table

whose entries contain the addresses where information about the contents of the cells is stored. The result

is an ordering of the space, and the curves shown in Figure 2 are termed space-filling curves (e.g., [131]).

Choosing among the space-filling curves illustrated in Figure 2 is not easy as each one has its advantages

and disadvantages. Below, we review a few of their desirable properties, and show how some of the two--

dimensional orderings satisfy them.

� The curve should pass through each location in space once and only once.

� The mapping from the higher-dimensional space to the integers should be relatively simple and likewise

for the inverse mapping. This is the case for all but the Peano-Hilbert order (Figure 2d). For the

Morton order (Figure 2c), the mapping is obtained by interleaving the binary representations of the

coordinate values of the location of the cell. The number associated with each cell is known as its

Morton number. The Gray order (Figure 2g) is obtained by applying a Gray code [68] to the result of bit

interleaving, while the double Gray order (Figure 2h) is obtained by applying a Gray code to the result

of bit interleaving the Gray code of the binary representation of the coordinate values. The U order
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(Figure 2i) is obtained in a similar manner to the Z order except for an intermediate application of d � 1

‘exclusive or’ ( � ) operations on the binary representation of selected combinations of the coordinate

values prior to the application of bit interleaving [102, 143]. Thus the difference in cost between the

Z order and the U order in d dimensions is just the performance of additional d � 1 ‘exclusive or’

operations. This is in contrast with the Peano-Hilbert order where the mapping and inverse mapping

processes are considerably more complex.

� The ordering should be stable. This means that the relative ordering of the individual locations is

preserved when the resolution is doubled (e.g., when the size of the two-dimensional space in which the

cells are embedded grows from 8 � 8 to 16 � 16) or halved assuming that the origin stays the same. The

Morton, U, Gray, and double Gray orders are stable, while the row (Figure 2a), row-prime (Figure 2b),

Cantor-diagonal (Figure 2e), and spiral (Figure 2f) orders are not stable. The Peano-Hilbert order is

also not stable as can be seen by its definition. In particular, in two dimensions, the Peano-Hilbert order

of resolution i � 1 (i.e., a 2i � 2i image) is constructed by taking the Peano-Hilbert curve of resolution

i and rotating the �! , � � , " � , and "# quadrants by 90 degrees clockwise, 0 degrees, 0 degrees, and
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90 degrees counterclockwise, respectively. For example, Figures 3a, 3b, and 3c give the Peano-Hilbert

curves of resolutions 1, 2, and 3, respectively.

(a)

(b)

(c)
��� ���
�	����� � �3�� 3� � � � ��("�"� � �"�
���3��,.�"!2� ��,*��������� �� � � � 
 � � ( � � � �� 1/ � � � � 7

� Two locations that are adjacent (i.e., in the sense of a � d � 1 � -dimensional adjacency also known as

4-adjacent) in space are neighbors along the curve and vice versa. In two dimensions, this means that

the locations share an edge or a side. This is impossible to satisfy for all locations at all space sizes.

However, for the row-prime, Peano-Hilbert, and spiral orders, every element is a 4-adjacent neighbor

of the previous element in the sequence while this is not the case for the other orders. This means that

the row-prime, Peano-Hilbert, and spiral orders have a slightly higher degree of locality than the other

orders.

� The process of retrieving the neighbors of a location in space should be simple.

� The order should be admissible. This means that at each position in the ordering, at least one 4-

adjacent neighbor in each of the lateral directions (i.e., horizontal and vertical) must have already been

encountered. This is useful in several algorithms (e.g., connected component labeling [42]2). The row

and Morton orders are admissible while the Peano-Hilbert, U, Gray, and double Gray orders are not

admissible. The row-prime, Cantor-diagonal, and spiral orders are admissible only if we permit the

direction of the 4-adjacent neighbors to vary from position to position along the curve. For example,

for the row-prime order, at positions on odd rows, the previously encountered 4-adjacent neighbors

are the western and northern neighbors, while at positions on even rows, it is the eastern and northern

neighbors.

The row order (Figure 2a) is of special interest to us because its mapping function is the one most

frequently used by the multidimensional array, which is the most common access structure. The Morton

order [108] has a long history having been first mentioned by Peano [118], and has been used by many

researchers (e.g., [1, 65, 113, 165]). It is also known as a Z order [113] and as an N order [165]. The Peano-

Hilbert order was first mentioned soon afterwards by Hilbert [78], and has also been used by a number of

researchers (e.g., [52, 85]).
2A region or object four-connected component, is a maximal four-connected set of locations belonging to the same object, where a

set S of locations is said to be four-connected if for any locations p, q in S there exists a sequence of locations p � p0 � p1 ��������� pn � q

in S, such that pi � 1 is 4-adjacent (8-adjacent) to pi, 0 � i 	 n. The process of assigning the same label to all 4-adjacent locations that

belong to the same object is called connected component labeling (e.g., [116, 125]).
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Although conceptually very simple, the U order introduced by Schrack and Liu [102, 143] is relatively

recent. It is a variant of the Morton order, while also resembling the Peano-Hilbert order. The primitive shape

is a ‘U’ which is the same as that of the Peano-Hilbert order. However, unlike the Peano-Hilbert order, and

like the Morton order, the ordering is applied recursively with no rotation thereby enabling it to be stable.

The U order has a slight advantage over the Morton order in that more of the locations that are adjacent (i.e.,

in the sense of a � d � 1 � -dimensional adjacency) along the curve are also neighbors in space. This is directly

reflected in the lower average distance between two successive positions in the order (i.e., for a 216 � 216

image, it is 1.4387 for the U order while it is 2.0000, 1.6724, and 1.5000 for the double Gray, Morton,

and Gray orders, respectively, and 1 for the row-prime, Peano-Hilbert, and spiral orders [137]). However,

the price of this is that like the Peano-Hilbert order, the U order is also not admissible. Nevertheless, like

the Morton order, the process of retrieving the neighbors of a location in space is simple when the space is

ordered according to the U order. Asano et al. [14] describe an order which has the same properties as the

Peano-Hilbert order except that for any square region, there are at most three breaks in the continuity of the

curve in contrast to four for the Peano-Hilbert order (i.e., at most three out of four 4-adjacent subblocks of a

square block are not neighbors along the curve in contrast with a possibility that all four 4-adjacent subblocks

are not neighbors in the Peano-Hilbert order). This property is useful for retrieval of square like regions in the

case of a range query when the data is stored on disk in this order as each break in the continuity can result

in a disk seek operation.

The multidimensional array (having a dimension equal to the dimensionality of the space in which the

objects and the environment are embedded) is an access structure which, given a cell c at a location l in space,

enables us to calculate the address a containing the identifier of the object associated with c. The array is

only a conceptual multidimensional structure (it is not a multidimensional physical entity in memory) in the

sense that it is a mapping of the locations in space of the cells into sequential addresses in memory. The

actual addresses are obtained by the array access function (see e.g., [95] as well as the above discussion on

space orderings) which is based on the extents of the various dimensions (i.e., coordinate axes). The array

access function is usually the mapping function for the row order (Figure 2a). Thus the array enables us to

implement the implicit representation with no additional storage except for what is needed for the array’s

descriptor. The descriptor contains the bounds and extents of each of the dimensions which are used to define

the mapping function (i.e., they determine the values of its coefficients) so that the appropriate address can

be calculated given the cell’s location in space.

The array is called a random access structure because the address associated with a location in space

can be retrieved in constant time independent of the number of elements in the array and does not require

any search. Note that we could store the object identifier o in the array element itself instead of allocating a

separate address a for o thereby saving some space.

The array is an implicit representation because we have not explicitly aggregated all the contiguous cells

that comprise a particular object. They can be obtained given a particular cell c at a location l in space

belonging to object o by recursively accessing the array elements corresponding to the locations in space

that are adjacent to l and checking if they are associated with object o. This process is known as depth-first

connected component labeling.
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Interestingly, depth-first connected component labeling could also be used to answer the feature query

efficiently with an implicit representation if we add a data structure such as an index on the objects (e.g., a

table of object-location pairs where location is one of the locations in space that comprise object). Thus given

an object o we use the index to find a location in space that is part of o, and then proceed with the depth-first

connected component labeling as before. This index does not make use of the spatial coverage of the objects

and thus it can be implemented using conventional searching techniques such as hashing [96]. In this case,

we will need O � N � additional space for the index, where N is the number of different objects. We do not

discuss such indexes here.

Of course, we could also answer the location query with an explicit representation by adding an index

which associates objects with locations in space (i.e., having the form location-objects). However, this would

require O � S � additional space for the index, where S is the number of cells. The O � S � bound assumes that only

one object is associated with each cell. If we take into account that a cell could be associated with more than

one object, then the additional storage needed is O � NS � , if we assume N objects. Since the number of cells S

is usually much greater than the number of objects N, the addition of an index to the explicit representation is

not as practical as extending the implicit representation with an index of the form object-location as described

above. Thus it would appear that the implicit representation is more useful from the point of view of flexibility

when taking storage requirements in to account.

The implicit representation can be implemented with access structures other than the array. This is an

important consideration when many of the cells are not in any of the objects (i.e., they are empty). The

problem is that using the array access structure is wasteful of storage, as the array requires an element for

each cell regardless of whether the cell is associated with any of the objects. In this case, we choose to keep

track of only the nonempty cells.

We have two ways to proceed. The first is to use one of several multidimensional access structures such

as a point quadtree, k-d tree, MX quadtree, etc. as described in [134]. The second is to make use of one

of the orderings of space shown in Figure 2 to obtain a mapping from the nonempty contiguous cells to the

integers. The result of the mapping serves as the index in one of the familiar tree-like access structures (e.g.,

binary search tree, range tree, B � -tree, etc.) to store the address which indicates the physical location where

the information about the object associated with the location in space corresponding to the nonempty cell is

stored.

3 Blocks

An alternative class of representations of the objects and their environment removes the stipulation that cells

making up the object collection be of a unit size and permits their sizes to vary. The resulting cells are termed

blocks and are usually rectangular with sides parallel to the coordinate axes (this is assumed in our discussion

unless explicitly stated otherwise). The volume (e.g., area in two dimensions) of the blocks need not be an

integer multiple of that of the unit-size cells, although this is often the case. Observe that when the volumes

of the blocks are integer multiples of that of the unit-size cells, then we have two levels of aggregation in
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the sense that an object consists of an aggregation of blocks which are themselves aggregations of cells. We

assume that all the cells in a block belong to the same object or objects. In other words, the situation that

some of the cells in the block belong to object o1 while the others belong to object o2 (and not to o1) is not

allowed.

The collection of blocks is usually a result of a space decomposition process with a set of rules that guide

it. There are many possible decompositions. When the decomposition is recursive, we have the situation

that the decomposition occurs in stages and often, although not always, the results of the stages form a

containment hierarchy. This means that a block b obtained in stage i is decomposed into a set of blocks b j

that span the same space. Blocks b j are, in turn, decomposed in stage i � 1 using the same decomposition

rule. Some decomposition rules restrict the possible sizes and shapes of the blocks as well as their placement

in space. Some examples include:

� congruent blocks at each stage

� similar blocks at all stages

� all but one side of a block are unit-sized

� all sides of a block are of equal size

� all sides of each block are powers of two

� etc.

Other decomposition rules dispense with the requirement that the blocks be rectangular, while still others do

not require that they be orthogonal. In addition, the blocks may be disjoint or be allowed to overlap. Clearly,

the choice is large. In the following, we briefly explore some of these decomposition processes.

The simplest decomposition rule is one that permits aggregation of identically-valued cells in only one

dimension. It assigns a priority ordering to the various dimensions and then fixes the coordinate values of all

but one of the dimensions, say i, and then varies the value of the ith coordinate and aggregates all adjacent

cells belonging to the same object into a one-dimensional block. This technique is commonly used in image

processing applications where the image is decomposed into rows which are scanned from top to bottom, and

each row is scanned from left to right while aggregating all adjacent pixels with the same value into a block.

It is useful in image transmission as we only have to transmit the pixels where a change in value takes place.

The aggregation into one-dimensional blocks is the basis of runlength encoding [129]. Similar techniques

are applicable to higher-dimensional data where, for example in the case of three-dimensional data, one

would scan the image one 2-dimensional hyperplane at a time where each hyperplane would be scanned in

raster scan order. Techniques analogous to runlength encoding form the basis of the vertex representation for

representing axis-parallel polygons of arbitrary dimension [49, 50].

The drawback of the decomposition into one-dimensional blocks described above is that all but one side

of each block must be of unit width. The most general decomposition removes this restriction along all of

the dimensions, thereby permitting aggregation along all dimensions. In other words, the decomposition
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is arbitrary. The blocks need not be uniform or similar. The only requirement is that the blocks span the

space of the environment. This general decomposition has the potential of requiring less space. However, its

drawback is that the determination of optimal partition points may be a computationally expensive procedure.

We assume that the blocks are disjoint although this need not be the case. We also assume that the blocks

are rectangular as well as orthogonal (e.g., Figure 4). although again this is not absolutely necessary as there

exist decompositions using other shapes as well (e.g., triangles, etc.).
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It is easy to adapt the explicit representation to deal with blocks resulting from an arbitrary decomposition

(which also includes the one that yields one-dimensional blocks). In particular, instead of associating a set

with each object o that contains the location in space of each cell that comprises o, we need to associate

with each object o the locations in space and size of each block that comprises o. This can be done by

specifying the coordinate values of the upper-left corner of each block and the sizes of its sides. Without loss

of generality, we use this format for the explicit representation of all of the block decompositions described

in this section.

Using the explicit representation of blocks, both the feature and location queries are answered in essen-

tially the same way as they were for unit-sized cells. The only difference is that for the location query instead

of checking if a particular location l in space is a member of one of the sets of cells associated with the various

objects, we must check if l is covered by one of the blocks in the sets of blocks of the various objects. This is

a fairly simple process as we know the location in space and size of each of the blocks.

Implementing an arbitrary decomposition (which also includes the one that results in one-dimensional

blocks) using an implicit representation is also quite easy. We build an index based on an easily identifiable

location in each block such as its upper-left corner. We make use of the same techniques that were presented

in the discussion of the implicit representation for unit-sized cells in Section 2. The only difference is that

we must also record the size of each block along with the address indicating the physical location where the

information about the object associated with the locations in space corresponding to the block is stored.

14



As in the case of unit-size cells, regardless of which access structure is used to implement the index, we

determine the object o associated with a cell at location l by finding the block b that covers l. If b is an

empty block, then we exit. Otherwise, we return the object o associated with b. Notice that the search for the

block that covers l may be quite complex in the sense that the access structures may not necessarily achieve

as much pruning of the search space as in the case of unit-sized cells. In particular, this is the case whenever

the space ordering and the block decomposition method to whose results the ordering is being applied do not

have the property that all of the cells in each block appear in consecutive order. In other words, given the

cells in the block e with minimum and maximum values in the ordering, say u and v, there exists at least one

cell in block f distinct from e which is mapped to a value w where u � w � v. Thus, supposing that the index

is implemented using a tree-like access structure, a search for the block b that covers l may require that we

visit several subtrees of a particular node in the tree.

As we saw in the description of the algorithm for responding to query 2, the drawback of the arbitrary

decomposition into blocks is that since there is no rule for the formation of the blocks, there is also no easy

rule for accessing them. The irregular grid is one way to overcome this drawback by making use of a very

simple decomposition rule that partitions a d-dimensional space having coordinate axes xi into d-dimensional

blocks by use of hi hyperplanes that are parallel to the hyperplane formed by xi � 0 (1 � i � d). The result is

a collection of ∏d
i � 1 � hi � 1 � blocks. These blocks form a grid of irregular-sized blocks as the partition lines

are at arbitrary positions in contrast to the uniform grid [56] where the partition lines are positioned so that

all of the resulting grid cells are congruent. Observe that there is no recursion involved in the decomposition

process. For example, Figure 5a is an example block decomposition using hyperplanes parallel to the x and y

axes for the collection of objects and cells given in Figure 1.
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The block decomposition resulting from the use of an irregular grid is handled by an explicit representa-

tion in the same way as the arbitrary decomposition. Finding a suitable implicit representation is a bit more

complex as we must define an appropriate access structure. Although the blocks are not congruent, we can

still impose an array access structure on them by adding d access structures termed linear scales. The linear

scales indicate the position of the partitioning hyperplanes that are parallel to the hyperplane formed by xi � 0

(1 � i � d). Thus given a location l in space, say � a,b) in two-dimensional space, the linear scales for the x

and y coordinate values indicate the column and row, respectively, of the array access structure entry which

corresponds to the block that contains l.

For example, Figure 5b is the array access structure corresponding to the block decomposition in Fig-

ure 5a, while Figures 5c and 5d are the linear scales for the x and y axes, respectively. In this example, the

linear scales are shown as tables (i.e., array access structures). In fact, they can be implemented using tree

access structures. The representation described here is an adaptation for regions of the grid file [109] data

structure for points.

Our implementation of the access structures for the irregular grid yields a representation that is analogous

to an indirect uniform grid in the sense that given a cell at location l we need to make d � 1 array-like accesses

(analogous to the two memory references involved with indirect addressing in computer instruction formats)

to obtain the object o associated with it instead of just one array access when the grid is uniform (i.e., all the

blocks are congruent and cell-sized). The first d accesses find the identity of the array element (i.e., block b)

that contains l, while the last access determines the object o associated with b. Once we have found block

b, we examine the adjacent blocks to obtain the rest of the cells comprising object o, thereby completing the

response to the location query, by employing the same methods as we used for the array access structure for

the uniform-sized cells. The only difference is that every time we find a block b in the array access structure

associated with o, we must examine b’s corresponding entries in the linear scales to determine b’s size so that

we can report the cells that comprise b as parts of object o.

Perhaps the most widely known decompositions into blocks are those referred to by the general terms

quadtree and octree [133, 134]. They are usually used to describe a class of representations for two and

three-dimensional data (and higher as well), respectively, that are the result of a recursive decomposition of

the environment (i.e., space) containing the objects into blocks (not necessarily rectangular) until the data in

each block satisfies some condition (e.g., with respect to its size, the nature of the objects that comprise it,

the number of objects in it, etc.). The positions and/or sizes of the blocks may be restricted or arbitrary. It

is interesting to note that quadtrees and octrees may be used with both interior-based and boundary-based

representations. Moreover, both explicit and implicit aggregations of the blocks are possible.

There are many variants of quadtrees and octrees, and they are used in numerous application areas in-

cluding high energy physics, VLSI, finite element analysis, and many others. Below, we focus on region

quadtrees [92] and region octrees [83, 105]. They are specific examples of interior-based representations for

two and three-dimensional region data (variants for data of higher dimension also exist), respectively, that

permit further aggregation of identically-valued cells.

Region quadtrees and region octrees are instances of a restricted-decomposition rule where the environ-
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ment containing the objects is recursively decomposed into four or eight, respectively, rectangular congruent

blocks until each block is either completely occupied by an object or is empty (such a decomposition process

is termed regular). For example, Figure 6a is the block decomposition for the region quadtree corresponding

to Figure 1. Notice that in this case, all the blocks are square, have sides whose size is a power of 2, and

are located at specific positions. In particular, assuming an origin at the upper-left corner of the image corre-

sponding to the environment containing the objects, then the coordinate values of the upper-left corner of each

block (e.g., � i � j � in two dimensions) of size 2s � 2s satisfy the property that a mod 2s � 0 and b mod 2s � 0.
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A region quadtree can be implemented using an explicit representation by associating a set with each ob-

ject o that contains its constituent blocks. Each block is specified by numbers corresponding to the coordinate

values of its upper-left corner and the size of one of its sides. These numbers are stored in the set in the form

� i � j � : k where � i � j � and k correspond to the coordinate values of the upper-left corner and depth, respectively,

of the block. For example, the explicit representation of the collection of blocks n Figure 1 is given by the sets
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A region quadtree implementation that makes use of an implicit representation is quite different. First,

we allocate an address a in storage for each block b which stores an identifier that indicates the identity of

the object (or objects) of which b is a member. Second, it is necessary to impose an access structure on the

collection of blocks in the same way as the array was imposed on the collection of unit-sized cells. Such an

access structure enables us to determine easily the value associated with any point in the space covered by a

cell without resorting to exhaustive search. Note that depending on the nature of the access structure, it’s not

always necessary to store the location and size of each block with a.

There are many possible access structures. Interestingly, using an array as an access structure is not

particularly useful as it defeats the rationale for the aggregation of cells into blocks unless, of course, all the

blocks are of a uniform size in which case we have the analog of a two-level grid.

The traditional, and most natural, access structure for a region quadtree corresponding to a d-dimensional
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image is a tree with a fanout of 2d (e.g., Figure 6b corresponding to the collection of two-dimensional objects

in Figure 1 whose quadtree block decomposition is given in Figure 6a). Each leaf node in the tree corresponds

to a different block b and contains the address a in storage where an identifier is stored that indicates the

identity of the object (or objects) of which b is a member. As in the case of the array, where we could store

the object identifier o in the array element itself instead of allocating a separate address a for o, we could

achieve the same savings by storing o in the leaf node of the tree. Each nonleaf node f corresponds to a

block whose volume is the union of the blocks corresponding to the 2d children of f . In this case, the tree

is a containment hierarchy and closely parallels the decomposition in the sense that they are both recursive

processes and the blocks corresponding to nodes at different depths of the tree are similar in shape.

Answering the location query using the tree structure is different from using an array where it is usually

achieved by a table lookup having an O � 1 � cost (unless the array is implemented as a tree, which is a possi-

bility [38]). In contrast, the location query is usually answered in a tree by locating the block that contains

the location in space corresponding to the desired cell. This is achieved by a process that starts at the root

of the tree and traverses the links to the children whose corresponding blocks contain the desired location.

This process has an O � n � F � cost where the environment has a maximum of n levels of subdivision (e.g., an

environment all of whose sides are of length 2n), and F is the cardinality of the answer set.

Using a tree with fanout 2d as an access structure for a regular decomposition means that there is no need

to record the size and location of the blocks. This information can be inferred from knowledge of the size

of the underlying space as the 2d blocks that result from each subdivision step are congruent. For example,

in two dimensions, each level of the tree corresponds to a quartering process that yields four congruent

blocks (rectangular here, although a triangular decomposition process could also be defined which yields

four equilateral triangles; however, in such a case, we are no longer dealing with rectangular cells). Thus as

long as we start from the root, we know the location and size of every block.

There are a number of alternative access structures to the tree with fanout 2d . They are all based on

finding a mapping from the domain of the blocks to a subset of the integers (i.e., to one dimension) and then

applying one of the familiar tree-like access structures (e.g., a binary search tree, range tree, B � -tree, etc.).

There are many possible mappings (e.g., [133]). The simplest is to use the same technique that we applied

to the collection of blocks of arbitrary size. In particular, we can apply one of the orderings of space shown

in Figure 2 to obtain a mapping from the coordinate values of the upper-left corner u of each block to the

integers.

Since the size of each block b in the region quadtree can be specified with a single number indicating

the depth in the tree at which b is found, we can simplify the representation by incorporating the size into

the mapping. One mapping simply concatenates the result of interleaving the binary representations of the

coordinate values of the upper-left corner (e.g., � a � b � in two dimensions) and i of each block of size 2i so

that i is at the right. The resulting number is termed a locational code and is a variant of the Morton order

(Figure 2c). Assuming such a mapping and sorting the locational codes in increasing order yields an ordering

equivalent to that which would be obtained by traversing the leaf nodes (i.e., blocks) of the tree representation

(e.g., Figure 6b) in the order �! , � � , "  , " � .
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As the dimensionality of the space (i.e., d) increases, each level of decomposition in the region quadtree

results in many new blocks as the fanout value 2d is high. In particular, it is too large for a practical imple-

mentation of the tree access structure. In this case, an access structure termed a bintree [94, 139, 154] with a

fanout value of 2 is used. The bintree is defined in a manner analogous to the region quadtree except that at

each subdivision stage, the space is decomposed into two equal-sized parts. In two dimensions, at odd stages

we partition along the y axis and at even stages we partition along the x axis. Of course, in d dimensions, the

depth of the tree may increase by a factor of d.

The region quadtree, as well as the bintree, is a regular decomposition. This means that the blocks are

congruent — that is, at each level of decomposition, all of the resulting blocks are of the same shape and size.

We can also use decompositions where the sizes of the blocks are not restricted in the sense that the only

restriction is that they be rectangular and be a result of a recursive decomposition process. In this case, the

representations that we described must be modified so that the sizes of the individual blocks can be obtained.

An example of such a structure is an adaptation of the point quadtree [54] to regions. Although the point

quadtree was designed to represent points in a higher dimensional space, the blocks resulting from its use

to decompose space do correspond to regions. The difference from the region quadtree is that in the point

quadtree, the positions of the partitions are arbitrary, whereas they are a result of a partitioning process into

2d congruent blocks (e.g., quartering in two dimensions) in the case of the region quadtree.

As the dimensionality d of the space increases, each level of decomposition in the point quadtree results in

many new blocks since the fanout value 2d is high. In particular, it is too large for a practical implementation

of the tree access structure. Therefore, we use a k-d tree [21] which is an access structure having a fanout of

2 that has the same relationship to the point quadtree as the bintree has to the region quadtree. As in the point

quadtree, although the k-d tree was designed to represent points in a higher dimensional space, the blocks

resulting from its use to decompose space do correspond to regions. In other words, the bintree is a regular

decomposition k-d tree.

The k-d tree can be further generalized so that the partitions take place on the various axes at an arbitrary

order, and, in fact, the partitions need not be made on every coordinate axis. In this case, at each nonleaf node

of the k-d tree, we must also record the identity of the axis that is being split. We use the term generalized

k-d tree to describe this structure. The generalized k-d tree is really an adaptation to regions of the adaptive

k-d tree [59] and the LSD tree [77] which were originally developed for points. It can also be regarded as a

special case of the BSP tree (denoting Binary Space Partitioning) [60]. In particular, in the generalized k-d

tree, the partitioning hyperplanes are restricted to be parallel to the axes, whereas in the BSP tree they have

an arbitrary orientation. The BSP tree is used in computer graphics to facilitate viewing.

One of the shortcomings of the generalized k-d tree is the fact that we can only decompose the space

into two parts along a particular dimension at each step. If we wish to partition a space into p parts along a

dimension i, then we must perform p � 1 successive partitions on dimension i. Once these p � 1 partitions

are complete, we partition along another dimension. The puzzletree [39] is a further generalization of the k-d

tree that decomposes the space into two or more parts along a particular dimension at each step so that no

two successive partitions use the same dimension. In other words, the puzzletree compresses all successive

partitions on the same dimension in the generalized k-d tree.
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The puzzletree is motivated by a desire to overcome the rigidity in the shape, size, and position of the

blocks that result from the bintree (and to an equivalent extent, the region quadtree) partitioning process

(because of its regular decomposition). In particular, in many cases, the decomposition rules ignore the ho-

mogeneity present in certain regions on account of the need to place the partition lines in particular positions

as well as a possible limit on the number of permissible partitions along each dimension at each decompo-

sition step. Often, it is desirable for the block decomposition to follow the perceptual characteristics of the

objects as well as reflect their dominant structural features.

For example, consider a front view of a scene containing a table and two chairs. Figures 7a and 7b are

the block decompositions resulting from the use of a bintree and a puzzletree, respectively, for this scene,

while Figure 7c is the tree access structure corresponding to the puzzletree in Figure 7b. Notice the natural

decomposition in the puzzletree of the chair into the legs, seat, and back, and of the table into the top and

legs. On the other hand, the blocks in the bintree (and to a greater extent in the region quadtree, although not

shown here) do not have this perceptual coherence. Of course, we are aided here by the separability of the

objects; however, this does not detract from the utility of the representation as it only means that the objects

can be decomposed into fewer parts.
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4 Image-based Hierarchical Interior-based Representations (Pyramids)

Our goal here is to be able to take an object o as input and return the cells that it occupies (the feature

query) when using a representation that stores with each cell the identities of the objects of which it is a part.

The most natural hierarchy that can be imposed on the cells to enable us to answer this query is one that

aggregates every q cells regardless of the values associated with them into larger congruent blocks (unlike the

aggregation of identically-valued cells into multi-dimensional blocks as in the region quadtree). This process

is repeated recursively so that groups of q blocks are repeatedly aggregated into one block until there is just

one block left. The value associated with the block b is the union of the names (i.e., object identifiers) of the

objects associated with the cells or blocks that comprise block b. The identities of the cells and blocks that

are aggregated depends, in part, on how the collection of the cells is represented. For example, assuming a

two-dimensional underlying space, if the cells are represented as one long list consisting of the cells of the

first row, followed by those of the second row, etc., then one possible aggregation combines every successive

q cells. In this case, the blocks are really one-dimensional entities.

The process that we have just outlined can be described more formally as follows. We make the following

assumptions:

� The blocks are rectangular with sides parallel to the coordinate axes.

� Each block contains q cells or q blocks so that, assuming d dimensions, q � ∏d
j � 1 r j where the block

has width r j for dimension j (1 � j � d) measured in cells or blocks depending on the level in the

hierarchy at which the block is found.

� All blocks at a particular level in the hierarchy are congruent with the different levels forming a con-

tainment hierarchy.

� There are S cells in the underlying space, and let n be the smallest power of q such qn � S.

� The underlying space can be enlarged by adding L empty cells so that qn � S � L and that each side of

the underlying space along dimension j is of width r j
n.

The hierarchy consists of the set of sets � Ci � (0 � i � n) where Cn corresponds to the original collection

of cells having S � L elements, Cn � 1 contains � S � L ��� q elements corresponding to the result of the initial

aggregation of q cells into � S � L ��� q congruent blocks, and C0 is a set consisting of just one element corre-

sponding to a block of size S � L. Each element e of Ci (0 � i � n � 1) is a congruent block whose value is

the union of the values (i.e., sets of object identifiers) associated with the blocks of the q elements of Ci � 1.

The value of each element of Cn is the object identifier(s) corresponding to the object(s) of which its cell is a

part.

The resulting hierarchy is known as a cell pyramid (e.g., [6, 31, 32, 47, 48, 84, 106, 123, 124, 146, 151,

150, 155]3 and is frequently characterized as a multiresolution representation since the original collection of
3Actually, the qualifier cell is rarely used. However, we use it here to avoid confusion with other variants of the pyramid which are

based on a hierarchy of objects rather than cells as discussed in Section 5.
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objects is described at several levels of detail by using cells that have different sizes, although similar in shape.

It is important to distinguish the cell pyramid from the region quadtree which, as we recall, is an example

of an aggregation into square blocks where the basis of the aggregation is that the cells have identical values

(i.e., are associated with the same object, or objects if object overlap is permitted). The region quadtree is

an instance of what is termed a variable-resolution representation, which, of course, is not limited to blocks

that are square. In particular, it can be used with a limited number of nonrectangular shapes (most notably,

triangles in two dimensions [20, 134]).

It is quite difficult to use the cell pyramid, in the form that we have described, to respond to the feature

query and to the complete location query (i.e., to obtain all of the contiguous cells that make up the object

associated with the query location) due to the absence of an access structure. This can be remedied by

implementing a set of arrays Ai in a one-to-one correspondence to Ci (0 � i � n) where Ai is a d-dimensional

array of side length r j
i for dimension j (1 � j � d). Each of the elements of Ai corresponds to a d-dimensional

block of side length r j
n � i for dimension j (1 � j � d) assuming a total underlying space of side length r j

n.

The result is a stack of arrays Ai, termed an array pyramid, which serves as an access structure to collections

Ci (0 � i � n). The array pyramid is an instance of an implicit interior-based representation consisting of

array access structures. Of course, other representations are possible through the use of alternative access

structures (e.g., different types of trees).

We illustrate the array pyramid for two dimensions with r1 � 2 and r2 � 2. Assume that the space in

which the original collection of cells is found is of size 2n � 2n. Let Cn correspond to the original collection

of cells. The hierarchy of arrays consists of the sequence Ai (0 � i � n) so that elements of Ai access the

corresponding elements in Ci. We obtain Cn � 1 by forming an array of size 2n � 1 � 2n � 1 with 22n � 2 elements

so that each element e in Cn � 1 corresponds to a 2 � 2 square consisting of 4 elements (i.e., cells) in Cn and

has a value consisting of the union of the names (i.e., labels) of the objects that are associated with these

4 cells. This process is applied recursively to form Ci (0 � i � n � 1) where C0 is a collection consisting

of just one element whose value is the set of names of all the objects associated with at least one cell. The

arrays are assumed to be stored in memory using sequential allocation with conventional orderings (e.g.,

lexicographically), and are accessed by use of the d-dimensional coordinate values of the cells. For example,

Figure 8 is the array pyramid for the collection of objects in Figure 1.
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Using the array pyramid, it is very easy to respond to the feature query, as we just examine the relevant

parts of the stack of arrays. For example, suppose that we want to determine the locations that comprise
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object o, and we use the array pyramid consisting of arrays Ai (0 � i � n) in a two-dimensional space of size

2n � 2n where the blocks are squares of side length 2n � i. We start with A0, which consists of just one element

e, and determine if o is a member of the set of values associated with e. If it is not, then we exit and the answer

is negative. If it is, then we examine the four elements in A1 that correspond to e and repeat the test. At this

point, we know that o is a member of at least one of them as otherwise o could not have been a member of

the set of values associated with element e of A0. This process is applied recursively to elements of A j that

contained o (i.e., the appropriate elements of A j � 1 are examined for 1 � j � n � 1) until encountering An at

which time the process stops. The advantage of this method is that elements of A j � 1 are not examined unless

object o is guaranteed to be a member of the set of values associated with at least one of them.

The array pyramid uses a sequence of arrays as an access structure. An alternative implementation is

one that imposes an access structure in the form of a tree T on the elements of the hierarchy � Ci � . One

possible implementation is a tree of fanout q where the root T0 corresponds to C0, nodes � Ti j � at depth i to

Ci (1 � i � n � 1), while the leaf nodes � Tn j � correspond to Cn. In particular, element t in the tree at depth j

corresponds to element e of C j (0 � j � n � 1) and t contains q pointers to its q children in Tj � 1 corresponding

to the elements of C j � 1 that are contained in e. The result is termed a cell-tree pyramid. Figure 9 shows the

cell-tree pyramid corresponding to the collection of objects in Figure 1 where the cells are labeled as in

Figure 6a. This example makes use of two-dimensional data with r1 � 2 and r2 � 2. In this case, notice the

similarity between the cell-tree pyramid and the region quadtree implementation that uses an access structure

which is a tree with a fanout of 4 (Figure 6b).
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Using the term quadtree in its most general sense (i.e., d-dimensional blocks whose sides need not be

powers of two nor be of the same length), the cell-tree pyramid can be viewed as a complete quadtree (i.e.,

where no aggregation takes place at the deepest level, or, equivalently, all leaf nodes with no children are at the

maximum depth of the tree). Nevertheless, there are some very important differences. The first difference, as

we pointed out before, is that the quadtree is a variable-resolution representation, while the cell-tree pyramid
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is a multiresolution representation. The second, and most important, difference is that in the case of the

quadtree, the nonleaf nodes serve only as an access structure. They do not include any information about the

objects present in the nodes and cells below them. This is why the quadtree, like the array, is not useful for

answering the feature query. Of course, we could also devise a variant of the quadtree (termed a truncated-

tree pyramid [135]) which uses the nonleaf nodes to store information about the objects present in the cells

and nodes below them (e.g., Figure 10). Note that both the cell-tree pyramid and the truncated-tree pyramid

are instances of an implicit interior-based representation with a tree access structure.
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Our definition of the pyramid was made in a bottom-up manner in the sense that we started with a block

size and an underlying space size. Next, we expanded the size of the underlying space so that a containment

hierarchy of congruent blocks at each level and similar blocks at different levels could be formed. We can

also define a variant of the pyramid where the requirements of block congruence at each level and block

similarity at different levels are relaxed. This is a bit easier if we define the pyramid in a top-down manner as

we can calculate the number of cells by which the underlying space needs to be expanded as the block sizes

at the different levels are defined. It should be clear that the congruence requirement is more restrictive than

the similarity requirement. If we relax the requirement that the blocks at different levels are similar, but retain

the requirement that the blocks at the same level are congruent, then we must store at each level i the size of

the block qi (i.e., the values of the individual components ri j of qi � ∏d
j � 1 ri j for dimension j (1 � j � d)).

If we relax both the requirement that the blocks at the different levels are similar and the requirement that

the blocks at each level are congruent while still requiring that they form a containment hierarchy, then we

are in effect permitting partitioning hyperplanes (i.e., lines in two dimensions) at arbitrary positions. In this

case, we get a more general pyramid if we use a top-down definition as now we can have a different partition

at each level. In this case, we have an irregular grid at each level, and thus we must store the positions

of the partitioning hyperplanes (i.e., lines in two dimensions) at each level. We call the result an irregular

grid pyramid. If the irregular grid is implemented with an array access structure, then the result is called an

irregular grid array pyramid.

Other pyramid variants are also possible. For example, the dynamically quantized pyramid (DQP) [114,
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149] is a two-dimensional containment hierarchy where the blocks at the different levels are neither similar

nor congruent. It differs from the irregular pyramid in that the there is a possibly different 2 � 2 grid partition

at each block at each level rather than one grid partition at each level. Notice the close similarity to a complete

point quadtree [54]. The DQP finds use in cluster detection as well as multidimensional histogramming. Of

course, even more general variants are possible. In particular, we could use any one of the other recursive and

nonrecursive decompositions described in Section 3 at each block with the appropriate access structure.

5 Object-based Hierarchical Interior-based Representations (R-trees)

Our goal here is to be able to take a location a as input and return the objects in which a is a member

(the location query) when using a representation that stores with each object the addresses of the cells that

comprise it (i.e., an explicit representation). The most natural hierarchy that can be imposed on the objects

that would enable us to answer this query is one that aggregates every M objects (that are hopefully in close

spatial proximity, although this is not a requirement) into larger objects. This process is repeated recursively

until there is just one aggregated object left. Since the objects may have different sizes and shapes, it is not

easy to compute and represent the aggregate object. Moreover, it is similarly difficult to test each one of them

(and their aggregates) to determine if they contain a since each one may require a different test by virtue of

the different shapes. Thus, it is useful to use a common aggregate shape and point-inclusion test to prune the

search.

The common aggregate shape and point-inclusion test that we use assumes the existence of a minimum

enclosing box (termed a bounding box) for each object. This bounding box is part of the data associated

with each object and aggregate of objects. In this case, we reformulate our object hierarchy to be in terms of

bounding boxes. In particular, we aggregate the bounding boxes of every M objects into a box (i.e., block) of

minimum size that contains them. This process is repeated recursively until there is just one block left. The

value associated with the bounding box b is its location (e.g., the coordinate values of its diagonally opposite

corners for two-dimensional data). It should be clear that the bounding boxes serve as a filter to prune the

search for an object that contains a.

In this section we expand on hierarchies of objects which actually aggregate the bounding boxes of the

objects. Section 5.1 gives an overview of object hierarchies and introduces the general concepts of an object

pyramid and an object-tree pyramid, which provides a tree access structure for the object pyramid. Sec-

tions 5.2–5.4 present several aggregation methods. In particular, Section 5.2 discusses ordering-based aggre-

gation methods. Section 5.3 discusses extent-based aggregation techniques which result in the R-tree repre-

sentation, while Section 5.4 describes the R*-tree which is the best of the extent-based aggregation methods.

Next, Section 5.5 discusses methods of updating or loading an object-tree pyramid with a large number of

objects at once, termed bulk insertion and bulk loading, respectively. Section 5.6 concludes the presentation

by reviewing some of the shortcomings of the object-tree pyramid and discussing some of the solutions that

have been proposed to overcome them. For a comparative look at these different aggregation methods, see

the VASCO JAVA applets found at
���������	����
�
�

����������� � �	�����������������  ��!�����"�������#�$�����% ������� ' [27]. The

VASCO system also includes many other indexing techniques for points, lines, rectangles, and regions that
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are based on space decomposition (see also the sp-GiST system [5]), Other libraries that are based on object

hierarchies include GiST [75] and XXL [23].

5.1 Overview

The nature of the aggregation (i.e., using bounding boxes), the number of objects that are being aggregated at

each step (as well as whether it can be varied), and, most importantly, deciding which objects to aggregate is

quite arbitrary although an appropriate choice can make the search process much more efficient. The decision

as to which objects to aggregate assumes that we have a choice in the matter. It could be that the objects have

to be aggregated in the order in which they are encountered. This could lead to poor search performance

when the objects are not encountered in an order that correlates with spatial proximity. Of course, this is not

an issue as long as we just have � M objects.

It should be clear that the issue of choice only arises if we know the identities of all the objects before

starting the aggregation process (unless we are permitted to rebuild the hierarchy each time we encounter a

new object or delete an object), and if we are permitted to reorder them so that objects in aggregate i need

not necessarily have been encountered prior to the objects in aggregate i � 1, and vice versa. This is not

always the case (i.e., a dynamic versus a static database), although for the moment we do assume that we

know the identities of all of the objects before starting the aggregation, and that we may aggregate any object

with any other object. Observe also that the bounding boxes in the hierarchy are not necessarily disjoint. In

fact, the objects may be configured in space in such a way that no disjoint hierarchy is possible. By the same

reasoning, the objects themselves need not be disjoint.

The process that we have just outlined can be described more formally as follows. Assume that there are

N objects in the space and let n be the smallest power of M such that Mn � N. Assume that all aggregates

contain M elements with the exception of the last one at each level which may contain less than M as Mn

is not necessarily equal to N. The hierarchy of objects consists of the set D of sets � Di � (0 � i � n) where

Dn corresponds to the set of bounding boxes of the individual objects, Dn � 1 corresponds to the result of

the initial aggregation of the bounding boxes of M objects into N � M aggregates of objects and consists of

N � M bounding boxes, and D0 is a set containing just one element corresponding to the aggregations of all

of the objects and is a bounding box that encloses all of the objects. We term the resulting hierarchy an

object pyramid. Once again, we have a multiresolution representation as the original collection of objects is

described at several levels of detail by virtue of the number of objects whose bounding boxes are grouped at

each level. This is in contrast with the cell pyramid where the different levels of detail are distinguished by

the sizes of the cells that comprise the elements at each level.

Searching an object pyramid consisting of sets Di (0 � i � n) for the object containing a particular location

a (i.e., the location query) proceeds as follows. We start with D0, which consists of just one bounding box b,

and determine if a is inside b. If it is not, then we exit and the answer is negative. If it is, then we examine the

M elements in D1 that are covered by b and repeat the test using their bounding boxes. Note that unlike the

cell pyramid, at this point, a is not necessarily included in the M bounding boxes in D1 as these M bounding

boxes are not required to cover the entire space spanned by b. In particular, we exit if a is not covered by
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at least one of the bounding boxes at this level. This process is applied recursively to all elements of D j for

0 � j � n until all elements of Dn have been processed at which time the process stops. The advantage of this

method is that elements of D j (1 � j � n) are not examined unless a is guaranteed to be covered by at least

one of the elements of D j � 1.

The bounding boxes serve to distinguish between occupied and unoccupied space, thereby indicating

whether the search for the objects that contain a particular location (i.e., the location query) should proceed

further. At a first glance, it would appear that the object pyramid is rather inefficient for responding to the

location query as in the worst case all of the bounding boxes at all levels must be examined. However, the

maximum number of bounding boxes in the object pyramid, and hence the maximum number that will have

to be inspected, is ∑n
j � 0 M j � 2N.

Of course, we may also have to examine the actual sets of locations associated with each object when the

bounding box does not result in any of the objects being pruned from further consideration since the objects

are not necessarily rectangular in shape (i.e., boxes). Thus using the hierarchy provided by the object pyramid

results in at most an additional factor of two in terms of the number of bounding box tests while possibly

saving many more tests. Therefore, the maximum amount of work to answer the location query with the

hierarchy is of the same order of magnitude to that which would have been needed had the hierarchy not been

introduced.

As we can see, the way in which we introduced the hierarchy to form the object pyramid did not necessar-

ily enable us to make more efficient use of the explicit interior-based representation to respond to the location

query. The problem was that once we determined that location a was covered by one of the bounding boxes,

say b, in D j (0 � j � n � 1), we had no way to access the bounding boxes comprising b without examining

all of the bounding boxes in D j � 1. This is easy to rectify by imposing an access structure in the form of a

tree T on the elements of the hierarchy D. One possible implementation is a tree of fanout M where the root

T0 corresponds to the bounding box in D0. T0 has M links to its M children � T1k � which correspond to the M

bounding boxes in D1 that comprise D0. The set of nodes � Tik � at depth i correspond to the bounding boxes

in Di (0 � i � n), while the set of leaf nodes � Tnk � correspond to Dn. In particular, node t in the tree at depth

j corresponds to bounding box b in D j (0 � j � n � 1), and t contains M pointers to its M children in Tj � 1

corresponding to the bounding boxes in D j � 1 that are contained in b. We use the term object-tree pyramid to

describe this structure.

Figure 11a is an example object-tree pyramid for a simple collection of 9 rectangle objects with M � 3

(and thus n � 2). Figure 11b shows the spatial extents of the objects and the bounding boxes of the nodes

in Figure 11a, with broken lines denoting the bounding boxes corresponding to the leaf nodes. Note that the

object-tree pyramid is not unique. Its structure depends heavily on the order in which the individual objects

and their corresponding bounding boxes are aggregated.

The object-tree pyramid that we have just described still has a worst case where we may have to examine

all of the bounding boxes in D j (1 � j � n) when executing the location query or its variants (e.g., a window

query). This is the case if query location a is contained in every bounding box in D j � 1. Such a situation,

although rare, can arise in practice because a may be included in the bounding boxes of many objects (termed
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a false hit), as the bounding boxes are not disjoint, while a is contained in a much smaller number of objects.

Equivalently, false hits are caused by the fact that a spatial object may be spatially contained in full or in part

in several bounding boxes or nodes while being associated with just one node or bounding box.

However, unlike the object pyramid, the object-tree pyramid does guarantee that only the bounding boxes

that contain a will be examined and no others. Thus we have not improved on the worst-case of the object

pyramid in that we may still have to examine 2N bounding boxes, although we have reduced its likelihood.

It is interesting to observe that the object pyramid and the object-tree pyramid are instances of an explicit

interior-based representation since it is still the case that associated with each object o is a set containing the

addresses of the cells that comprise it. Note also that the access structure facilitates only the determination of

the object associated with a particular cell and not which cells are contiguous. Thus the object-tree pyramid

is not an instance of an implicit interior-based representation.

The decision as to which objects to aggregate plays an important factor in the efficiency of the object-tree

pyramid in responding to the location query. The efficiency of the object-tree pyramid for search operations

depends on its abilities to distinguish between occupied space and unoccupied space, and to prevent a node

from being examined needlessly due to a false overlap with other nodes.

The extent to which these efficiencies are realized is a direct result of how well our aggregation policy is

able to satisfy the following two goals. The first goal is to minimize the number of aggregated nodes that must

be visited by the search. This goal is accomplished by minimizing the area common to sibling aggregated

nodes (termed overlap). The second goal is to reduce the likelihood that sibling aggregated nodes are visited

by the search. This is accomplished by minimizing the total area spanned by the bounding boxes of the sibling

aggregated nodes (termed coverage). A related goal to that of minimizing the coverage is one of minimizing
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the area in sibling aggregated nodes that is not spanned by the bounding boxes of any of the children of the

sibling aggregated nodes (termed dead area). Dead area is usually decreased by minimizing coverage and

thus minimizing dead area is often not taken into account explicitly. Another way of interpreting these goals

is that they are designed to ensure that objects that are spatially close to each other are stored in the same

node. Of course, at times, these goals may be contradictory.

For example, consider the four bounding boxes in Figure 12a. The first goal is satisfied by the aggregation

in Figure 12c, while the second goal is satisfied by the aggregation in Figure 12b. The dead area is shown

shaded in Figures 12b and 12c. Note that the dead area in Figure 12b is considerably smaller than the dead

area in Figure 12c on account of the smaller amount of coverage in the children in Figure 12b. Also observe

that the dead area for the bounding box of one aggregated node is not part of the bounding boxes of children

a sibling aggregated node as seen in Figure 12b.

(a) (b) (c)
��� ���
�	� 
 ��� � � � �����
� ("���� 1/6�  3� ("�3���&, �� �/ �%$1� �1�
���	�&�
�3��� �� 3, �%$��3��
 ����� / ("� �  �/������3/ � � ( � (�5
�'�  � �'� �3�  1�'�%$3� �-�"�*�����"�	��� � � 7 �
7 � �����1�"� �1� � � �"! �%$1� ��� �3� � �  1�0("���� �/��  1�0("�3�1��, �"! �%$1��� 
 �0 1�6/ ��,4�� �/

� � � (�5 ���  "� �'� �1�  3� �%$1�'� �	��� ������� �� � � 7 ��7 � � �3� � � ��� � �-�0�%$1� �����1�"� �  1� ("���
 �/6�  3� ("�3���&,��"!#�%$3�'� 
 �
 1��/
�&,37 �.$1��/ �3��/��"�	��� ! ��� �%$3� � 
 � �"� ,*,%� (
� �'�1� ��� ���
�3��� �� 3,.� ,.,�$1��
  �,�$���/ �3/ 7

These goals could be satisfied by using trial-and-error methods that examine all possible aggregations

and choose the one that yields the minimum amount of overlap or coverage among the constituent bounding

boxes of the nodes as well as among the nodes at a given level. The cost is clearly prohibitive. These trial-

and-error methods can be made more intelligent by use of iterative optimization [66]. However, the cost is

still too high.

The aggregation techniques described above take the space (i.e., volume) occupied by (termed extent

of) the bounding boxes of the individual spatial objects into account. They are described in Sections 5.3

and 5.4. An alternative is to order the objects prior to performing the aggregation. However, in this case,

the only choice that we may possibly have with respect to the identities of the objects which are aggregated

is when the number of objects (or bounding boxes) that are being aggregated at each step is permitted to

vary. The most obvious order, although not particularly interesting or useful, is one that preserves the order

in which the objects were initially encountered (i.e., objects in aggregate i have been encountered before

those in aggregate i � 1). The more common orders are based on proximity or on the values of a small set of

parameters describing a common property that is hopefully related to the proximity (and to a lesser degree to

the shape and extent) of the objects or their bounding boxes in one or all of the dimensions of the space in

which they lie [88, 107, 128]. Ordering-based aggregation techniques are discussed in Section 5.2.
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5.2 Ordering-based Aggregation Techniques

The most frequently used ordering technique is based on mapping the bounding boxes of the objects to a

representative point in a lower, the same, or a higher-dimensional space and then applying one of the space-

ordering techniques described in Section 2 and shown in Figure 2. We use the term object number to refer

to the result of the application of space ordering4. Some possible representative points for two-dimensional

rectangle objects include the following (e.g., [134]):

1. The centroid.

2. The centroid and the horizontal and vertical extents (i.e., the horizontal and vertical distances from the

centroid to the relevant sides).

3. The x and y coordinate values of the two diagonally opposite corners of the rectangle (e.g., the upper-

left and lower-right corners).

4. The x and y coordinate values of the lower-right corner of the rectangle and its height and width.

For example, consider the collection of 22 rectangle objects given in Figure 13 where the numbers associated

with the rectangles denote the relative times at which they were created. Figure 14 shows the result of

applying a Morton order (Figure 14a) and Peano-Hilbert order (Figure 14b) to the collection of rectangle

objects in Figure 13 using their centroids as the representative points.
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4Interestingly, we will see that no matter which of the implementations of the object-tree pyramid is being deployed, the ordering is

used primarily to build the object-tree pyramid, although it is used for splitting in some cases such as the Hilbert R-tree [89]. The actual

positions of the objects in the ordering (i.e., the object numbers) are not usually recorded in the object-tree pyramid which is somewhat

surprising as this could be used to speed up operations such as point location, etc.
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Once the N objects have been ordered, the hierarchy D is built in the order Dn, Dn � 1, ����� , D1, D0 where n is

the smallest power of M such that Mn � N. Dn consists of the set of original objects and their bounding boxes.

There are two ways of grouping the items to form the hierarchy D: one-dimensional and multidimensional.

In the one-dimensional grouping method, Dn � 1 is formed as follows. The first M objects and their cor-

responding bounding boxes form the first aggregate, the second M objects and their corresponding bounding

boxes form the second aggregate, etc. Dn � 2 is formed by applying this aggregation process again to the set

Dn � 1 of N � M objects and their bounding boxes. This process is continued recursively until we obtain the

set D0 containing just one element corresponding to a bounding box that encloses all of the objects. Note

however, that when the process is continued recursively, the elements of the sets Di � 0 � i � n � 1 � are not

necessarily ordered in the same manner as the elements of Dn.

There are several implementations of the object-tree pyramid using the one-dimensional grouping meth-

ods. For example, the Hilbert packed R-tree [88] is an object-tree pyramid that makes use of a Peano-Hilbert

order. It is important to note that only the leaf nodes of the Hilbert packed R-tree are ordered using the

Peano-Hilbert order. The nodes at the remaining levels are ordered according to the time at which they were

created. For example, Figure 15a shows the bounding boxes corresponding to the first level of aggregation

for the Hilbert packed R-tree for the collection of 22 rectangle objects in Figure 13 with M � 6. Similarly,

Figure 15b shows the same result were we to build the same structure using a Morton order (i.e., a Morton

packed R-tree), again with M � 6. Notice that there is quite a bit of overlap among the bounding boxes as the

aggregation does not take the extent of the bounding boxes into account when forming the structure.

A slightly different approach is employed in the packed R-tree [128] which is another instance of an

object-tree pyramid. The packed R-tree is based on ordering the objects on the basis of some criterion such

as increasing value of the x coordinate or any of the space-ordering methods shown in Figure 2. Once this

order has been obtained, the leaf nodes in the packed R-tree are filled by examining the objects in increasing
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order where each leaf node is filled with the first unprocessed object and its M � 1 nearest neighbors which

have not yet been inserted in other leaf nodes. Once an entire level of the packed R-tree has been obtained,

the algorithm is reapplied to add nodes at the next level using the same nearest neighbor criterion, terminating

when a level contains just one node. The only difference between the ordering that is applied at the levels

containing the nonleaf nodes from that used at the level of the leaf nodes is that in the former case we are

ordering the bounding boxes while in the latter case we are ordering the actual objects.

Besides the difference in the way nonleaf nodes are formed, we point out that the packed R-tree construc-

tion process makes use of a proximity criterion in the domain of the actual data rather than the domain of the

representative points which is the case of the Hilbert packed R-tree. This distinction is quite important as it

means that the Hilbert packed R-tree construction process makes no attempt to reduce or minimize coverage

and overlap which, as we shall soon see, are the real cornerstones of the R-tree data structure [74]. Therefore,

as we point out below, this makes the Hilbert packed R-tree (and, to a lesser extent, the packed R-tree) much

more like a B-tree that is constructed by filling each node to capacity. For example, Figure 15c shows the

bounding boxes corresponding to the first level of aggregation for the packed R-tree for the collection of 22

rectangle objects in Figure 13. In this case, the objects were initially ordered using a Peano-Hilbert order.

The STR method (denoting sort-tile-recurse) of Leutenegger, López, and Edgington [101] is an exam-

ple of the multidimensional grouping method. Our explanation assumes, without loss of generality, that the

underlying space is two-dimensional although the extension of the method to higher dimensions is straight-

forward. Assuming a total of N rectangles and a node capacity of M rectangles per leaf node, Dn � 1 is formed

by constructing a tiling of the underlying space consisting of s vertical slabs where each slab contains s tiles.

Each tile corresponds to an object-tree pyramid leaf node which is filled to capacity. Note that the result

of this process is that the underlying space is being tiled with rectangular tiles thereby resembling a grid,
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but, most importantly, unlike a grid, the horizontal edges of horizontally adjacent tiles (i.e., with a common

vertical edge) do not form a straight line (i.e., are not connected). Using this process means that the under-

lying space is tiled with approximately
�

N � M �
�

N � M tiles and results in approximately N � M object-tree

pyramid leaf nodes. The tiling process is applied recursively to these N � M tiles to form Dn � 2, Dn � 3, ... etc.

until obtaining just one node.

The STR method builds the object-tree pyramid in a bottom-up manner. The actual mechanics of the STR

method are as follows. Sort the rectangles on the basis of one coordinate value of some easily identified point

that is associated with them, say the x coordinate value of their centroid. Aggregate the sorted rectangles

into
�

N � M groups of � NM rectangles each of which forms a vertical slab containing all rectangles whose

centroid’s x coordinate value lies in the slab. Next, for each vertical slab v, sort all rectangles in v on the

basis of their centroid’s y coordinate value. Aggregate the � NM sorted rectangles in each slab v into
�

N � M

groups of M rectangles each. Recall that the elements of these groups form the leaf nodes of the object-tree

pyramid. Notice that the minimum bounding boxes of the rectangles in each tile are usually larger than the

tiles. The process of forming a grid-like tiling is now applied recursively to the N � M minimum bounding

boxes of the tiles with N taking on the value of N � M until the number of tiles is no larger than M, in which

case all of the tiles fit in the root node and we are done.

A couple of items are worthy of further note. First, the minimum bounding boxes of the rectangles in

each tile are usually larger than the tiles. This means that the tiles at each level will overlap. Thus we do not

have a true grid in the sense that the elements at each level of the object-tree pyramid are usually not disjoint.

Second, the ordering that is applied is quite similar to a row order (actually column order to be precise) as

illustrated in Figure 2a where the x coordinate value serves as a primary key to form the vertical slabs while

the y coordinate value serves as the secondary key to form the tiles from the vertical slabs. Nevertheless,

the ordering serves only to determine the partitioning lines to form the tiles but is not used to organize the

collection of tiles.

Notice that the STR method is a bottom-up technique. However, the same idea could also be applied in a

top-down manner so that we originally start with M tiles which are then further partitioned. In other words,

we start with � M vertical slabs containing � M tiles apiece. This is instead of the initial
�

N � M vertical

slabs containing
�

N � M tiles in the bottom-up method. The disadvantage of the top-down method is that it

requires that we make roughly 2logM N passes over all of the data whereas the bottom-up method has the

advantage of making just two passes over the data (one for the x coordinate value and one for the y coordinate

value) since all recursive invocations of the algorithm deal with centroids of the tiles.

The top-down method can be viewed as an ordering technique in the sense that the objects are partitioned,

thereby creating a partial ordering, according to their relative position with respect to some criterion such as

a value of a statistical measure for the set of objects as a whole. For example, in the VAMSplit R-tree of

White and Jain [163], which is applied to point data, the split axis (i.e., x or y or z, etc.) is chosen on the

basis of having the maximum variance from the mean in the distribution of the point data. Once the axis is

chosen, the objects are split is into two equally-sized sets constrained so that the resulting nodes are as full as

possible. This process is applied recursively to the resulting sets.
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The top-down method is also used by Garcı́a, López, and Leutenegger [62] with a different partitioning

strategy. For each dimension, this strategy applies a user-defined function to decide on the quality or penalty

incurred by the split (e.g., coverage, overlap, etc.). Assuming N objects and a bucket capacity M (which is

also the fanout of packed nonleaf nodes), the partitioning algorithm uses a heuristic that considers O � M � split

positions and selects the one among those that yields the minimum cost or penalty.

The algorithm proceeds as follows. At the initial step, it sorts the N objects along each dimension, and

then groups the sorted objects into M groups of l ��� N � M � objects each. It then constructs the minimum

bounding box of each group in O � N � time. Next, it processes the bounding boxes of the groups in increasing

order and forms a bounding box for the first two groups, the first three groups, ..., up to the first l � 1 groups.

The algorithm considers many different orderings, and chooses the best split among all the different orderings.

The suggested orderings are the min, max, and center of the bounding boxes for each dimension — that is,

for two-dimensional data, the suggested algorithm may consider between two, four, or six different orderings

at each pass. The same process is applied to the bounding boxes in decreasing order. This can be done in

O � M � time. At this point, the algorithm finds the optimal split position by considering all possible O � M � split

positions, which can also be done in O � M � time. This results in two buckets containing i � l and N � i � l where

i is between 1 and M � 1. This process is then applied to each bucket that contains more than l objects, which

may also require that the objects be sorted again. Once all buckets have � l objects, we have completed the

first level of the R-tree. Next, this process is applied recursively to the subtrees at the next level.

If at each step of the algorithm, the nodes resulting from the split contain approximately the same number

of bounding boxes, then the sorting component of the algorithm performs a minimum number of comparisons

as the maximum sizes of the buckets are minimized. In order to analyze the execution time of the algorithm,

we assume a worst-case scenario for each split (which means that i � 1 or equivalently i � M � 1) at each

stage for each level. It can be shown that in such a case the total execution time for sorting (which is the

dominant cost factor in the algorithm) is O � c � d � N � � logN � 2 � M � logM � where c is the number of possible

orderings and d is the dimensionality of the data [3]. It is important to note that use of this method does not

necessarily result in a minimum cost partition since it does not take into account all of the possible groupings

of the N objects, which is exponential in N (i.e., O � 2N � ).
Regardless of how the objects are aggregated, the object-tree pyramid is analogous to a height-balanced

M-ary tree where only the leaf nodes contain data (objects in this case), and all of the leaf nodes are at the

same level. Thus the object-tree pyramid is good for static data sets. However, in a dynamic environment

where objects are added and deleted at will, the object-tree pyramid needs to be rebuilt either entirely or

partially to maintain the balance, order, and node size constraints. In the case of binary trees, this issue is

addressed by making use of a B-tree, or a B � -tree if we wish to restrict the data (i.e., the objects) to the

leaf nodes as is the case in our application. Below, we show how to use the B � -tree to make the object-tree

pyramid dynamic.

When the aggregation in the object-tree pyramid is based on ordering the objects, the objects and their

bounding boxes can be stored directly in the leaf nodes of the B � -tree. We term the result an object B � -tree.

The key difference between the object B � -tree and the object-tree pyramid is that the B � -tree (and likewise

the object B � -tree) permits the number of objects and nodes that are aggregated at each step to vary (i.e.,
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the number of children per node). This is captured by the order of the B � -tree, where for an order � m � M �
B � -tree, this number usually ranges between m � � M � 2 � and M with the root having at least 2 children unless

it is a leaf node. The only modification to the B � -tree definition is in the format of the nodes of the object

B � -tree. In particular, the format of each nonleaf node p is changed so that if p has j children, then p contains

the following 3 items of information for each child s:

1. A pointer to s.

2. The maximum object number associated with any of the children of s (analogous to a key in the con-

ventional B � -tree).

3. The bounding box b for s (e.g., the coordinate values of a pair of diagonally opposite corners of b).

Notice that j bounding boxes are stored in each node corresponding to the j children instead of just one

bounding box as called for in the definition of the object-tree pyramid. This is done to speed up the point-

inclusion tests necessary to decide which child to descend when executing the location query. In particular, it

avoids a disk access when the nodes are stored on disk.

A leaf node p in the object B � -tree has a similar format with the difference that instead of having pointers

to j children which are nodes in the tree, p has j pointers to records corresponding to the j objects that it

represents. Therefore, p contains the following 3 items of information for each object s:

1. A pointer to the actual object corresponding to s.

2. The object number associated with s.

3. The bounding box b for s (e.g., the coordinate values of a pair of diagonally opposite corners of b).

Observe that unlike the object-tree pyramid, the object B � -tree does store object numbers in both the

leaf and nonleaf nodes in order to facilitate updates. The update algorithms (i.e., data structure creation,

insertion, and deletion) for an object B � -tree are identical to those for a B � -tree with the added requirement

of maintaining the bounding box information, while the search algorithms (e.g., the location query, window

queries, etc.) are identical to those for an object-tree pyramid. The performance of the object B � -tree

for answering range queries is enhanced if the initial tree is built by inserting the objects in sorted order

filling each node to capacity, subject to the minimum occupancy constraints, thereby resulting in a tree with

minimum depth. Of course, such an initialization will cause subsequent insertions to be more costly as they

will inevitably result in node split operations whereas this would not necessarily be the case if the nodes

were not filled to capacity initially. The Hilbert R-tree [89] is an instance of an object B � -tree that applies a

Peano-Hilbert space ordering (Figure 2d) to the centroid of the bounding boxes of the objects. The Hilbert

R-tree is closely related to the Hilbert tree [99] which applies the same ordering to a set of points and then

stores the result in a height-balanced binary tree (see also [160] which makes use of a Morton order and a 1-2

brother tree [115]).

Figure 16a shows the bounding boxes corresponding to the first level of aggregation for the Hilbert R-tree

for the collection of 22 rectangle objects in Figure 13 with m � 3 and M � 6 when the objects are inserted

35



in the order in which they were created (i.e., their corresponding number in Figure 13. Similarly, Figure 16b

shows the corresponding result when using a Morton order instead of a Peano-Hilbert order. Notice that for

pedagogical reasons, the trees were not created by inserting the objects in sorted order as suggested above as

in this case the resulting trees would be the same as the Hilbert packed R-tree and Morton packed R-tree in

Figures 15a and 15b, respectively.
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Observe that use of ordering-based aggregation methods can lead to substantial overlap between the

bounding boxes of the nodes. Rearranging the objects that are aggregated in each node can alleviate this

problem, but only to a very limited extent as the order of the leaf nodes must be maintained — that is, all

elements of leaf node i must have a Peano-Hilbert (Morton) order number that is less than all elements of leaf

node i � 1. Thus all we can do is change the number of elements that are aggregated in the node subject to

the node capacity constraints. Of course, this means that the resulting trees are not unique. For example, in

Figure 16a we could aggregate objects

 �

–

 � into one nonleaf node and objects


 	
–
� �

into another nonleaf

node which results in less overlap. However, the real shortcoming is that it could be the case that objects
�

and� � should be aggregated (actually object
�

with objects

 	

–
� �

) but this is impossible as their corresponding

positions in the Peano-Hilbert order are so far apart. The problem is caused, in part, by the presence of objects

with nonzero extent and the fact that neither the extent of the objects nor their proximity is taken into account

in the ordering-based aggregation techniques (i.e., they do not try to minimize coverage and/or overlap which

are the cornerstones of the R-tree). This deficiency was also noted earlier for the Hilbert packed R-tree.
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5.3 Extent-based Aggregation Techniques

When the objects are to be aggregated on the basis of their extent (i.e., the space occupied by their bounding

boxes), then good dynamic behavior is achieved by making use of an R-tree [74]. An R-tree is a generalization

of the object-tree pyramid where, for an order � m � M � R-tree, the number of objects or bounding boxes that

are aggregated in each node is permitted to range between m � � M � 2 � and M while it is always M for the

object-tree pyramid. The root node in an R-tree has at least two entries unless it is a leaf node, in which

case it has just one entry corresponding to the bounding box of an object. The R-tree is usually built as the

objects are encountered rather than waiting until all objects have been input. Of the different variations on

the object-tree pyramid that we discussed, the R-tree is the one that is used most frequently, especially in

database applications.

Figure 17a is an example R-tree for the same collection of 9 rectangle objects given in Figure 11 with

m � 2 and M � 3. Figure 17b shows the spatial extents of the objects and the bounding boxes of the nodes

in Figure 17 with broken lines denoting the bounding boxes corresponding to the leaf nodes, and gray lines

denoting the bounding boxes corresponding to the subtrees rooted at the nonleaf nodes. Note that the R-tree

is not unique. Its structure depends heavily on the order in which the individual objects were inserted into

(and possibly deleted from) the tree.
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Given that each R-tree node can contain a varying number of objects or bounding boxes, it is not surprising

that the R-tree was inspired by the B-tree. This means that nodes are viewed as analogous to disk pages. Thus

the parameters defining the tree (i.e., m and M) are chosen so that a small number of nodes is visited during

a spatial query (i.e., variants of the location query), which means that m and M are usually quite large.

The need to minimize the number of disk accesses also effects the format of each R-tree node. Recall that

in the definition of the object-tree pyramid, each node p contains M pointers to p’s children and one bounding

37



box corresponding to the union of the bounding boxes of p’s children. This means that in order to decide

which of node p’s children should be descended, we must access the nodes corresponding to these children

to perform the point-inclusion test. Each such access requires a disk I/O operation. In order to avoid these

disk I/O operations, the format of R-tree node p is modified so that p contains k (m � k � M) pointers to p’s

children and the k bounding boxes of p’s children instead of containing just one bounding box corresponding

to the union of the bounding boxes of p’s children as is the case for the object-tree pyramid5. Recall that

this format is also used in the definition of a node in the object B � -tree. Once again, we observe that the k

point-inclusion tests do not require any disk I/O operations at the cost of being able to aggregate a smaller

number of objects in each node since m and M are now smaller assuming that the page size is fixed.

As long as the number of objects in each R-tree leaf node is between m and M, no action needs to be

taken on the R-tree structure other than adjusting the bounding boxes when inserting or deleting an object.

If the number of objects in a leaf node decreases below m, then the node is said to underflow. In this case,

the objects in the underflowing nodes must be reinserted, and bounding boxes in nonleaf nodes must be

adjusted. If these nonleaf nodes also underflow, then the objects in their leaf nodes must also be reinserted.

If the number of objects in a leaf node increases above M, then the node is said to overflow. In this case, it

must be split and the M � 1 objects that it contains must be distributed in the two resulting nodes. Splits are

propagated up the tree.

Underflows in an R-tree are handled in an analogous manner to the way they are dealt with in a B-tree.

In contrast, the overflow situation points out a significant difference between an R-tree and a B-tree. Recall

that overflow is a result of attempting to insert an item t in node p and determining that node p is too full. In

a B-tree, we usually don’t have a choice as to the node p that is to contain t since the tree is ordered. Thus

once we determine that p is full, we must either split p or apply a rotation (also known as deferred splitting)

process. On the other hand, in an R-tree, we can insert t in any node p, as long as p is not full. However,

once t is inserted in p, we must expand the bounding box associated with p to include the space spanned by

the bounding box b of t. Of course, we can also insert t in a full node p, in which case we must also split p.

The need to expand the bounding box of p has an effect on the future performance of the R-tree, and thus

we must make a wise choice with respect to p. As in the case of the object-tree pyramid, the efficiency of the

R-tree for search operations depends on its abilities to distinguish between occupied space and unoccupied

space, and to prevent a node from being examined needlessly due to a false overlap with other nodes. Again,

as in the object-tree pyramid, the extent to which these efficiencies are realized is a direct result of how well

we are able to satisfy our goals of minimizing coverage and overlap. These goals guide the initial R-tree

creation process as well subject to the previously mentioned constraint that the R-tree is usually built as the

objects are encountered rather than waiting until all objects have been input.

In the original definition of the R-tree [74] the goal of minimizing coverage is the one that is followed.

In particular, an object t is inserted by a recursive process that starts at the root of the tree and chooses the
5The A-tree [132] is somewhat of a compromise in that it stores quantized approximations of the k bounding boxes of p’s children

where the locations of the bounding boxes of p’s children are specified relative to the location of the bounding box of p thereby enabling

them to be encoded with just a small number of bits. This idea was first proposed by Henrich [76] and is also used in the hybrid tree of

Chakrabarti and Mehrotra [33, 34].
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child whose corresponding bounding box needs to be expanded by the smallest amount to include t. As we

will see, other researchers make use of other criteria such as minimizing overlap with adjacent nodes and

even perimeter (e.g., in the R*-tree [19] as described in Section 5.4). Theodoridis and Sellis [156, 157] try

to minimize the value of an objective function consisting of a linear combination of coverage, overlap, and

dead area with equal weights. Garcı́a, and López, and Leutenegger [62] also make use of a similar objective

function to build the entire R-tree in a top-down manner.

Not surprisingly, these same goals also guide the node-splitting process. In this situation, one goal is to

distribute the objects among the nodes so that the likelihood that the two nodes will be visited in subsequent

searches will be reduced. This is accomplished by minimizing the total area spanned by the bounding boxes

of the resulting nodes (equivalent to what we termed coverage). The second goal is to reduce the likelihood

that both nodes are examined in subsequent searches. This goal is accomplished by minimizing the area

common to both nodes (equivalent to what we termed overlap). Again, we observe that, at times, these goals

may be contradictory.

Several node-splitting policies have been proposed that take these goals into account. They are differ-

entiated on the basis of their execution-time complexity and by the number of these goals that they attempt

to meet. An easy way to see the different complexities is to look at the following three algorithms [74], all

of which are based on minimizing the coverage. The simplest is an exhaustive algorithm [74] that tries all

possibilities. In such a case, the number of possible partitions is 2M � 1. This is unreasonable for most values

of M (e.g., M � 50 for a page size of 1024 bytes).

The exhaustive approach can be applied to obtain an optimal node split according to an arbitrary cost

function that can take into account coverage, overlap, and other factors. Interestingly, although we pointed

out earlier that there are O � 2M � possible cases to be taken into account, the exhaustive algorithm can be

implemented in such a way that it need not require O � 2M � time. In particular, Becker et al. [18] present an

implementation that takes only O � M3 � time for two-dimensional data and O � dM logM � d2M2d � 1 � time for

d-dimensional data.

Garcı́a, and López, and Leutenegger [63] present an implementation of the exhaustive approach that uses

the same insight as the implementation of Becker et al. [18], which is that some of the boundaries of the two

resulting minimum bounding boxes are shared with the minimum bounding box of the overflowing node.

This insight constrains the number of possible groupings of the M objects in the node that is being split. The

algorithm is flexible in that it can use different cost functions for evaluating the appropriateness of a particular

node split. However, the cost function is restricted to being “extent monotone” which means that the cost

function increases monotonically as the extent of one of the sides of the two bounding rectangles is increased

(this property is also used by Becker et al. [18], although the property is stated somewhat differently).

Although the implementations of Becker et al. [18] and Garcı́a, and López, and Leutenegger [63] both

find optimal node splits, the difference between them is that the former has the added benefit of guaranteeing

that the node split satisfies some balancing criteria, which is a requirement in most R-tree implementations.

The rationale, as we recall, is that in this way the nodes are not too full, which would cause them to over-

flow again. For example, in many R-tree implementations there is a requirement that the split be such that
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each node receives exactly half the rectangles, or that each receives at least 40% of the rectangles. Satisfy-

ing the balancing criteria is more expensive, as could be expected, and in two dimensions, the cost of the

algorithm of Becker et al. [18] is O � M3 � as opposed to O � M2 � for the algorithm of Garcı́a, and López, and

Leutenegger [62].

Garcı́a, and López, and Leutenegger [63] found that identifying optimal node splits yielded only modest

improvements in query performance which led them to introduce another improvement to the insertion pro-

cess. This improvement is based on trying to fit one of the two groups resulting from a split of node e into

one of e’s siblings instead of creating a new node for every split. In particular, one of the groups is inserted

into the sibling s for which the cost increase, using some predefined cost function, resulting from movement

into s is minimized. Once a sibling s has been chosen, we move the appropriate group and reapply the node

splitting algorithm if the movement caused s to overflow. This process is applied repeatedly as long as there

is overflow while requiring that we choose among the siblings that have not been modified by this process.

If we find that there is overflow in node i and there is no unmodified sibling left, then a new node is created

containing one of the new groups resulting from the split of i. Even if each node overflows, this process is

guaranteed to terminate as at each step there is one less sibling candidate for motion.

The process described above is somewhat similar to what is termed forced reinsertion in the R*-tree (see

Section 5.4) with the difference that forced reinsertion results in reinsertion of the individual entries (i.e.,

objects in the case of leaf nodes and minimum bounding boxes in the case of nonleaf nodes) at the root

instead of as a group into one of the siblings. This reinsertion into siblings is also reminiscent of rotation

(i.e., “deferred splitting”) in conventional B-trees with the difference being that there is no order in the R-tree

which is why motion into all unmodified siblings had to be considered. This strategy was found to increase the

node utilization and thereby improve query performance (by as much as 120% in experiments [63] compared

to the Hilbert R-tree [89]).

The remaining two node-splitting algorithms have a common control structure that consists of two stages.

The first stage “picks” a pair of bounding boxes j and k to serve as “seeds” for the two resulting nodes, while

the second stage redistributes the remaining bounding boxes into the nodes corresponding to j and k. The

redistribution process tries to minimize the “growth” of the area spanned by j and k. Thus the first and second

stages can be described as “seed-picking” and “seed-growing”, respectively.

The first of these “seed-picking” algorithms is a quadratic cost algorithm [74] that initially finds the two

bounding boxes that would waste the most area were they to be in the same node. This is determined by

subtracting the sum of the areas of the two bounding boxes from the area of the covering bounding box.

These two bounding boxes are placed in the separate nodes, say j and k. Next, the remaining bounding boxes

are examined, and for each bounding box, say i, di j and dik are computed, which correspond to the increases

in the area of the covering bounding boxes of nodes j and k, respectively, when i is added to them. Now,

the bounding box r such that � dr j � drk � is a maximum is found, and r is added to the node with the smallest

increase in area. This process is repeated for the remaining bounding boxes. The motivation for selecting

the maximum difference � dr j � drk � is to find the bounding box having the greatest preference for a particular

node j or k.
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The second of of these “seed-picking” algorithms is a linear cost algorithm [74] that examines each

dimension and finds the two bounding boxes with the greatest separation. Recalling that each bounding box

has a low and a high edge along each axis, these two bounding boxes are the one whose high edge is the

lowest along the given axis and the one whose low edge is the highest along the same axis. The separations

are normalized by dividing the actual separation by the width of the bounding box of the overflowing node

along the corresponding axis. The final “seeds” are the two bounding boxes having the greatest normalized

separation among the d pairs that we found. The remaining bounding boxes are processed in arbitrary order

and placed in the node whose bounding box (i.e., of the entries added so far) is increased the least in area as

a result of their addition. Empirical tests [74] showed that there was not much difference between the three

node-splitting algorithms in the performance of a window search query (i.e., in CPU time and in the number

of disk pages accessed). Thus, the faster linear cost node-splitting algorithm was found preferable for this

query even though the quality of the splits was somewhat inferior.

An alternative node splitting policy is based on minimizing the overlap. One technique which has a linear

cost [4] applies d partitions (one for each of the d dimensions) to the bounding boxes in the node t being split

thereby resulting in 2d sets of bounding boxes. In particular, we have one set for each face of the bounding

box b of t. The partition is based on associating each bounding box o in t with the set corresponding to the

closest face along dimension i of b6. Once the 2d partitions have been constructed (i.e., each bounding box

o has been associated with d sets), select the partition that ensures the most even distribution of bounding

boxes. In case of a tie, choose the partition with the least overlap. In case of another tie, choose the partition

with the least coverage. For example, consider the four bounding boxes in Figure 18a. The partition along the

x axis yields the sets � 
 � � � and � � � � � (Figure 18b) while the partition along the y axis yields the sets � 
 � � �
and � � � � � (Figure 18c). Since both partitions yield sets that are evenly distributed, we choose the one that

minimizes overlap (i.e., along the y axis).

The algorithm is linear as it examines each bounding box once along each dimension (actually, it is O � dM �
for M objects but d is usually much smaller than M). Experiments with randomly generated rectangles [4]

resulted in lower coverage and overlap than the linear and quadratic algorithms described above [74] that

are based on minimizing the coverage. The window search query was also found to be about 16% faster

with the linear algorithm based on minimizing overlap than the quadratic algorithm based on minimizing

coverage. The drawback of this linear algorithm (i.e., [4]) is that it does not guarantee that the two nodes

resulting from the partition will contain an equal number of bounding boxes. This is because the partitions

are based on proximity to the borders of the bounding box of the node being split. In particular, when the

data is not uniformly distributed, although the resulting nodes are likely to have little overlap (as they are

likely to partition the underlying space into two equal areas), they will most likely contain an uneven number

of bounding boxes.
6Formally, each bounding box o has two faces foil and foih that are parallel to the respective faces fbil and fbih of b where l and h

correspond to the low and high values of coordinate or dimension i. For each dimension i, there are two sets Sil and Sih corresponding to

faces fbil and fbih of b, and the algorithm inserts o into Sil if xi � foil � � xi � fbil � 	 xi � fbih � � xi � foih � and into Sih otherwise where xi � f � is

the ith coordinate value of face f .
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5.4 R*-tree

Better decompositions in terms of less node overlap and lower storage requirements than those achieved by

the linear and quadratic node-splitting algorithms have also been reported in [19] where three significant

changes have been made to the R-tree construction algorithm including a different node-splitting strategy.

An R-tree that is built using these changes is termed an R*-tree [19]7. These changes are described below.

Interestingly, these changes also involve using a node splitting policy that, at times, tries to minimize both

coverage and overlap.

The first change is the use of an intelligent object insertion procedure that is based on minimizing overlap

in the case of leaf nodes, while minimizing the increase in area (i.e., coverage) in the case of nonleaf nodes.

The distinction between leaf and nonleaf nodes is necessary as the insertion algorithm starts at the root and

must process nonleaf nodes before encountering the leaf node where the object will ultimately be inserted.

Thus we see that the bounding box b for an object o is inserted into the leaf node p for whom the resulting

bounding box has the minimum increase in the amount of overlap with the bounding boxes of p’s siblings

(children of nonleaf node s). This is in contrast to the R-tree where b is inserted into the leaf node p for

whom the increase in area is a minimum (i.e., based on minimizing coverage). This part of the R*-tree object

insertion algorithm is quadratic in the number of entries in each node (i.e., O � M2 � for an order � m � M � R*-

tree where the number of objects or bounding boxes that are aggregated in each node is permitted to range

between m � � M � 2 � ) as the overlap must be checked for each leaf node child p of the selected nonleaf node

s with all of p’s O � M � siblings.

The second change is that when a node p is found to overflow in an R*-tree, instead of immediately

splitting p as is done in the R-tree, first, an attempt is made to see if some of the objects in p could possibly

be more suited to being in another node. This is achieved by reinserting a fraction (30% has been found to

yield good performance [19]) of these objects in the tree (termed forced reinsertion). Forced reinsertion is
7The ‘*’ is used to signify its “star”-like performance [144] in comparison with R-trees built using the other node-splitting algorithms

as can be seen in examples such as Figures 19 and 20.
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similar in spirit to rotation (also known as “deferred splitting”) in a conventional B-tree, which was also a

technique developed to avoid splitting a node.

There are several ways of determining the objects to be reinserted. One suggestion is to sort the bounding

boxes in p according to the distance of the centers of their bounding boxes from the center of the bounding

box of p, and to reinsert the designated fraction that are the farthest. Once we have determined the objects

to be reinserted, we need to choose an order in which to reinsert them. There are two obvious choices: from

farthest to closest (termed far-reinsert) or from closest to farthest (termed close-reinsert). Becker et al. [19]

make a case for using close-reinsert on the basis of results of experiments. One possible explanation is that

if the reinsertion procedure places the first object to be reinserted in p, then the size of the bounding box

of p is likely to be increased more if ‘far-reinsert’ was used rather than ‘close-reinsert’ thereby increasing

the likelihood of the remaining objects being reinserted in p as well. This has the effect of defeating the

motivation for the introduction of the reinsertion process which is to try to reorganize the nodes. However, it

could also be argued that using ‘far-reinsert’ is more likely to result in the farthest object being reinserted in

a node other than p, on account of the smaller amount of overlap, which is one of the goals of the reinsertion

process. Thus the question of which method to use is not completely settled.

The sorting step in forced reinsertion takes O � M logM � time. However, this cost is greatly overshadowed

by the fact that each invocation of forced reinsertion can result in the reinsertion of O � M � objects thereby

increasing the cost of insertion by a factor of O � M � . One problem with forced reinsertion is that it could lead

to overflow in the same node p again when all of the bounding boxes are reinserted in p, or even to overflow

in another node q at the same depth. This could lead to an infinite loop. In order to prevent the occurrences

of such a situation, forced reinsertion is applied only once at each depth for a given object. Note also that

forced reinsertion is applied in a bottom-up manner in the sense that resolving overflow in the leaf nodes may

also lead to overflow of the nonleaf nodes, in which case we apply forced reinsertion to the nonleaf nodes as

well. When applying forced reinsertion to a nonleaf node p at depth l, we reinsert only the elements in p and

at depth l.

Forced reinsertion is quite important as usually an R-tree is built by inserting the objects one by one as

they are encountered in the input. Thus we don’t usually have the luxury of processing the objects in sorted

order. This could lead to some bad decompositions in the sense that the redistribution stage may prefer one

of the “seed” nodes over the other in a consistent manner. Of course, this can be overcome by taking into

account the bounding boxes of all of the objects before building the R-tree; but now the representation is no

longer dynamic. Forced reinsertion is a compromise in the sense that it permits us to periodically rebuild part

of the R-tree as a means of compensating for some bad node placement decisions.

The third change involves the manner in which an overflowing node p is split. Again, as in the original

R-tree node-splitting algorithm, a two-stage process is used. The difference is in the nature of the stages. The

process follows closely an approach presented in an earlier study of the R-tree [69] which did not result in

the coining of a new name for the data structure! In particular, in contrast to the original R-tree node-splitting

strategy [74] where the first stage “picks” two “seeds” for the two resulting nodes which are subsequently

“grown” by the second stage, in the R*-tree (as well as in the approach described in [69]), the first stage

determines the axis (i.e., hyperplane) along which the split is to take place, while the second stage determines
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the position of the split. In two dimensions, for example, the split position calculated in the second stage

serves as the boundary separating the left (or an equivalent alternative is the right) sides of the bounding

boxes of the objects that will be in the left and right nodes resulting from the split.

Note that the result of the calculation of the split position in the second stage has the same effect as

the redistribution step in the linear and quadratic cost R-tree node-splitting algorithms as it indicates which

bounding boxes are associated with which node. In particular, as we will see below, the first stage makes use

of the result of sorting the faces of the bounding boxes along the various dimensions. Moreover, it would

appear that the first and last bounding boxes in the sort sequence play a somewhat similar role to that of

the “seeds” in the original R-tree node-splitting algorithms. However, this comparison is false as there is no

“growing” process in the second stage. In particular, these “seeds” do not “grow” in an independent manner

in the sense that the bounding boxes bi that will be assigned to their groups are determined by the relative

positions of the corresponding faces of bi (e.g., in two dimensions, the sorted order of their left, right, top, or

bottom sides).

This two-stage process is implemented by performing 2d sorts (two per axis) of the bounding boxes of

the objects in the overflowing node p. For each axis a, the bounding boxes are sorted according to their two

opposite faces that are perpendicular to a. The positions of the faces of the bounding boxes in the sorted lists

serve as the candidate split positions for the individual axes. There are several ways of using this information

to determine the split axis and split position along the axis.

Becker et al. [19] choose the split axis as the axis a for which the average perimeter of the bounding

boxes of the two resulting nodes for all of the possible splits along a is the smallest while still satisfying the

constraint posed by m and M. An alternative approach (although not necessarily yielding the desired result

as shown below) is one that chooses the split axis as the axis a for which the perimeter of the two resulting

nodes is a minimum. Basing the choice on the value of the perimeter is related to the goal of minimizing

coverage by favoring splits that result in nodes whose bounding boxes have a square-like shape. Basing

the choice of the split axis on the minimum average perimeter results in giving greater weight to the axis

where the majority of the possible splits result in nodes whose bounding boxes have square-like shapes. This

stage takes O � dM logM � time as the sort takes O � M logM � time for each axis while the average perimeter

computation can be done in O � M � time for each axis when scanning the faces of the bounding boxes in sorted

order.

The position of the split along the axis a selected by the first stage is calculated by examining the two

sorted lists of possible split positions (i.e., faces of the bounding boxes) for a and choosing the split position

for which the amount of overlap between the bounding boxes of the two resulting nodes is the smallest while

still satisfying the constraint posed by m and M. Ties are resolved by choosing the position which minimizes

the total area of the resulting bounding boxes thereby reducing the coverage. Minimizing the overlap reduces

the likelihood that both nodes will be visited in subsequent searches. Thus we see that the R*-tree’s node-

splitting policy tries to address the issues of minimizing both coverage and overlap. Determining the split

position requires O � M � overlap computations when scanning the bounding boxes in sorted order. Algorithms

that employ this sort-and-scan paradigm are known as plane-sweep techniques [15, 119, 147].

44



��� ���
�	� 
 �����.$1��("���� 1/6�  1� ("�3�1��, ����� � ��,��"�� �/6�  3�0�-���%$1� � �	,-�'� ���1�"�6� !4�1� ���	�&���3��� �� �! ��� �� ���� � �%� ���
! ��� �%$1��������� �3�%��� �� '� ! � � �	�����*�� 3��� �&, �  �6� ����� �0
 � 7

Figure 19 shows the bounding boxes corresponding to the first level of aggregation for an R*-tree in

comparison to that resulting from the use of an R-tree that deploys the exhaustive (Figure 20a), linear cost

(Figure 20b), quadratic cost (Figure 20c), and the linear cost of [4] (Figure 20d) node-splitting algorithms

for the collection of 22 rectangles in Figure 14. It is quite clear from the figure, at least for this example

data set, that the combined criterion used by the R*-tree node-splitting algorithm that chooses the split which

minimizes the sum of the perimeters of the bounding boxes of the two resulting nodes, as well as their

overlap, seems to be working. Whether this is indeed the change in the definition that leads to this behavior

is unknown.

Empirical studies have shown that use of the R*-tree node-splitting algorithm instead of the conventional

linear and quadratic cost R-tree node-splitting algorithms leads to a reduction in the space requirements (i.e.,

improved storage utilization) ranging from 10 to 20% [19, 80] while requiring significantly more time to

build the R*-tree [80]. The effect of the R*-tree node-splitting algorithms vis-a-vis the conventional linear

and quadratic cost node-splitting algorithms on query execution time is not so clear due to the need to take

factors such as paging activity, node occupancy, etc. into account [19, 80, 107].

Although the definition of the R*-tree makes three changes to the original R-tree definition [74], it can be

argued that the main distinction, from a conceptual point of view rather than from its effect on performance,

is in the way an overflowing node is split, and in the way the bounding boxes are redistributed in the two

resulting nodes8. In particular, the original R-tree node splitting algorithms [74] determine “seeds” while

the R*-tree algorithm determines a split axis and an axis split value. The bounding boxes of the objects are

redistributed about these “seeds” and axis, respectively. At this point, it is important to re-emphasize that

the motivation for these redistribution strategies is to avoid the exhaustive search solution which looks at all
8On the other hand, it could also be argued that forced reinsertion is the most important distinction as it has the ability to undo the

effect of some insertions which may have caused undesired increases in overlap and coverage.
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possible partitions.

The R*-tree redistribution method first sorts the boundaries of the bounding boxes along each of the axes

and then uses this information to find the split axis a (with respect to the minimum average perimeter of

the bounding boxes of the resulting nodes) and split position (with respect to the minimal overlap once the
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split axis was chosen). This is a heuristic that attempts to approximate the solution to the d-dimensional

problem (i.e., optimal partitioning with minimal coverage or overlap) with an approximation of the optimal

one-dimensional solution along one of the axes. Intuitively, the validity of this approximation would appear

to decrease as d (i.e., the dimensionality of the underlying space) increases since more and more splits are

eliminated from consideration. However, the opposite conclusion might be true as it could be argued that

although the number of eliminated splits grows exponentially with d, the majority of the eliminated splits are

bad anyway. This is a problem for further study.

The remaining changes involving forced reinsertion and intelligent object insertion could have also been

used in the R-tree construction algorithms. In particular, although the original R-tree definition [74] opts for

minimizing coverage in determining the subtree in which an object is to be inserted, it does leave it open as

to whether minimizing coverage or overlap is best. Similarly, using forced reinsertion does not change the

R-tree definition. It can be applied regardless of how a node is split and which policy is used to determine the

node into which the object is to be inserted. The evaluation of the R*-tree conducted in [19] involves all three

of these changes. An evaluation of R-trees constructed using these remaining changes is also of interest.

The node splitting rules that form the basis of the R*-tree have also been used in conjunction with some

of the methods for constructing instances of the object-tree pyramid such as the Hilbert packed R-tree. In

particular, DeWitt et al. [40] suggest that it is not a good idea to fill each leaf node of the Hilbert packed

R-tree to capacity. Instead, they pack each leaf node i, say up to 75% of capacity, and then for each additional

object x to be placed in i, they check if the bounding rectangle of i needs to be enlarged by too much (e.g.,

more than 20% in area [40]) in order to contain x, in which case they start packing another node. In addition,

whenever a node has been packed, the contents of a small number (e.g., 3 [40]) of the most recently created

nodes are combined into a large node which is then resplit using the R � -tree splitting methods. Although

experiments show that these modifications lead to a slower construction time than that for the conventional

Hilbert packed R-tree, the query performance is often improved (e.g., up to 20% in the experiments [40]).

5.5 Bulk Insertion and Bulk Loading

Up to now, our discussion of building the object-tree pyramid has been differentiated on the basis of whether it

is done in a static or a dynamic environment. The static methods exemplified by the various packing methods

such as the packed R-tree, Hilbert packed R-tree, and the STR method were primarily motivated by a desire

to build the structure as fast as possible. This is in addition to the secondary considerations of maximizing

storage utilization and possibly faster query performance as a result of a shallower structure since each node

is filled to capacity thereby compensating for the fact that these methods may result in more coverage and

overlap. The dynamic methods exemplified by the R-tree and the R*-tree were motivated equally by a desire

to avoid rebuilding the structure as updates occur (primarily as objects are added and, to a lesser extent,

deleted), and by a desire for faster query performance due to a reduction of coverage and overlap.

At times, it is desired to update an existing object-tree pyramid with a large number of objects at once.

Performing these updates one object at a time using the implementations of the dynamic methods described

above can be expensive. The CPU and I/O costs can be lowered by grouping the input objects prior to the

47



insertion. This technique is known as bulk insertion. It can also be used to build the object-tree pyramid

from scratch in which case it is also known as bulk loading. In fact, we have seen several such techniques

already in our presentation of the static methods which employ packing. The difference is that although

the bulk loading methods that we discuss below are based on grouping the input objects prior to using one

of the dynamic methods of constructing the object-tree pyramid, the grouping does not involve sorting the

input objects which is a cornerstone of the bulk loading methods that employ packing. We discuss the bulk

insertion methods first.

A simple bulk insertion idea is to sort all of the m new objects to be inserted according to some order (e.g.,

Peano-Hilbert) and then insert them into an existing object-tree pyramid in this order [90]. This approach is

used in the cubetree [127], a packed R-tree like structure for data warehousing and OLAP (denoting online

analytic processing [35]) applications. The rationale for sorting the new objects is to have each new object be

relatively close to the previously inserted object so that most of the time the nodes on the insertion path are

likely to be the same, which is even more likely to be the case if some caching mechanism is employed. Thus,

the total number of I/O operations is reduced. This technique works fine when the number of objects being

inserted is small relative to the total number of objects. Also, it may be the best choice when the collection of

new objects is spread over a relatively large portion of the underlying space, as in such cases the use of other

methods (see below) may lead to excessive overlap (but see discussion of GBI [37] below). It can be used

with any of the methods of building an object-tree pyramid.

Another related bulk insertion method, due to Kamel, Khalil, and Kouramajian [90], first orders the new

objects being inserted according to the Peano-Hilbert order, and then aggregates them into leaf nodes where

each node is filled to a predetermined percentage of the capacity (e.g., 70%) as if we are building just the

leaf nodes of a Hilbert packed R-tree for the new objects. These leaf nodes are inserted into an object-tree

pyramid in the order in which they were built.

The STLT (denoting Small-Tree-Large-Tree) method of Chen, Choubey, and Rundensteiner [36] can be

viewed as a generalized variant of the method of Kamel, Khalil, and Kouramajian [90] in that instead of

inserting the leaf nodes of the object-tree pyramid T of the new data (which has been built using any con-

struction algorithm) in the existing tree E, it just inserts the root of T so that the leaf nodes of T will be at

the same depth as the leaf nodes of E. Although this method will lead to a faster insertion time than dynamic

insertion, it will result in poorer query performance due to a significant overlap between the nodes in T and E.

In order to overcome this problem Choubey, Chen, and Rundensteiner [37] introduce a new method (termed

Generalized Bulk Insertion (GBI)) that uses cluster analysis to divide the new data into clusters. Small clus-

ters (e.g., containing just one point) are inserted using a regular dynamic insertion method, whereas for larger

clusters, a tree is built and inserted using the STLT method. In other words, the STLT method is really a

sub-component of the GBI method. This reduces the amount of overlap, which can be very high for the STLT

method.

The bulk loading methods that we describe [11, 24] insert the individual objects using dynamic insertion

methods. In particular, as we pointed out above, the objects are not preprocessed (e.g., via an explicit sorting

step or aggregation into a distinct object-tree pyramid) prior to insertion as is the case for the bulk insertion

methods. In particular, the sorting is deferred as much as possible although at the end of the bulk loading
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process, the data is ordered on the basis of the underlying tree structure, and hence can be considered to be

sorted. These bulk loading methods are general in that they are not just applicable to the R-tree; instead, they

are applicable to most balanced tree data structures which resemble B-trees. They are based on the general

concept of the buffer tree [10], wherein each internal node of the buffer tree contains a buffer of records stored

on disk.

The basic idea behind the methods based on the buffer tree is that insertions into each nonleaf node of

the buffer tree are batched. In particular, insertions occur into the buffer associated with the root node and

slowly trickle down the tree as buffers are emptied when they are full. The buffers enable the effective use

of available main memory, thereby resulting in large savings in I/O cost over the regular dynamic insertion

method (although the CPU cost may be higher, in part, due to the large fanout when using one of the meth-

ods [24] as we point out below). Nevertheless, it could be the case that the actual execution could be slower

in comparison to a non bulk-loading method in the case that many overflowing buffers need to be trickled

down.

In the method proposed by van den Bercken, Seeger, and Widmayer [24], the R-tree is built recursively

bottom-up. At each stage, an intermediate tree structure is built where the lowest level corresponds to the

next level of the final R-tree. The nonleaf nodes in the intermediate tree structures have a high fanout (de-

termined by available internal memory) as well as a buffer that receives insertions. Arge et al. [11] achieve

a similar effect by using a regular R-tree structure (i.e., where the nonleaf nodes have the same fanout as

the leaf nodes which is the size of a disk page) and only attaching buffers to nodes at certain levels of the

tree. The advantages of the method of Arge et al. [11] over the method of van den Bercken, Seeger, and

Widmayer [24] are that it is more efficient as it does not build intermediate structures, and it results in a better

space partition. Moreover, the method of Arge et al. [11] yields the same R-tree as would have been obtained

using conventional dynamic insertion methods without buffering (with the exception of the R*-tree where

the use of forced re-insertion is difficult to incorporate in the buffering approach), while this is not the case

for the method of van den Bercken, Seeger, and Widmayer [24]. In addition, the method of [11] supports

bulk-insertions (as opposed to just initial bulk-loading as in [24]) and other bulk-queries including intermixed

insertions and queries.

5.6 Shortcomings and Solutions

In this section we point out some of the shortcomings of the object-tree pyramid as well as point out some

of the solutions. As we are dealing with the representations of objects, which are inherently of low dimen-

sion, we do not discuss the shortcomings and solutions for high-dimensional data (e.g., the X-tree [22] which

attempts to address the problem arising when there is much overlap among the nodes corresponding to the

partitions that result from a node split). One of the drawbacks of the object-tree pyramid (i.e., the R-tree as

well as its variants such as the R*-tree) is that as the node size (i.e., page size — that is, M) gets large, the

performance starts to degrade. This is somewhat surprising as according to conventional wisdom, perfor-

mance should increase with node size as the depth of the tree decreases thereby requiring fewer fewer disk

accesses. The problem is that as the node size increases, operations on each node take more CPU time. This
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is especially true if the operation involves search (e.g., finding the nearest object to a point) as the bounding

boxes in each node are not ordered [79].

This problem can be overcome by ordering the bounding boxes in each node using the same ordering-

based aggregation techniques that were used to make the object-tree pyramid more efficient in responding to

the location query. For example, we could order the bounding boxes by applying a Morton or Peano-Hilbert

space ordering to their centroids. We term the result an ordered R-tree. Interestingly, the ordered R-tree can

be viewed as a hybrid between an object B � -tree and an R-tree in the sense that nodes are ordered internally

(i.e., their constituent bounding box elements) using the ordering of the object B � -tree, while they are ordered

externally (i.e., vis-a-vis each other) using an R-tree.

Although the R-tree is height-balanced, the branching factor of each node is not the same. Recall that

each node contains between m and M objects or bounding boxes. This has several drawbacks. First, it means

that the nodes are not fully occupied thereby causing the tree structure to be deeper than it would be had

the nodes been completely full. Therefore, the number of data objects in the leaf nodes of the descendants

of sibling nonleaf nodes is not the same and, in fact, can vary quite greatly, thereby leading in imbalance

in terms of the number of objects stored in different subtrees. This could have a detrimental effect on the

efficiency of retrieval. Second, satisfying the branching factor condition often requires compromising the

goal of minimizing total coverage, overlap, and perimeter. The packed R-tree and the Hilbert packed R-tree

are some ways to overcome this problem as they initially have a branching factor of M at all but the last node

at each level. However, they are not necessarily designed to meet our goals of minimizing total coverage,

overlap, and perimeter.

The S-tree [2] is an approach to overcome the above drawbacks of the R-tree and its packed variants by

trading off the height-balanced property in return for reduced coverage, overlap, and perimeter in the resulting

minimum bounding boxes. The S-tree has the property that each node that is not a leaf node or a penultimate

node (i.e., a node whose children are all leaf nodes) has M children. In addition, for any pair of sibling nodes

(i.e., with the same parent) s1 and s2 with Ns1 and Ns2 objects in their descendants, respectively, we have

that p � Ns1 � Ns2 � 1 � p (0 � p � 0 � 5), where p, termed the skew factor, is a parameter that is related to the

skewness of the data and governs the amount of tradeoff thereby providing a worst-case guarantee on the

skewness of the descendants of the node. In particular, the number of objects in the descendants of each of a

pair of sibling nodes is at least a fraction p of the total number of objects in the descendants of both nodes.

This guarantee is fairly tight when p is close to 0.5, while it is quite loose when p is small. In other words,

when p � 0 � 5, the difference in the number of objects that will be found in the subtrees of a pair of sibling

nodes is within a factor of 2, whereas this ratio can get arbitrarily large in a conventional R-tree.

The cost-based unbalanced R-tree (CUR-tree) of Ross, Sitzmann, and Stuckey [126] is another variant

of an R-tree where the height-balanced requirement is relaxed in order to improve the performance of point

and window queries in an environment where all the data is in main memory. The CUR-tree makes use of a

cost model for the data structure (i.e., the R-tree) that accounts for operations such as reading the node and

making the comparisons needed to continue the search. In particular, upon every insertion and deletion (rather

than just upon overflow), every node on the insertion path is examined to determine if its entries should be

rearranged to lower the cost function. The result is that nodes can be split, and their entries can be promoted
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or demoted, at the cost of a slower update time.

Garcı́a. and López, and Leutenegger [64] propose to improve the query performance of R-trees by re-

structuring the tree. Such restructuring can be performed after an R-tree has been built or dynamically as

insertions take place. The key idea is to select a node e to be restructured and then apply the restructuring

process to e and its ancestors by merging and resplitting sibling nodes. In the dynamic case, the restruc-

turing is applied with some fixed probability for each insertion thereby ensuring that the restructuring does

not happen at each insertion. Although at a first glance, restructuring seems similar to forced reinsertion in

the case of an R*-tree (see Section 5.4), they are quite different upon closer scrutiny. In particular, forced

reinsertion takes individual node entries and reinserts them at the root. In contrast, restructuring operates

on groups of node entries by repeatedly merging and resplitting them, as necessary, in order to obtain better

query performance through greater storage utilization and less overlap among sibling nodes.

A shortcoming of all of the representations that are based on object hierarchies (i.e., including all of the

R-tree variants) is that when the objects are not hyperrectangles, use of the bounding box approximation

of the object eliminates only some objects from consideration when responding to queries. In other words,

the actual execution of many queries requires knowledge of the exact representation of the object (e.g., the

location query). In fact, the execution of the query may be quite complex using this exact representation.

At times, these queries may be executed more efficiently by decomposing the object further into smaller

pieces such as triangles, trapezoids, convex polygons, etc. (e.g., [29, 98]). For example, the TR � -tree [29,

142] is such a representation where each object in an R � -tree is decomposed into a collection of trapezoids.

The DR-tree [100] is a related approach where the minimum bounding box is recursively decomposed into

minimum bounding boxes until the volume of each box is less than predefined fraction of the volume of the

initial bounding box. The result of the decomposition process is represented as a binary tree which is stored

separately from the hierarchy that contains the minimum bounding boxes of the objects and can be processed

in memory once it has been loaded.

6 Disjoint Object-based Hierarchical Interior-based Representations

(k-D-B-trees, R
�

-trees, and Cell Trees)

In our descriptions of the object pyramid and the object-tree pyramid in Section 5 we observed that we may

have to examine all of the bounding boxes at all levels when attempting to determine the identity of the object

o that contains location a (i.e., the location query). This was caused by the fact that the bounding boxes

corresponding to different nodes may overlap. The fact that each object is associated with only one node

while being contained in possibly many bounding boxes (e.g., in Figure 17, rectangle



is contained in its

entirety in
�#


,
� �

,
� �

, and
� 	 ) means that the location query may often require several nonleaf nodes to be

visited before determining the object that contains a. This problem also arises in the R-tree as seen in the

following example.

Suppose that we wish to determine the identity of the rectangle object(s), in the collection of rectangles

given in Figure 17 that contains point � at coordinate values � � � � ��� � . We first determine that � is in
� � .
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Next, we find that � can be in both or either of
�#


or
� �

, and thus we must search both of their subtrees.

Searching
�#


first, we find that � could be contained only in
� �

. Searching
� �

does not lead to the rectangle

that contains � even though � is in a portion of rectangle � that is in
� �

. Thus, we must search
� �

and

we find that � can be contained only in
� 	 . Searching

� 	 results in locating � , the desired rectangle. The

drawback of the R-tree as well as other representations that make use of an object pyramid is that unlike those

based on the cell pyramid, they do not result in a disjoint decomposition of space. Recall that the problem is

that an object is associated with only one bounding bounding box (e.g., rectangle � in Figure17 is associated

with bounding box
� 	 , yet it overlaps bounding boxes

� 

,
� �

,
� �

, and
� 	 ). In the worst case, this means that

when we wish to respond to the location query (e.g., given a point, determining the containing rectangle in a

rectangle database, or an intersecting line in a line segment database, etc. in the two-dimensional space from

which the objects are drawn), we may have to search the entire database. Thus what we need is a hierarchy

of disjoint bounding boxes.

An obvious way to overcome this drawback is to use one of the hierarchical image-based representations

described in Section 4. Recall that these representations made use of a hierarchy of disjoint cells that com-

pletely spanned the underlying space. The hierarchy consists of a set of sets � C j � (0 � j � n) where Cn

corresponds to the original collection of cells, and C0 corresponds to one cell. The sets differed in the number

and size of the constituent cells at the different depths, although each set was usually a containment hierarchy

in the sense that a cell at depth i usually contained all of the cells below it at depth i � 1. The irregular grid

pyramid is an example of such a hierarchy.

A simple way to adapt the irregular grid pyramid to our problem is to overlay the decomposition induced

by Cn � 1 (i.e., the next to the deepest level) on the bounding boxes � bi � of the objects � oi � thereby decom-

posing the bounding boxes and associate each part of the bounding box with the corresponding covering cell

of the irregular grid pyramid. Note that we use the set at the next to the deepest level (i.e., Cn � 1) rather than

the set at the deepest level (i.e., Cn) as the deepest level contains the original collection of unit-sized cells

cnk and thus does not correspond to any aggregation. The cells c jk at the remaining levels j (0 � j � n � 2)

are formed in the same way as in the irregular grid pyramid — that is, they contain the union of the objects

corresponding to the portions of the bounding boxes associated with the cells comprising cell c jk. Using our

terminology, we term the result an irregular grid bounding-box pyramid. It should be clear that the depth of

the irregular grid bounding-box pyramid is one less than that of the corresponding irregular grid pyramid.

The definition of the irregular grid pyramid as well as the other hierarchical image-based representations

stipulates that each unit-sized cell is contained in its entirety in one or more objects. Equivalently, a cell cannot

be partially in object o1 and partially in object o2. The same restriction also holds for block decompositions

which are not hierarchical (see Section 3). In contrast, in the case of the irregular grid bounding-box pyramid,

the fact that the bounding boxes are just approximations of the objects enables us to relax this restriction in

the sense that we allow a cell (or a block in the case of the block decompositions of Section 3) to contain parts

of the bounding boxes of several objects. In other words, cell (or block) b can be partially occupied by part

of the bounding box b1 of object o1, by part of the bounding box b2 of object o2, and may even be partially

empty.

The irregular grid bounding-box pyramid is a hierarchy of grids, albeit that the grid sizes are permitted
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to vary in an arbitrary manner between levels. This definition is still overly restrictive in the sense that we

want to be able to aggregate a varying, but bounded, number of cells at each level (in contrast to a predefined

number) that depends on the number of bounding boxes or objects that are associated with them so that we

can have a height-balanced dynamic structure in the spirit of the B-tree. We also wish to use a hierarchy

that makes use of a different block decomposition rule (e.g., a k-d tree, generalized k-d tree, point quadtree,

bintree, region quadtree, etc. thereby forming a variant of the cell-tree pyramid) instead of a grid as in the

case of the irregular grid pyramid.

Our solution is equivalent to a marriage of the bounding-box cell-tree pyramid hierarchy with one of the

block decompositions described in Section 3. This is done by choosing a value M for the maximum number

of cells (actually blocks) that can be aggregated and a block decomposition rule (e.g., a generalized k-d tree).

As we are propagating the identities of the objects associated with the bounding boxes up the hierarchy rather

than the space occupied by them, we use an object-based variant of the block decomposition rule. This means

that a block is decomposed whenever it contains the bounding boxes of more than M objects rather than on

the basis of the absence of homogeneity. Note that the occupied space is implicit to the block decomposition

rule and thus need not be explicitly propagated up the hierarchy.

It should be clear that each object’s bounding box can appear only once in each block as the objects are

continuous. If more than M of the bounding boxes overlap each other in block b (i.e., they all have at least

one point in common), then there is no point in attempting to decompose b further as we will never be able

to find subblocks bi of b so that each of bi does not have at least one point in common with the overlapping

bounding boxes. Observe also that although the block decompositions yield a partition of space into disjoint

blocks, the bounding boxes at the lowest level of the hierarchy may not necessarily be disjoint. For example,

consider a database of line segment objects and the situation of a vertex where five of the line segments meet.

It is impossible for the bounding boxes of the line segments to be disjoint.

The object-based variants of the block decomposition rules are quite different from their image-based

counterparts that were discussed in Section 3 which based the decomposition on whether the space spanned

by the block was completely covered by an object. It is important to reiterate that the blocks corresponding

to the leaf nodes do not represent hyperrectangular aggregates of identically-valued unit-sized cells as in the

conventional pyramid. Instead, they represent hyperrectangular aggregates of bounding boxes of objects or

pieces thereof.

Without loss of generality, assuming a generalized k-d tree block decomposition rule, the hierarchy of

sets � H j � (1 � j � n) is defined as follows. H0 consists of one block. H1 consists of a subset of the nodes

of a generalized k-d tree decomposition Z of the underlying space so that Z has a maximum of M elements

whose corresponding blocks span the entire underlying space. H2 is formed by removing from Z all nodes

corresponding to members of H1 and their ancestors, and then applying the same rule that was used to

form H1 to each of the blocks in H1 with respect to Z. In other words, H2 consists of generalized k-d

tree decompositions of the blocks h1k (1 � k � M) that comprise H1. Each element of H2 contains no more

than M blocks for a a maximum of M2 blocks. This process is repeated at each successive level down to the

leaf level at depth n � 1. The nodes at the leaf level contain the bounding boxes of the objects or parts of the

bounding boxes of the objects. The pyramid means that the hierarchy must be height-balanced with all leaf
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nodes at the same level, and that the cells at depth j are disjoint and that they span the space covered by the

cells at the immediately lower level at depth j � 1.

We term the resulting data structure a generalized k-d tree bounding-box cell-tree pyramid on account of

the use of the generalized k-d tree as the building block of the pyramid and the use of a tree access structure,

although it is more commonly known as a k-d-B-tree [122] on account of the similarity of the node structure to

that of a B-tree. If we would have used the point quadtree or the bintree as the building blocks of the hierarchy,

then we would have termed the result a point quadtree bounding-box cell-tree pyramid or a bintree bounding-

box cell-tree pyramid, respectively. It is interesting to note that the k-d-B-tree was originally developed for

storing point-like objects although the extension to objects with extent is relatively straightforward as shown

here.

Figure 21 is an example of one possible k-d-B-tree for the collection of 9 rectangle objects given in

Figure 11. Broken lines denote the leaf nodes, and thin lines denote the space spanned by the subtrees rooted

at the nonleaf nodes. Of course, other variations are possible since the k-d-tree is not unique. This particular

tree is of order (2,3) (i.e., having a minimum and maximum of 2 and 3 entries, respectively) although in

general it is not possible to always guarantee that all nodes will have a minimum of 2 entries, nor is the

minimum a part of the definition of the k-d-B-tree. Notice that rectangle object � appears in three different

nodes, while rectangle objects � , � ,
�

, and � appear in two different nodes. Observe also that the example

uses a partition scheme that cycles through the axes in the order x, y, x, y, etc. although, as we shall see below,

this cycling is not guaranteed to hold once objects are inserted and deleted.
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Our definition of the structure was given in a top-down manner. In fact, the structure is often built in

a bottom-up manner by inserting the objects one-at-a-time. Initially, the hierarchy contains just one node

corresponding to the bounding box of the single object. As each additional object o is processed, we insert

o’s bounding box b into all of the leaf nodes which overlap it. If any of these nodes become too full, then we

split these nodes using an appropriate block decomposition rule and determine if the parent is not too full so

that it can support the addition of a child. If not, then we recursively apply the same decomposition rule to
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the parent. The process stops at the root in which case overflow will usually cause the hierarchy to grow by

one level.

Variants of the bounding-box cell-tree pyramid such as the k-d-B-tree are good for answering both the

feature and location queries. However, in the case of the location query, they act only as a partition of space.

They do not distinguish between occupied and unoccupied space. Thus in order to determine if a particular

location a is occupied by one of the objects associated with cell c, we need to check each of the objects

associated with c, which can be time-consuming especially if M is large. We can speed this process by

modifying the general definition of the bounding-box cell-tree pyramid so that a bounding box is stored in

each node r in the hierarchy, regardless of r’s depth, that covers the bounding boxes of the cells that comprise

r. Thus associated with each node r is the union of the objects associated with the cells comprising r as

well as a bounding box of the union of their bounding boxes. We term the result a disjoint object pyramid.

Recall that the depth of any variant of the bounding-box pyramid is one less than that of the corresponding

conventional pyramid, and the same is true for the disjoint object pyramid.

A key difference between the disjoint object pyramid and variants of the conventional pyramid, and to a

lesser extent the bounding-box pyramid, is that the elements of the hierarchy of the disjoint object pyramid

are also parts of the bounding boxes of the objects rather than just the cells that make up the objects which is

the case for both variants of the bounding-box and conventional pyramids. The representation of the disjoint

object pyramid, as well as variants of the bounding-box pyramid such as the k-d-B-tree, is also much simpler

as they both just decompose the objects until a a criterion involving the number of objects that are present in

the block is satisfied rather than one based on the homogeneity of the block. This results in avoiding some of

the deeper levels of the hierarchy that are needed in variants of the conventional pyramid.

There are many variants of the disjoint object pyramid. They differ according to which of the block

decomposition rules described in Section 3 is used. They are usually referred to by the general term R � -

tree[53, 145, 152] on account of the similarity to the R-tree since they both store a hierarchy of bounding

boxes. However, the block decomposition rule is usually left unspecified although a generalized k-d tree

block decomposition rule is often suggested. An alternative is not to use any decomposition rule in which

case each node is just a collection of blocks as in Figure 4.

R � -trees are built in the same incremental manner as any of the bounding-box cell-tree pyramids that we

described (e.g., the k-d-B-tree, etc.). Again, as each additional object o is processed, we insert o’s bounding

box b into all of the leaf nodes which overlap it. If any of these nodes become too full, then we split these

nodes using the appropriate block decomposition rule and determine if the parent is not too full so that it can

support the addition of a child. If not, then we recursively apply the same decomposition rule to the parent.

The process stops at the root in which case the R � -tree may grow by one level. The difference from the

method used in the bounding-box cell-tree pyramids is that we also propagate the minimum bounding box

information up the hierarchy. The entire process is analogous to that used in a B-tree upon overflow. The

difference is that at times, as is also the case for the k-d-B-tree, the decomposition at a nonleaf node may

result in the introduction of a new partition that may force the repartitioning of nodes at deeper levels in the

R � -tree.
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Figure 22 is an example of one possible R � -tree for the same collection of 9 rectangles given in Figure 11.

Broken lines denote the bounding boxes corresponding to the leaf nodes, and thin lines denote the bounding

boxes corresponding to the subtrees rooted at the nonleaf nodes. In this case, we simply took the k-d-B-tree

of Figure 21 and added bounding boxes to the nonleaf nodes. This particular tree is of order (2,3) although

in general it is not possible to always guarantee that all nodes will have a minimum of 2 entries. Notice that

rectangle � appears in three different nodes, while rectangles � . � ,
�

, and � appear in three different nodes.

Of course, other variants are possible since the R � -tree is not unique.
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The cell tree of Günther [71, 72] is similar to the R � -tree. The difference is that the nonleaf nodes of

the cell tree are convex polyhedra instead of bounding rectangles. The children of each node, say P, form

a binary space partition (BSP) [60] of P. The cell tree is designed to deal with polyhedral data of arbitrary

dimension. As in the R � -tree, the polyhedral data that is being represented may be stored in more than one

node. When the decomposition causes an object to be split too many times, Günther and Noltemeier [73]

store the object in what they term oversized shelves which are associated with nonleaf nodes in the structure.

This is somewhat similar in spirit to the X-tree [22] which is a variant of an R-tree where a node is not split

upon overflow if too much overlap would result among its children (in which case, the node is termed a

supernode).

7 Concluding Remarks

We have reviewed a number of hierarchical image and object representations with a focus on hierarchical

methods whose use enables us to answer the fundamental queries of what and where. As we have seen, there

are two key classes of methods, and we distinguished between them on the basis of whether they were image-

based or object-based. To get the most power in terms of the queries that can be handled, we can either use

object hierarchies, which employ aggregates of bounding boxes, or space hierarchies, which employ a disjoint

decomposition of the underlying space that is spanned by the objects. Neither method can be considered as
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being the best. Each method has its advantages and disadvantages.

The drawback of object hierarchies (of which the R-tree is the most commonly used example) is that they

do not yield a disjoint decomposition of the underlying space. This leads to the multiple coverage problem in

the sense that the area containing a particular location a in object o may be spanned by several R-tree nodes

while o is contained in just one R-tree node. Thus just because object o was not found in the search of one

path in the tree whose bounding box contains a, does not mean that o would not be found in the search of

another path in the tree. This makes search in an R-tree somewhat inefficient as in the worst case we may

have to examine all of the bounding boxes at all levels of the hierarchy when attempting to determine the

identity of the object o that contains location a.

The conventional alternative solution is to make use of a disjoint decomposition of the underlying space

as provided by many structures such as the R � -tree and variants of the quadtree/pyramid. These solutions do

not suffer from the multiple coverage problem. However, their drawback is that an object o may need to be

decomposed into several pieces and hence reported as satisfying the query several times as the area spanned

by o may be contained in several blocks. For example, suppose that we want to retrieve all the objects that

overlap a particular region (i.e., a window query) rather than a point. In this case, we could report the same

object as many times as it has been decomposed into blocks. We can avoid reporting the object several times

when using these methods by removing the duplicate objects before reporting the final answer. Removing the

duplicate objects usually requires invocation of some variant of a sorting algorithm. Interestingly, there has

been some work in developing algorithms for certain classes of objects and different data structures which

are based on a disjoint decomposition that avoid reporting duplicate objects (e.g., [7, 9, 43]) without resorting

to sorting.

The BV-tree [58] is an alternative solution that makes use of an object hierarchy similar to that of the R-

tree and a more restricted form of a containment hierarchy where any pair of bounding boxes of two children

a and b of node r must be either disjoint or one child is completely contained in the other child (i.e., a is

in b or b is in a). At a first glance the BV-tree would appear to also be afflicted by the multiple coverage

problem. However, the BV-tree overcomes the multiple coverage problem by making use of the concept of

a guard which is carried along during the search process as the tree is descended thereby ensuring that only

one path is followed in any search. The drawback of the BV-tree is that it is not balanced although the depth

is bounded based on the maximum number of data points or objects. It is worth noting that the key idea in

the BV-tree is the decoupling of the decomposition hierarchy from the directory hierarchy (i.e., the manner in

which the various nodes are aggregated) [136]. The PK-tree [161] applies similar ideas to image hierarchies,

with the same drawback of possibly being unbalanced.

We now point out a few more considerations which should be taken into account. Object-based methods

such as the R-tree and the R � -tree have the advantage of being able to distinguish between occupied and

unoccupied space for a particular data set. However, they cannot correlate occupied space in two different

data sets. In other words, the bounding boxes of the two data sets are not in registration which means that

more intersection operations must be performed between the two sets when executing operations such as a

spatial join if no preprocessing sorting step has been applied (e.g., [12, 97, 117]), although a number of good

algorithms have been devised for spatial joins for object-based representations (e.g., [103, 104]). In contrast,
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disjoint image-based methods that make use of a regular decomposition of the underlying space such as the

region quadtree and the pyramid are good when operating on two different data sets as the occupied space

in the two sets is correlated thereby simplifying the spatial join algorithms which makes them preferable

to disjoint image-based methods that do not employ regular decomposition such as the R � -tree (e.g., [80]).

Nevertheless, there is the cost of dealing with duplicate answers (as mentioned above) which is incurred

regardless of which disjoint method is used. Thus there is no one best or optimal representation. Ultimately,

users make their decision on the basis of what is important to them, possibly making use of cost models

(e.g., [8, 158]).
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