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Understanding crowd mobility in a metropolitan area is extremely valuable for city planners and decision

makers. However, crowd mobility is a relatively new area of research and has significant technical challenges:

lack of large-scale fine-grained data, difficulties in large-scale trajectory processing, and issues with spatial

resolution. In this article, we propose a novel approach for analyzing crowd mobility on a “city block” level.

We first propose algorithms to detect homes, working places, and stay regions for individual user trajectories.

Next, we propose a method for analyzing commute patterns and spatial correlation at a city block level. Using

mobile cellular accessing trace data collected from users in Shanghai, we discover commute patterns, spatial

correlation rules, as well as a hidden structure of the city based on crowd mobility analysis. Therefore, our

proposed methods contribute to our understanding of human mobility in a large metropolitan area.
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1 INTRODUCTION

Understanding human mobility benefits numerous applications in urban planning, traffic control,
city management, and government decision-making [1–4]. Recent years have seen studies on hu-
man mobility using both traditional questionnaire-based sociology methods [5] and data-driven
approaches [1, 6]. Problems such as single user mobility patterns and specific social group move-
ment, e.g., tourists and students, have been widely studied [7–9]. These studies have focused on
the regularity and daily motif of people. It has been found that individual human movement is a
combination of periodic visits to a few important places such as home and a working place, plus
occasional exploration of new places such as restaurants and parks [10, 11].

Different from single-user trajectory analysis and particular user group movement, on the other
hand, general group movement, or crowd mobility problems provides deeper insights. Mobility
viewer [12] is a visualization attempt on city level crowd flow. It provides a view of crowd flow
based on the base station. Calabrese et al. [13] discovered a correlation between the location of a big
event like a performance and the home locations of the event-goers. They found that local residents
tend to participate in nearby events. Moreover, people living in different regions have different
tastes of activities. For example, some neighborhoods prefer sports while other neighborhoods
prefer music.

Despite these studies, there have been few studies on the general regularity of everyday crowd
mobility in metropolitan areas. Mining regular crowd mobility patterns in metropolises is still an
open research question. Cities are constantly on the move [3]. Everyday, at every moment, people
go home, to work, shopping, or to entertainment by traveling from one block to another. Differ-
ent blocks have completely different crowd commute patterns. A deeper understanding of city
block level commute patterns contributes much to urban planning and smart transportation de-
sign [14]. Meanwhile, crowd mobility connects different regions of a city together. At the crowd
level, people of similar living habits who roughly live or work in the same place generally share
similar trajectories. Thus, certain regions are related by crowds, which form communities. Study-
ing the correlations between blocks of the city, based on everyday crowd movement, can therefore
help us understand human living habits and social structures and, in turn, contributes to better
transportation system design and policy making.

Fine-grained crowd mobility analysis is challenging for three reasons. First of all, there is a lack
of large-scale and fine-grained data. Traditional surveys [5] and GPS data [15] are limited in cover-
age while transportation data are biased and can only provide information on traffic instead of the
metropolis’s overall population. The characteristics of these data make crowd mobility analysis
heavily depend on inference from limited and biased data to understand the global phenomenon,
which yield unreliable results. Meanwhile, there are a few studies on crowd mobility using much
more ubiquitous call detailed records (CDR) [1], yet CDR data are usually sparse in records as
users are unlikely to make many phone calls in a single day, which is not suitable for the analysis
of regular crowd mobility. Secondly, crowd mobility analysis requires careful selection of spatial
resolution and division to aggregate crowds. Cellular towers partition the city solely through cov-
erage and the coverage of one tower often cuts blocks into halves. Thus, crowd analysis on cellular
tower regions is not meaningful for applications and suitable spatial resolution is needed. Further-
more, crowd mobility analysis requires trajectory modeling and processing techniques for sensible
crowd analysis. It is tough to extract crowds from raw individual trajectories as everyone follows
their own routes with random explorations, deviating from their usual trajectories, which makes
it impossible to find groups of individuals sharing the same trajectories. How to extract semantic
places (homes and working places, for example) and analyze sensible crowd mobility is therefore
challenging.
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Luckily, as the main function of a mobile phone shifts from the sparse use of phone calls/texts
to much more frequent use of apps and Internet browsing, larger, finer-grained, and ubiquitous
datasets become available. The resulting individual trajectories with higher sampling rates enable
us to perform a direct metropolitan scale analysis on crowd mobility with fine granularity. Taking
advantage of mobile cellular data accessing trace datasets collected from April 1 to April 7, 2016
on 0.85 million users in Shanghai, China, we make attempts to mine the everyday crowd mobility
patterns on a city block level in a metropolitan area. To address the challenges, we propose a
systematic pipeline of analyzing crowd mobility on a block level from cell phone trajectory data.
Our contributions can be summarized as follows:

—We make use of a large-scale and fine-grained cellular tower accessing traces in a metropol-
itan area and analyzing everyday crowd mobility patterns on the citywide scale. We detect
blocks from road networks and carry out crowd mobility analysis on a block level instead
of at the cellular tower level, resulting in highly meaningful results for applications.

—We develop effective algorithms to detect home regions, working places, and stay regions
from individual user trajectories, based on people’s periodic visit patterns. We validate our
algorithms via ground truth data labeled by volunteers.

—We visualize the distribution of home and working place, as well as commuting distance
with block granularity on choropleth maps. Analyses discover the complex mixed func-
tionality of Shanghai’s city structure. By focusing on block correlation patterns caused by
crowd mobility and with the aid of statistics and the community discovery method Infomap,
we discover the hidden correlation rules and neighborhood structures of Shanghai. To the
best of our knowledge, we are the first to do analyses on block commute patterns and spatial
correlation from a crowd mobility perspective.

The rest of this article is organized as follows. Section 2 describes the utilized dataset and pre-
processing procedure. Section 3 presents an overview of our crowd mobility analysis system, and
related algorithms such as home/working place detection, stay region detection, and community
discovery method. Section 4 carries out the block level everyday crowd mobility analysis. After
reviewing related work in Section 5, we provide concluding remarks in Section 6.

2 DATASET, DEFINITION, AND PREPROCESSING

2.1 Mobile Cellular Data Accessing Trace

The trajectory data used in this study is mobile cellular data accessing traces collected by one of
China’s largest mobile operators, China Telecom, in Shanghai, one of the largest cities in China,
from April 1 to April 7, 2016. As China’s three major operators provide similar service, the users
recorded in the dataset can be viewed as randomly sampled from the overall population. Whenever
a user connects to a nearby base station via phone calls/traffic, the user’s service information is
recorded. Data are collected with the format of user ID, base station ID that the user gets access
to, and the timestamp of the Internet connection. We define users’ records as relation Raw Record
R as follows.

Definition 1 (Raw Record R). R is a relation recording users’ mobile cellular data accessing trace.
A tuple in relation R is in the format of (ui ,bi , t ), where ui represents the ID of the user, bi rep-
resents the ID of the base station, and t represents the timestamp of the cellular tower access,
meaning that user ui accesses base station bi at timestamp t .

The GPS information of all base stations are also available. We define relation Base Station
Location Lb as follows.
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Table 1. Cellular Data Information

Item Value

Coverage Shanghai
Number of Base Stations 8,573

Record Duration April 1–7, 2016
Mean Number of Records per User 227.34

Total Record Numbers 193,115,587
Max Number of Records per User 10,012

Number of Users 849,439
Min Number of Records per User 1

Definition 2 (Base Station Location Lb ). Base Station Location Lb is a relation recording the GPS
information of each base station. A tuple in Lb is in the format of (bi ,x ,y). bi represents the ID of
the base station while x and y represent the longitude and latitude of the base station.

Compared with GPS data that provides rather accurate longitude and latitude information of
users, the spatial granularity of the cellular data accessing trace is lower as it only captures the ID
of the base station that the user accesses. Yet base station level granularity is sufficient for crowd
mobility analysis. In our dataset, cellular data accessing traces has been recorded on 8,573 base
stations across Shanghai. As regulated by communication protocol, users mostly connect to the
nearest base station when using the cellular network. Thus, we can determine the rough location
of the users through the GPS information of the base station, whose coverage range in downtown
Shanghai is about 200 meters to 500 meters while the suburban base station coverage is about 2,000
meters. In crowd mobility analysis, we care more about the approximate region where people are,
rather than the exact location points of people. Furthermore, GPS data is seldom available for large
group of people in a city as the user group is quite often limited and biased (e.g., taxi drivers).
Therefore, GPS data are not suitable for studying general crowd movement and city zone features.
On the other hand, cellular data accessing trace is ubiquitous and covers the entire population.
Thus, it is the most ideal dataset to study region level crowd movement for now.

The dataset used in this work has 200 million records for 0.85 million users, with an average
record number of 227 for 7 days, or 33 records per day, per user. Detailed statistics for our data
is found in Table 1. We filter out users with record numbers less than 20 in the dataset to ensure
that users’ trajectories are well-sampled. The filtered data includes records for 0.75 million users.
Compared with past work, our dataset is much larger and denser. It is ideal for crowd mobility
analysis on urban blocks, enabling us to gain insights on a global scale with fine granularity.

2.2 City Block Division

Our mobile traffic accessing trace data is recorded on a cellular tower level. Making use of a Voronoi
diagram, we obtained a division of the city where the center of each region is a cellular tower,
based on which we can do analysis. However, urban subdivision based on a Voronoi diagram is
not geographically meaningful enough, as a Voronoi cell usually goes through streets and divides
the same block in halves, preventing further applications in urban planning.

Therefore, using the idea from Ref. [16], we subdivide a city into blocks based on the city’s
road network. First the city is divided into various small regions using the finest grained road
networks through a raster-based model, where “0” stands for road segments and “1” stands for
blank space. Then a dilation operation is performed so as to eliminate unnecessary details as lanes
and overpassed roads. A connected component identification algorithm (e.g., see Ref. [17]) finds
basic block units by clustering all consecutive “1” labeled grids. Finally, nearby block units located
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Fig. 1. System architecture.

within major road networks (National Highway) are merged together to get blocks. In Shanghai,
we are able to identify 17,056 basic block units and obtain 2,047 blocks for analysis.

The 2,047 blocks division partitions Shanghai into easily understood large blocks based on ma-
jor road networks. Compared with the 17,056 basic block units partition, the 2,047 blocks division
reduces errors when mapping Voronoi cells of cellular towers into blocks, which lays a solid foun-
dation for our analysis and applications.

2.3 Data Preprocessing

The original geographical coordinates of the block division are in Baidu Map coordinates while
cellular tower locations are in GPS coordinates. The two coordinates are not exactly the same and
sometimes the same point when represented under the two coordinate systems have a deviation
of a few hundred meters deviated from each other. Therefore, we first use the coordinates trans-
formation API offered by the Baidu Map to ensure the two geographical data are under the same
coordinate system.

Next, we join relations Raw Record R and Base Station Location Lb on bid . Thus, we are able to
get trajectory centers of all users for a week. We first define relation TBS .

Definition 3 (TrajectoryTBS ). TBS is a relation recording the location centers of users at a certain
timestamp. A tuple inTBS is in the format of (ui , t ,x ,y), whereui represents the ID of users while x
andy represent the longitude and latitude of the base station that the user accesses at timestamp t .

We further map relation TBS into the obtained blocks, and define relation TBl .

Definition 4 (TrajectoryTBl ). TBl is a relation recording the blocks users access at a certain times-
tamp. A tuple inTBl is in the format of (ui , t ,bi ). ui represents the ID of a user while bi represents
the block ID the user accesses at timestamp t .

3 SYSTEM ARCHITECTURE AND ALGORITHMS

The architecture of our crowd mobility analysis is shown in Figure 1. The input to our system is
the individual cellular accessing trace and the output is the crowd mobility patterns. For better
commute pattern analysis, we first label important places in the individual’s trajectory as homes
and working places. Based on these results, we aggregate them at the block level and carry out
crowd mobility analysis.
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3.1 Semantic Mining for Individual Trajectory

The preprocessed cellular data accessing trace is a series of individuals’ trajectories. As revealed
by many studies, individual trajectories show high periodicity both on weekdays and weekends
[1, 18], as people tend to visit the same place at the same time slots of a day.

For crowd mobility analysis on the block level as identifying commute patterns and community
structures, we need first to apply some processing procedures on the individual trajectories to
filter out noises and extract semantic information. There are a few semantically important places
for users like homes, working places, and their preferred restaurants, where they spend most of
the time. Meanwhile, users pass by lots of less semantic places on their way. However, cellular data
does not distinguish semantics. For example, a user may use the phone on the subway when going
to work and be recorded at cellular tower A, despite the fact that the user is not really related to
the activity happening in the region nearA. We would like to extract semantic places in individual
trajectories to make the analysis more meaningful.

Based on individual users’ high periodicity in trajectories, it is feasible to detect important places
of users in our week-long dataset. Labeling homes and working places is also possible. Now we
first focus on methods to identify users’ homes from trajectories. Next, we explain the stay point
identification algorithm and a working place detection approach based on the stay point algorithm.
Thanks to our fine granularity dataset, we are able to use simple modeling and achieve good results.

3.1.1 Home Detection Algorithm. Home is considered as the place where people rest at night.
As a cell phone is normally inactive when the user is asleep, it is very likely that the first and
last location appearing in a user’s daily trajectory is recorded at the user’s home. However, under
some circumstances, a user may not use his/her phone directly after getting up or going to bed,
but first uses the phone at other places such as on his way to work. We eliminate such a possibility
by adding a temporal constraint that a “valid” candidate home location should be recorded either
earlier than a threshold Te or later than a threshold Tl . Furthermore, we drop all records from
12 a.m. to 4 a.m. in our dataset to avoid interference of unusual cellular network connection when
the user is supposedly asleep.

Definition 5 (Candidate Home). We consider a location asCandidate Home of user i if all of the
following criteria are met:

—The first point or the last point in the daily trajectory of user i .
—The record timestamp for the first point in the trajectory should be earlier thanTe , and the

record timestamp for the last point in the trajectory should be later than Tl .
—The record timestamp for the first point in the dataset should not be a time when the user is

supposedly asleep, which is automatically achieved as we first drop records with timestamp
between 12 a.m. and 4 a.m.

For week-long data, we are able to get up to 14 candidate home locations for user i . Next, we
label the most frequently appearing location in user i’s Candidate Home lists as user i’s home.
As a block is a more meaningful spatial partition than a Voronoi cell, we use relation TBl as the
algorithm’s input. The output of the algorithm is the user’s home block. The pseudo-code of the
algorithm is shown in Algorithm 1.

3.1.2 Stay Region Detection Algorithm. As mentioned above, not all records in a user’s trajec-
tory are meaningful as a user may be recorded while passing a district. What’s important in the
trajectories are those stay regions where the user stays long enough.

Definition 6 (Stay Region S). A Stay Region S in a user’s trajectory satisfies both temporal and
spatial criteria:
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ALGORITHM 1: Home Detection Algorithm.

Input:

1: Block Level Trajectories TBl , number of users n, number of days nd , early time threshold Te ,
late time threshold threshold Tl

Output:

2: User Home H
Initialize:

3: TBl ← TBl .drop (t ∈ [0am, 4am])
4: H ← [ ]
5: for i = 1 to n do

6: Candidate_home: HC ← [ ]
7: for j = 1 to nd do

8: TBl,i, j ← TBl .select (ui == i, t ∈ day j )
9: if (TBl,i, j (1).t < Te ) then

10: HC .append (TBl,i, j (1))
11: end if

12: if (TBl,i, j (lenдth(TBl,i, j )).t > Tl ) then

13: HC .append (TBl,i, j (lenдth(TBl,i, j )))
14: end if

15: end for

16: H .append (i,mostcommon(HC ))
17: end for

—The user stays in S long enough, longer than temporal threshold T0.
—The user does not move large distances in S . He/she should not leave the stay center farther

than spatial threshold R0.

Our proposed algorithm first compares two consecutive records in a user’s base station level
trajectory (extracted from TBS ). If the geographical distance between two base stations is lower
than a spatial threshold R0, then the two base stations are considered to be in candidate Stay
Region SC . We take the geographical mean of the two consecutive points as an estimated candi-
date SC . Next, we compare SC with the next record in the user’s trajectory. If the geographical
distance between the two points is larger than the spatial threshold R0, which means the user
moves a large distance to a distant region, then the algorithm checks if the candidate SC meets
the temporal criterion. If the user stays in the Candidate SC longer than T0, then the Candidate
SC is verified as a real stay region. The algorithm outputs the result and proceeds. If the temporal
criterion is not met, then the algorithm moves on detecting the next stay center in the user’s trajec-
tory. On the other hand, if the geographical distance is smaller than spatial threshold R0, then the
weighted geographical mean of the new record point and the original candidate SC center is cal-
culated as the new candidate SC center. The algorithm moves on detecting whether the next point
in the trajectory satisfies the spatial constraint. If met, then the candidate SC center is replaced by
the weighted center of the original candidate SC center result and the location of the new point.
The merge for this candidate SC center terminates when the new point fails to meet the spatial
criterion. Finally, the algorithm checks if the candidate SC center meets the temporal criteria. The
pseudo-code of the algorithm is in Algorithm 2.

Note that our stay region detection algorithm is designed for trajectory data with a relatively
high sampling rate. We assume the user’s real origin-destination information is well-captured in
the sampled trajectory as our cellular accessing data trace. On low-sampled trajectory data, this
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ALGORITHM 2: Stay Region Detection Algorithm.

Input:

1: TBS , number of users n, spatial threshold R0, temporal threshold T0

Output:

2: GPS coordinates of stay center: S
Initialize:

3: S ← [ ]
4: for i = 1 to n do

5: Ti ← TBS .select (ui == i )
6: Candidate stay: SC ← Ti (1)
7: for j = 2 to lenдth(Ti ) do

8: if (dist (SC ,Ti (j )) > R0) then

9: ts ← starttime (SC ), te ← endtime (SC )
10: if (te − ts > T0) then

11: S .append (i, SC , ts , te )
12: end if

13: end if

14: if (dist (SC ,Ti (j )) < R0) then

15: SC ← weiдhtedmean(SC ,Ti (j ))
16: end if

17: end for

18: end for

algorithm could identify wrong stay regions if part of the real trajectory information is missing
(for instance, if the data only captures that a user is at region A at 8 a.m. and 8 p.m., then our
algorithm will identify A as a stay point, while in fact the user travels to various places far away
between 8 a.m. and 8 p.m.).

Through the stay region detection algorithm, we are able to transform the input TBS into stay
center coordinates. We then map the GPS stay center into block level for further analysis.

In practice, we choose T0 as 20 minutes, and R0 as 400 meters in analyzing our dataset.

3.1.3 Working Place Detection Algorithm.

Definition 7 (Working PlaceW ). W is considered the most frequently appearing location during a
user’s weekday trajectory; with constraint, the temporal duration of the stay includes the morning
(9 a.m. to 11 a.m.) or the afternoon (2 p.m. to 4 p.m.).

We propose Algorithm 3. It inputs detected stay regions from Section 4.2 and outputs users’
working places.

3.1.4 Detection Algorithm Evaluation. We evaluate our home and working place detection al-
gorithms via ground truth data labeled by volunteers. We develop an interface visualizing a user’s
location as time changes. Volunteers can determine the home and working place of the user by
viewing the trajectory of a user over time. We randomly selected 200 users’ trajectories from our
dataset, and asked 20 volunteers to label the home and working place location for each user. We
compare the volunteer labeled ground truth data with the outputs of the proposed algorithms. The
test results for home and working place detection are shown in Tables 2 and 3, respectively.

The precision for the home detection and working place detection algorithms are 100% and
89.4% (F1 score 0.94), respectively, while the recall rate for the home detection and working place
detection algorithms are 89.5% and 86.1% (F1 score 0.88), respectively. The test shows that our
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Table 2. Home Detection Diagnostic Test

Prediction positive Prediction negative
Condition positive TP = 119 FN = 14
Condition negative FP = 0 TN = 67

Table 3. Working Place Detection Diagnostic Test

Prediction positive Prediction negative
Condition positive TP = 93 FN = 15
Condition negative FP = 11 TN = 81

ALGORITHM 3: Working Place Detection Algorithm.

Input:

1: Stay Block SB , number of users n, WorkTime TW

Output:

2: Working PlaceW
Initialize:

3: Candidate Working Place: CW ← SB .select ((te or tl ) ∈ TW )
4: for i = 1 to n do

5: CW ,i = CW .select (ui == i )
6: W .append (i,mostcommon(CW ,i ))
7: end for

detection algorithms work well for mining semantics in trajectories. Note that labeling the working
place for some users is difficult as the users’ trajectories vastly vary from day to day, resulting in
the relatively higher false negative in working place detection. Therefore, our detection algorithm
proves to be satisfactory.

3.2 Community Discovery Algorithm

Through semantic mining of individual trajectories, we obtain stay regions, homes, and working
places. By aggregating individuals by blocks, we can further analyze spatial correlation caused by
crowd mobility and detect community structures in the city. The correlation between blocks can
be modeled by a graph model, where nodes are blocks, and the weight associated with the edge
between the two nodes represents the number of people moving between the blocks. Under the
graph model, the problem of finding spatial clusters is equivalent to partitioning the correlation
graph. We make use of the Infomap algorithm to carry out the clustering.

Infomap [19] is a classical algorithm for community detection. The idea of Infomap is to trans-
form the graph partition problem into a minimum length coding problem. It uses the probability
flow of random walks on a network as a proxy for information flows in the real system and decom-
poses the network into modules by compressing a description of the probability flow. Instead of
manually assigning the cluster number, the Infomap algorithm can therefore automatically decide
the cluster number through minimizing the probability flow.

4 BLOCK LEVEL CROWD MOBILITY ANALYSIS

We have now extracted semantic information from raw cellular accessing trajectories correspond-
ing to each individual’s home block, working block, and stay regions. We can then aggregate the
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Fig. 2. Home distribution in Shanghai. The color of each block represents the number of homes in the block.

The darker the color, the higher the level of home distributions.

Fig. 3. Working place distribution in Shanghai. The color of each block represents the number of working

places in the block. The darker the color, the higher level of working place distributions.

individual results on blocks and carry out crowd mobility analysis. We first look at homes and
working place distributions in Shanghai, and then analyze commute distances of crowds. Finally,
we focus on city blocks correlation both at the individual block and community levels.

4.1 Homes and Working Place Distributions

After obtaining individuals’ homes and working places, we group the two relations by block ID and
count the number of users in each block. Thus, we are able to get a distribution of home locations
and working place locations in Shanghai, as visualized in Figures 2 and 3.

From the results, we can observe that the distribution of homes and working places in Shanghai
is quite chaotic. Even neighboring blocks may have completely different distributions of homes
and working places, suggesting that the city is mixed in functionality at the block level, especially
in downtown. Downtown and suburban centers both show a high concentration of homes and
working places, and the two distributions resemble each other. We use the distribution of home
numbers in each block as Shanghai’s home region feature, and the distribution of working place
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Table 4. Metrics for Individual

Commute Distance

Number of Users 427,041
Max. Distances 117.84 km
Mean Distance 5.394 km
Min. Distance 0

numbers in each block as the city’s working place feature, and calculate the Pearson correlation
value between the two 2,047-length feature vectors. Surprisingly, the correlation is as high as
0.9066, indicating a strong correlation between the distribution of homes and working places in
the city. The functionality of city blocks in Shanghai, therefore, is quite vague. Under the 2,047
block-level partition, there is not a very clear difference in functionality such as residence or
working zone (commercial, office, etc.). In fact, where there is a high concentration of population,
there is also a high concentration of homes and working places. The function type of a district is
dependent on time. For example, a district may represent residence function at night as people rest
at home while it reflects a commercial function during working hours when people go to work in
office buildings located in the block. Therefore, rather than identifying a district as of a static func-
tional type (residence, working zone, entertainment, etc.) [20], our results highlight the necessity
to dynamically identify the function of a district for better understanding of urban land use.

4.2 Commute Distances

Commute distance, which measures the distance from home to work, is another important feature
of human mobility. Based on home and working place detection results, we estimate the commute
distance of individual users by calculating the geographic distance of home block center and work-
ing block center. Out of 849,434 users, 427,041 (50.3%) individuals’ homes and working places are
successfully detected.

The statistics of individual commute distance is shown in Table 4. On average, an individual in
Shanghai travels 5.4km from home to work.

We can also track average crowd commute distance at the block level. We first group individual
commute distances on their home block ID. Therefore, we can get a choropleth map, with the
darkness of each color representing the average commute distance of the crowd who lives in the
block, which enables us to learn the overall crowd commute patterns at the block level, as shown
in Figure 4.

By aggregating individual commute distances on their working block ID, we are able to get
another choropleth map, with the darkness of the color representing the average commute distance
of the crowd working in the block, as shown in Figure 5.

From the figures, we can observe distinct crowd mobility patterns for different blocks. In fact,
even neighboring blocks can have very different commute distances. For home blocks, generally
the color of downtown blocks is much lighter than suburban centers, suggesting that people
living in downtown generally do not travel as large a distance for work while people living in the
suburbs could travel long distances. The colors for the working block commute distance figures
are much darker, particularly in the downtown regions. This suggests that people living outside
downtown are going to the city center for work and cover a larger distance. As in Section 4.1,
we use the distribution of mean home-to-work commute distance in each block as Shanghai’s
home commute distance feature, and the distribution of mean work-to-home commute distance
in each block as Shanghai’s working place commute distance feature, and calculate the Pearson
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Fig. 4. Distribution of commute distance for people living in the block.

Fig. 5. Distribution of commute distance for people working in the block.

correlation value between the two 2,047-length feature vectors. The Pearson correlation value is
0.0493, suggesting little correlation between mean commute distance for people working in the
block and mean commute distance for people living in the block. As commute distance is a good
indicator of people’s modes of transportation, which is further associated with people’s living
patterns and economic status, we can conclude that people living and working in the same block
are very likely to be two different groups with different living habits and economic status.

4.3 Block Correlation Based on Crowd Mobility

People travel from one block to another throughout the day, making blocks correlate to each other
through crowd flow. Our large-scale processed stay point trajectories of users make it possible for
us to study such correlations between blocks.

4.3.1 Single Home/Working Place Correlation. Do people living in a block go to the same area
to work? Do people who work in a block live in the same area? We can answer these questions by
analyzing the single home/working place correlation pattern.
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Fig. 6. Home/Working place correlation variance versus the number of home/working places.

To quantify the level of block correlation deviation, we first calculated the weighted spatial
center of all correlated blocks of block i , denoted by Ci , as follows,

Ci =

∑N
j=1 (x j ,yj ) ∗ nj∑N

j=1 (nj )
,

where x j and yj are the longitude and latitude centers of block j, and nj is the number of people
living in block i who work in block j. The total number of blocks in the city is denoted by N .

Next, we define the Correlation Variance of block i , denoted by Vari , as follows,

Vari =

√√√∑N
j=1 (dist (Ci , (x j ,yj ))

2 ∗ nj∑N
j=1 (nj )

,

which depicts the spatial deviation of correlated blocks. We adopt the Correlation Variance metric
to both home and working place correlation.

We plot each blocks’ spatial correlation deviation versus number of homes on the same figure, as
shown in Figure 6. Surprisingly, we obtain the following result. The plot suggests that in Shanghai,
there are no obvious spatial correlations as people living in the same place go to roughly the same
place to work. The correlation between homes and working places are quite complex in that people
living in the same block go to work in different places, and people working in the same place live in
various residence districts. However, the complexity, or the variance of spatial correlation between
home blocks and working places is in close relation with the number of people living or working
in the block. In blocks with a small number of home/working places, the complexity of the spatial
correlation remains almost the same. Above a certain threshold, the complexity grows quickly. As
the home/working place numbers grow, however, the variance again remains stable.

4.3.2 Community Discovery. We now move onto a more global scale analysis. Is there a gen-
eral correlation between groups of blocks in the city? Can we discover spatial clusters in the city
where most users are active only inside the clusters? We adopt the Infomap algorithm described
in Section 4.2.
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Fig. 7. Results of community discovery: Different clusters are shown with different colors. The white line

represents political boundaries. (a) General cluster results based on all stay points, Q = 0.37, 14 clusters.

(b) Weekday clusters based on all weekday stay points, Q = 0.39, 15 clusters. (c) Weekend clusters based on

all weekend stay points, Q = 0.49, 20 clusters. (d) Home_work clusters based on detected user homes and

working places, Q = 0.50, 24 clusters.

In community discovery, modularity Q is widely used to test the quality of detected clusters,
where good partition has Q larger than 0.3. The larger Q , the better the partition result. We use Q
to evaluate our results.

We first implement Infomap on an adjacency matrix of users’ complete stay points, where an
element ei j represents the number of users who stay in both block i and block j in the week-long
data. We end up with 14 clusters and Q = 0.37, indicating strong community characteristics. The
good partition result suggests that crowd mobility in Shanghai has a community pattern, where
users are active in certain zones. Although a single block can have correlations with lots of other
blocks dotted in the city, the overall effect is that neighboring blocks form into the same clusters
as nearby places have the most correlated crowd flows. We also observe that each crowd mobil-
ity cluster resembles a political boundary, as shown in Figure 7(a), yet clusters often go through
boundaries. The similarity could be a result of different region’s political positioning.

Next, we use the Infomap algorithm on an adjacency matrix of detected weekday and weekend
stay centers. On weekdays, users normally cover larger distances, while during the weekend, peo-
ple generally stay within their home regions to relax. The difference can be observed in the cluster
results, as shown in Figure 7(b) and (c), where weekend correlation ends up with more clusters.
For weekday and weekend partition, Q is 0.41 and 0.49, respectively, and shows a higher level of
community pattern.
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We finally detect the correlation between homes and working places. Compared with the cor-
relations of all stay regions, home and working place correlation is even stonger and shows the
greatest community pattern, resulting in the highest modularity (Q = 0.50). A visualization of clus-
ter results is in Figure 7(d). We could also observe that in the cluster result of home and working
place correlations, there exists some non-neighboring blocks in the same cluster, indicating that
the crowd mobility patterns for homes and working places are somewhat less constrained by ge-
ographical distance constraints than other correlations as that of homes and shopping or homes
and entertainment.

In conclusion, based on semantic mining on individual trajectory, we analyze home/working
place distribution, commute patterns on block level, as well as spatial correlation patterns in this
section, which uncovers hidden patterns in crowd mobility.

5 RELATED WORK

In the past decades, many researchers have explored the human mobility problem. Various datasets
have been utilized in these works, e.g., GPS data such as taxi trajectories where the key is deter-
mining similarity [21] and minimizing its dis-similarity [22], geo-social records, and mobile phone
data. Among these data, mobile phone data is an emerging data source with promising application
prospects because of its long-term continuance and high coverage of the population.

The early studies of human mobility began with GPS trajectories. For example, Zheng has done
much work in this field such as measuring the similarity of trajectories [23], inferring people’s
motion mode [15], mining interesting locations [24], detecting crowd flow [2], and so on. Other
work includes extracting stay points from the trace [7], mining trajectory patterns [25], as well
as even inferring the land usage [20]. These studies help us understand the human mobility based
on the GPS trajectories. However, the fact that GPS devices consume too much energy limits their
utility by precluding their use to sense the long-term behavior of a large population.

With the popularity of social networks, more and more people leave their location information
when using services such as flight check-in and location sharing [26], which provide semantic
texts for researchers to understand users’ mobility behaviors. Parent et al. [27] summarized the
semantic trajectories modeling and analyzing methods. Fan et al. [28] utilized the records of a
search engine to detect the potential crowd. Cao et al. [18] studied how revisitation patterns of a
place correlate with the place’s function via semantic spatial temporal data. Based on the check-in
information collected from a location-based online social network, Cranshaw et al. [3] tried to
understand the dynamics of the city. Other works have dedicated to recognize user living pattern
through check-in data [29, 30]. Because of its sparsity in temporal and spatial dimension, the social
data can provide few details about the individual mobility. Thus, many mobility models based on
the social network data are at the group-level mobility model [31, 32].

To our knowledge, mobile phone data with high coverage and easy-access for the operator is
the best data source to analyze human mobility in both the individual and the aggregate level.
Many researchers have done work in this area ranging from data preprocessing to pattern mining.
The work of Gonzalez et al. [1] on understanding individual human mobility patterns is a clas-
sic. Further, Song et al. [6] analyzed the limitation of trajectory prediction and proposed a simple
but effective prediction model. Isaacman et al. [10, 33] proposed a supervised system to identify
important locations for the users and, further, built a simulation model to generate the anony-
mous trajectories. To better understand the human mobility mode, Gonzalez et al. [11, 34] defined
motifs and proposed an interpretable model to simulate the human mobility. From the aggregate
view, some researchers [16, 35] explored utilizing mobile phone data to estimate the population
distribution and obtain competitive results compared with the traditional methods. Dong et al. [4]
utilized mobile phone data to detect unusual crowd. Simini et al. [36] proposed a universal model to
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describe the migration among the US. Mobile phone data have been widely applied in the individ-
ual and aggregate level human mobility research, and achieved a great success.

In summary, our research differs from existing work as we focus on crowd mobility in a metro-
politan area at the block granularity level. We are able to analyze block characteristics as commute
patterns, correlation rules, and spatial network community based on crowd mobility. To the best of
our knowledge, analyses on block commute patterns and spatial correlation from a crowd mobility
perspective has not been put forward in the open literature. Our study offers a new direction for
future crowd mobility analysis.

6 CONCLUSIONS

In this article, we mine everyday crowd mobility patterns on a city block level in a metropolitan
area based on a dataset with 0.85 million users. We propose a systematic pipeline to analyze crowd
mobility on the block level from cell phone trajectory data. By extensive analysis, we discover that
the distribution of homes highly resembles that of working places, and that there is no correlation
between people that live and work in the same block in terms of commute distance. Moreover,
we discover the relationship between the complexity of home/working place block correlation
and home/working place number in that block, and find hidden community structures caused by
crowd mobility. In the future, we plan to focus more on temporal aspects of crowd mobility analysis
to obtain insights into how people move and interact with one another. Other future work includes
adding a spatial browsing capability [37–39] for the trajectories.
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