el

Algorithmica (1992) 8:39-54

Algorithmica

© 1992 Springer-Verlag New York Inc,

Linear-Time Border-Tracing Algorithms for Quadtrees’
Robert E. Webber? and Hanan Samet!:3

Abstract. In applications where the quadtree is used as an underlying object representation, a number
of basic operations are implemented as a trace along the border of the object’s region. A technique is
presenied that determines a way to shift any given scene (as well as its quadiree), so that the border
of all the objects in the scene can be traversed in time proportional to the length of all the borders in
the scene (or thte number of blocks when the scene is represented as a quadtree). This determination
is shown to be performed in time proportional to the length of alf the borders in the scene. This allows
the direct translation of a number of chain-code algorithms into quadtree algorithms without loss of
asymptotic worst-case efficiency. This results in improved worst-case analyses of algorithms that
convert chain codes into quadtrees and that perform connected component labeling of images
represented as quadtrees.

Key Words. Quadtrees, Chain codes, Worst-case analysis, Connected component labeling.

1. Introduction. The quadtree [18],[17]is a hierarchical variable-resolution data
structure designed for efficient manipulation of planar geometric objects. In essence
it provides a technique for sorting the objects. It is frequently used in applications
in computer cartography, computer graphics, computer vision, and robotics. Many
operations that use the quadtree object representation are implemented as a trace
of the border of the object’s region. These algorithms are also used when objects
are represented by their borders (e.g., using a chain code representation [3]).
Hunter and Steiglitz [5] have shown that the number of nodes in a quadtree

is proportional to the size of the chain-code representation of the same object.

Prior attempts to implement algorithms formulated for the chain code using the
quadtree as the underlying representation (e.g, by neighbor finding) yield an
inferior worst-case complexity (although the average-case complexities were simi-
lar for the two representations), In this paper, we demonstrate that, with some
minor preprocessing of the quadtree, it is possible to achieve worst-case complexity
of the quadtree implementation of a given algorithm to be asymptotically equi-
valent to the chain-code implementation of the same algorithm.

The rest of this paper is organized as follows. Section 2 contains background
material. In particular, we explain the notation that we use. We also cite the main

" The support of the National Science Foundation under Grant IRI-88-02457 is gratefully acknowl-
edged.
? Department of Computer Science, Middlesex College, The Umvers1ty of Western Ontario, London,

Ontario, Canada N6A 5B7.
3 Computer Science Department, University of Maryland, College Park, MD 20742, USA.

Received November 15, 1987; revised June 10, 1988, November 21, 1989, and July 9, 19%0. Communi-
cated by David P. Dobkin.

40 R. E. Webber and H. Samet

theorems from the quadiree literature that are used later. Sections 3, 4, and 5 show
how to shift* a quadtree so that the border of the represented object can be
followed in time proportional to the length of the object’s perimeter. Although
these sections are central to the results of this paper, they do not actually discuss
quadtree algorithms. Instead, they focus on the computation of the relative
position of the chain codes that describe the border of the objects in a scene and
origin (i.e., the lower lefi-hand corner) of the quadtree being used to represent that
scene. Once the position of the origin has been calculated, the normal chain code
to quadtree algorithm [14] executes in linear time. If the data is already in the
form of a quadtree, then use of a linear time quaditree shifting algorithm [21] leads
to a linear conversion algorithm. Of course, the computation of the location of
the origin must also be performed in linear time in order for the entire process to
be accomplished in linear time.

As we mentioned above, Section 3 considers the basic question of how to
determine the location for an arbitrary chain code so that it can be traversed in
time proportional to its length. This is the central result. However, in order to
apply it to border-following algorithms, a few more observations are necessary.
This is the subject of Sections 4 and 5. Specifically, Section 4 gencralizes the resuls
of Section 3 to take into account the sequence of nodes that an algorithm would
visit if it were traversing a perimeter corresponding to a specific chain code. Section
4 also considers the implications on the algorithm of Section 3 of nodes along the
perimeter that have different sizes. Section 5 assumes that the position of the origin
is calculated from a quadtree representation of the object instead of from a chain
code representation. This is equivalent to permitting the elements of the chain
code, which serves as the starting point of Sections 3 and 4, to be of varying length.
Section 6 summarizes the significance of these results. It also discusses extensions
of these results to various applications.

2. Background. The quadtree is a hierarchical data structure formed by recur-
sively subdividing a geometric space. There are many criteria that can be used as
a basis for determining whether or not to further subdivide a space. We shall work
with the simplest and most common criterion,” ie., that a square region is
recursively subdivided into four square subregions until the resulting regions are
homogeneous. The four square subregions correspond to the four quadrants (and
hence are labeled NW, NE, SW, and SE). The leaf nodes of a quadtree built from
such a subdivision process are shown in Figure 1.

We view a quadiree, say (, as representing a grid of 27 x 27 cells. The width

4 By “shift” we mean a rigid movement in a direction parallel to either the x or y axis (or a combination
of such movements).

5 The regular recursive decomposition of squares into squares has many special properties that
distinguish it from other tessellations [1]. The regular recursive decomposition of a square into
subsquares was independently developed in many fields, e.g., pattern recognition [97, {107, robotics
[12], and computer graphics [23], [22].

Level 3

Level 2

Level 1

Level 0

Linear-Time Border-Tracing Algorithms for Quadtrees 41

SO |t [[~ o

=l e S o OO

[l el Ll ol R PV PO PN

(=] Lol el TN IS ER Pl P

=l it E= =] k=] (= k]
Lo Cc|loio|laojo o
e = [OO O O
QIO ==l]e

(a) (b) (e

7 8 9 10 I5 16 17 18

(d)

Fig. 1. {a) A region; (b} its binary array; (c) its maximal blocks; and {d) corresponding quadtree.

of this grid, ie, 29 is also referred to as the width {denoted by #7(Q)) of the
quadtree Q. The base two logarithm of #(Q) corresponds to the maximum depth
of the quadtree Q and is denoted by 2(@). The actual number of nodes in Qis
denoted by |Q].

We can map a polygon on a grid represented by the quadiree. If we mark each
cell of the grid that lies on the interior or border of the polygon 4s black and each
cell of the grid that lies exterior to the polygon as white, then we have a
digitization of that polygon onto that grid. The perimeter length of a quadtree is
the length of the perimeter of the scene represented by the quadtree. When a
quadtree represents a single polygon, then the length of the perimeter of the
polygons, measured in grid cell widths, is called the perimeter length of the
quadtree. We shall denote the perimeter length of a quadtree Q by P(0).

Converting a chain code to a quadtree in time proportional to the size of the
chain code requires that the size of the quadtree be bounded from above by some
constant times the size of the chain code. This result, called Tree Complexity Bound
Theorem, was demonstrated by Hunter and Steiglitz [4], [6]. Specifically, they
showed that:

42 R. E. Webber and H. Samet

Oy o

O 2 om0

Fig. 2. Two quadtrees representing a 4 x 4 square in an 8 x 8 image.

The size of the quadtree representation @ of a digitized polygon is bounded
from above by 16 - () — 11 + 16 - {(Q).

Since in general 2{Q) > P((), this result indicates that the size of a quadtree is
O(Z(Q)). This result is intuitively motivated by the observation that most of the
nodes in a quadiree are at the maximum depth and lie along the perimeter of the
objects being represented.

Although the Tree Complexity Bound Theorem yields a convenient upper
bound, there is no corresponding lower bound result. Consider Figure 2, which
shows two quadtrees built from the same polygon but with different relative offsets.
We see that by shifting the polygon by three cells to the right and down, the
number of the nodes in the tree can increase from 5 to 53. These differences can
be arbitrarily large and depend on the origin of the quadtree. Dyer [2] found that,
on the average, the number of nodes in a quadtree representing a randomliy

Linear-Time Border-Tracing Algorithms for Quadtrees 43

positioned rectangle is bounded both from above and below by a constant times
the length of the perimeter of the rectangle. Assuming that a typical scene consists
of a collection of randomly positioned rectangles, it would appear that there is
little expectation of being able to significantly improve, via shifting, the size of a
quadtree that represents a complicated scene.

Nevertheless, Li et al. [11] have developed a dynamic programming algorithm
for determining the origin of a quadtree so as to minimize the number of nodes
that represent a given scene. The worst-case time complexity for applying their
algorithm to an arbitrary quadtree @ is O(#(Q)* - 2(Q)). This represents a
significant amount of work, especially in light of the fact that little improvement
will result in general. A key observation made in the analysis of their algorithm
was that

The number of nodes representing subtrees of width 2 is not changed by
shifting the quadtree’s center to the north, south, east, or west by the amount
2" when r > g¢.

This observation plays an important role in the algorithm that we present in
Section 5.

Algorithms that manipulate quadtrees are often implemented as tree traversals.
The two most common types of tree traversals are top-down traversals and
border-following traversals. Top-down traversal algorithms have been extensively
studied [8], [16]. Such algorithms are based on viewing a task as a composition
of the result of computing the task at each of the subtrees of the current node.

Sometimes a top-down algorithm is inefficient. For example, although the chain
code for a quadtree can be viewed as the merger of the chain codes corresponding
to each of its subtrees, such an approach requires an auxiliary structure for merging
the chain codes of neighboring subtrees as well as space to store all the chain
codes. On the other hand, a bottom-up approach exemplified by a border-
following algorithm can construct the chain codes on the fly as it traverses the
borders of each of the regions in a scene.

Border-following algorithms require that we be able to locate neighbors effi-
ciently. In particular, we must be able to get from one leaf node to the neighboring
leaf node on one of its sides, a process called neighbor finding. Samet and Shaffer
[14], [19] show that on the average 3.5 quadtree links are dereferenced to get
from a leaf node to its neighbor using neighbor finding.®

Neighbor-finding in a quadtree corresponds to finding the shortest path between
two leaf nodes in the graph representing the structure of the quadtree itself. This
shortest path ascends the links of the quadtree until it reaches the nearest common
ancestor of both the node and its neighbor and then descends to the neighbor.

51t has been noted [7], {16], [20] that some restricted kind of nejghbor-finding can be done using
top-down algorithms because the neighbors of a node ©Q are either children of the parent of Q or
children of a neighbor of a parent of Q. Thus top-down algorithms can be implemented so that at
each node the value computed is a function of the node itself and the value of its immediate neighbors
of equal or greater size. However, this approach does not yield a general border-following algorithm
such that its worst-case execution time is linear in the length of the perimeter.

44 R. E. Webber and H. Samet

The exact mechanics of general neighbor-finding are described elsewhere [14],
[15]. Neighbor-finding takes time proportional to the length of the path from the
node to the nearest common ancestor and back down to the neighbor.

In the worst case, neighbor finding in a quadtree Q could be 2 2(Q) or
O(log?(Q)). For a severely unbalanced tree it can be as large as O(|Q[). Thus, the
worst-case analysis for a perimeter-following algorithm based on neighbor-finding
would be O{F(Q) - log Z(Q)) or O(|Q|?). In the rest of this paper we show how to
improve on this result by shifting the location of the origin of the scene before
constructing the quadtree.

3. Positioning when All Nodes Adjacent to the Border Are of Unit Size. Before
considering the positioning of a polygon {(e.g., Figure 3), let us consider a simpler
case. In Figure 4, we have a simple path that snakes back and forth across the
middle of a 16 x 16 grid. In this section, we assume that every cell in the original
grid through which the chain code corresponding to the path passes is a leaf node
in the quadtree, ie., none of the cells merge to form larger quadtree blocks. We
use the term flinks to refer to the individual parts of the path and polygon that
crosses each grid line.

The cost of traversing such a path can be broken up into two parts: the cost
of finding all the horizontal neighbors and the cost of finding all the vertical
neighbors. The cost of finding a neighbor in a quadtree is the number of links
that must be traversed in order to find it. For the path in Figure 4, the cost of
finding the horizontal neighbor is always the same, i, 2 - log 16 which is 8. The
cost of finding the vertical neighbor is a bit more complex to calculate. One of
the vertical neighbors has a cost of § associated with it; two of them cost 6; four
of them cost 4; and eight of them cost 2. The average cost of finding a vertical
neighbor for our example is > 9_, (2977-2- /(2 — 1) < 4.

The optimal positioning for the path of Figure 4 is shown in Figure 5. The cost
of finding vertical neighbors is unchanged, but the cost of finding each of the

15
t4
13
12
10

o0

O = W RN~

01234567809101112131415
Fig. 3. A polygon.

Linear-Time Border-Tracing Algorithms for Quadtrees 45

Fig. 4. A snake-like path.

horizontal neighbors is now 2. Note that it is not possible to find a way to shift
this path so that the cost of finding each vertical neighbor is also 2. However,
observe that the cost is 2 whenever the neighbor (horizontal or vertical) computa-
tion crosses an even-numbered grid line (using the numbering conventions of
Figure 3). Thus it is possible to find a position for the origin so that at least half
of the neighbors can be computed with cost 2. Indeed, all that needs to be done
to do this is to count the number of neighbors whose computation requires
crossing “odd numbered” grid lines and those that require crossing “even
numbered” grid lines, and then determine whether or not it is necessary to shift
the chain code by 1 in order to place the majority of the links on the “even
numbered” grid lines.

Applying the above techniques to Figure 3 requires more work. Of the remainin g
links that we have not set to cost 2 (which is less than or equal to haif the total
number of links in the given direction), every other grid line has a cost of 4. Thus

Fig. 5. Optimal positioning of the path in Figure 4.

52 R. E. Webber and H. Samet

particular, instead of using 2% links of unit length to represent the border of a
node of width 2%, we use one link that is marked as being 2 long.

Now, let us consider how to incorporate a link of length 2% in the algorithm of
Section 4. In particular, we notice that a link of length 2% crosses each of 2%
consecutive “grid lines” exactly once. Thus it plays no role in determining the
shifts for the passes corresponding to the frequency of the costs 2,4,6,...,2 k of
the neighbor-finding operation. Moreover, for all passes dealing with neighbor-
finding costs of 2+ (k + 1) and higher, a link of length 2* counts as one crossing
in the group appropriate to its location.

Extending this observation to a collection of links of varying lengths correspond-
ing to borders along leaf nodes of the same lengths, we see that we can start with
P(Q) separate lists where list k contains links of length 2¢7! (k=1). When
calculating whether or not it is necessary to make a shift of length 271 to ensure
that the larger group of links gets the cost 2 -k, it is only necessary to examine
the links in list k and the links that remain from the immediately preceding pass.
Using the fact that the number of variable size links is proportional to the number
of quadtree nodes, it can be shown that the amount of work being done to calculate
the new position is O(Q]).

The analysis of the quadtree-to-quadtree variation is completed by showing that
we can shift the quadtree Q into the location of the quadtree Qgpp in time
proportional to |Q| + |Qgpsl [21]. This results in a positioning algorithm that
executes in worst-case time O(|Q} + |Qgppl). Thus the entire extended-perimeter
path-balancing operation on a quadtree Q can be performed in worst-case
execution time O(1Q} + |Qgpsl)-

6. Concluding Remarks. In this paper, we have presented a new quadtree
transformation called path-length balancing. It allows us to place a worst-case
Jinear upper bound on the execution time of quadtree algorithms that require the
border of a region to be followed. For example, converting from a chain code to
a quadtree (and vice versa) can be performed in time proportional to the number
of nodes in the transformed quadtree (alternatively in time proportional to the
length of the chain code representation of the objects). Previously this bound was
only achieved on the average [14].

As another example, consider connected component Jabeling [13]. An algorithm
can be devised that traverses the quadtree in a top-down order. Each pair of nodes
of differing colors imply the presence of a boundary. Thus, when such a pair is
encountered, the top-down traversal is interrupted and this boundary is followed
with all nodes along it being assigned the same label if they have not been labeled
already. Once a boundary has been fully followed, the top-down traversal
continues. A second top-down traversal propagates the colors of the nodes along
the boundary inwards. This is facilitated by transmitting each node’s neighbors
as part of the traversal [16]. The key to the execution time analysis of this method
is that use of the path length balancing can be achicved in time proportional to
the number of nodes in the quadtrec. For more details about this algorithm,
including the extension of path balancing to quadtrees containing many dis-
connected regions, see [24].

Linear-Time Border-Tracing Algorithms for Quadtrees 53

Techniques such as those described in this paper serve to demonstrate that the
cost of quadtree algorithms is not significantly influenced by the maximum depth
of the quadtree. Instead, the cost of these algorithms depends on the number of
nodes in the quadtree. In particular, we have seen that use of an asymptotic
worst-case analysis does not yield significantly different results from an average
case analysis when measuring the performance of quadtree algorithms.

[i]
[2]
£3]
[41
{31
[6]
(7

(8}
[«
[10]
[11]
[12]

(133
[14]
[15]
[16]
[17}
(18]
[193
F20]
[213

References

N. Ahuja. On approaches to polygonal decomposition for hierarchical image representation.
Computer Graphics, Vision, and Image Processing, 24 (1983), 200-214.

C. R. Dyer. Space efficiency of region representation by quadtrees. Computer Graphics and Image
Processing, 19 (1982), 335-348.

H. Freeman. Computer processing of line-drawing images. 4CM Computing Surveys, 6 (1974),
57-97.

G. M. Hunter. Efficient computation and data structures for graphics. Ph.D. thesis, Department
of Electrical Engineering and Computer Science, Princeton University, (1978).

G. M. Hunter and K. Steiglitz. Liner transformation of pictures represented by quadtrees.
Computer Graphics and Image Processing, 10 (1979), 289-296.

G. M. Hunter and K. Steiglitz. Operations on images using quadtrees. JEEE Transactions on
Pattern Analysis and Machine Intelligence, 1 (1979), 145-153.

C. L. Jackins and 8. L. Tanimoto. Quad-trees, oct-trees, and k-trees—a generalized approach
to recursive decomposition of euclidean space. JEEE Transactions on Pattern Analysis and
Machine Intelligence, 5 (1983), 533-539.

E. Kawaguchi, T. Endo, and M. Yokota. Depth-first expression viewed from digital picture pro-
cessing. TEEE Transactions on Pattern Analysis and Machine Intelligence, 5 (1983), 373-384.
A. Klinger. Patterns and search statistics. In Optimizing Methods in Statistics, (J. S. Rustagi,
ed.) Academic Press, New York, (1971).

A. Klinger and C. R. Dyer. Experiments in picture representation using regular decomposition.
Computer Graphics and Image Processing, 5 (1976), 68-105.

M. Li, W. Grosky, and R. Jain. Normalized quadtrees with respect to translation, Computer
Graphics and Image Processing, 20 (1982), 72-81.

N. J. Niisson. A mobile automaton: an application of artificial intelligence techniques. In
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 509-520, Wash-
ington, D.C,, (1969),

A. Rosenfeld and A. C. Kak. Digital Picture Processing, 2nd ed. Academic Press, New
York, (1982).

H. Samet. Region representation: quadtrees from boundary codes. Communications of the
ACM, 23 (1980), 163-170.

H. Samet. The quadtree and related hierarchical data structures, ACM Computing Surveys, 16
(1984), 187-260.

H. Samet. A top-down quadtree traversal algorithm, IEEE Transactions on Patiern Analysis
and Machine Intelligence, 7 (1985), 94-98,

H. Samet. Applications of Spatial Data Structures: Computer Graphics, fnage Processing, and
GIS. Addison-Westey, Reading, MA, (1989).

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA,
(1989).

H. Samet and C. A. Shaffer. A model for the analysis of neighbor finding in pointer-based
quadtrees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1 {1985), 717-720.
H. Samet and R. E. Webber. On encoding boundaries with quadtrees. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 6 (1983), 365-369.

H. Samet and R. E. Webber. Hierarchical data structures and algorithms for computer graphics.
IEEE Computer Graphics and Applications, 8(3) (1988), 48-68.

54 R. E. Webber and H. Samet

[22] L E. Sutherland, R. F. Sproul], and R. A. Schumacker. A characterization of ten hidden-surface
algorithms. ACM Computing Surveys, 6 (1974), 1-55.

[23] J. E. Warnock. A hidden surface algorithm for computer generated halftone pictures. Technical
Report 4-15, Computer Science Department, University of Utah {1969).

[24] R. E. Webber. Analysis of Quadiree Algorithms. Ph.D. thesis, Computer Science Department,
University of Maryland (1983).

