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Abstract

Image databases are conceptually much harder to deal with than conventional databases because
the information that they contain consists of images, rather than alphanumeric entities. Images
can be fuzzy and distorted, and they depend on the point of view from which the object is seen.
Characteristics of the images which are invariant to changes in the viewpoint are presented. These
characteristics can be stored as “signatures” for the objects in an atlas database, thereby permitting
efficient retrieval and matching (partial or total) regardless of the viewpoint. Invariant signatures
are useful because image matching is very slow in high-population image databzses. They can also
be indexed easily using current database technology (e.g., the B-tree). Using a sample database
consisting of images of fruits, examples are given of queries in such an environment, and the
advantages of using invariant signatures are illustrated.
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1 Introduction

Incorporating images in database applications is a challenging problem [19]. Given an image of an
unknown object, we can present the image to the database as a query: find a record in the database
containing an image of a similar object, and give us other related information in the record such as
the name and other attributes of the object. In this way, the system “recognizes” an object, i.e., it
can provide useful information about the object just by looking at its image.

However, the construction of an image database poses special difficulties that are not encoun-
tered in most other applications. Most databases use an alphanumeric information representation
of the data. This representation is ideally unique, precise and stable. Images are far from having
these qualities which makes matching difficult. Some of the difficulties are: (a) images are cor-
rupted by noise, occlusion, camera distortion, poor lighting, etc. (b) Even ideal images do not
provide an adequate basis for object identification, because we want to be able to associate slightly
different objects with the same identifier; for instance, we want to identify apples as apples even
though all apples are not exactly alike. (c) Points (2) and (b) apply in other domains such as
speech recognition [8], but there is also a problem unique to images, resulting from the fact that
an object can be seen from different points of view. Each view yields a different image; we would
like to store only one of them in the database, but the problem then arises of how to match the
stored image with an image that was taken from a different viewpoint, if that image is presented
to the database as a query. We do not deal here with the semantics of the image (e.g., {13]); we
are concerned only with the shapes of the objects in the image.

In this paper we propose the use of geometric invariants as an alternative representation for
images in image databases to speed up search and matching queries. Invariants are quantities
computed from the image that remain unchanged under changes in geometric conditions such as
the point of view. These quantities can be stored in the database instead of the images themselves.
. We call such stored data an invariant signature of the object. When a query image is processed,

~ its invariant signature is matched against the stored signatures, rather than matching the images
themselves. In this way we can obtain a match even if the stored data and the query represent images
taken from different points of view. Similarly, we can obtain invariants to small deformations, e.g.,
the ones that represent the differences between different apples. One of the advantages of signatures
is that they can be indexed easily using current database technology (e.g., B-trees). We compute
only one signature per object, chosen to capture the features of interest in the object. We can then
use any one-dimensional indexing technique to speed up access.

We can illustrate this concept with a simple example. In a simple world consisting of sticks, we
want to identify a particular stick by its image. The sticks can lie in any position and orientation,
but we want to recognize a stick regardless of these geometric variations. To do so we can calculate
the length of the stick. Length is invariant to rotation and translation and therefore we can use
it as an identifying signature that is independent of the position and orientation of the stick. Of
course more complicated objects will require more complicated invariant quantities.

The stick example illustrates an invariant to Euclidean transformations, namely rotation and
translation. Other transformations of interest are small deformations. Images also vary under
larger transformations—in particular, projective transformations, which are involved in a general
change of viewpoint.

The role of projections in image formation was probably first recognized by the Renaissance
artist Brunelleschi in 1413 [7]. Projective invariants were a very active mathematical subject in
the 19th century [15]. In the computer vision community, one invariant (the cross ratio of four
collinear points) was discussed by Duda and Hart [8]. General invariants of curves and surfaces
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were introduced by Weiss [26], who also pointed out their utility in building image databases. This
subject is now developing rapidly.

In this paper our focusis on the various issues involved in the application of geometric invariants
in an image database environment. In Section 2 we present a sample database application which
is amenable to the use of geometric invariants. Section 3 describes our database and the types of
queries that we wish to be able to answer. Sections 4-6 are devoted to invariants. In particular,
Section 4 discusses the role of invariants in image databases, Section 5 addresses the issue of which
invariants to use, and Section 6 gives a non-mathematical explanation of the highlights of invariants.
Section 7 contains the results of some experiments on a set of images in our example database
and illustrates how invariants facilitate responding to the queries posed in Section 3. Concluding
remarks are made in Section 8, and directions for future research are also briefly discussed.

2 Application

Our application domain is a database of images of fruits. Our goal is to distinguish between different
types of fruits as well as to find defects in the fruits. The fruits are not constrained to lie in a
particular position or to have a given orientation; and one fruit may occlude another..

Such a database has many potential uses. For example, suppose that we have a conveyor belt
on which the fruits pass under a television camera. QOur task may be real-time inspection, e.g.
detecting the presence of spoiled or undersized fruits and also rejecting them. Alternatively, we
may want to know how many pears, bananas, apples, etc. are present, or their average sizes or color
characteristics. '

A specific application might be to a warehouse or shipping dock. Suppose there are many
different boxes of fruit and we wish to know which fruits are in which boxes, in order to register
the boxes in a database. Since the names and characteristics of the fruits differ from country to
country, one solution is for the database to have a field containing an image of the contents of
each box. This is a self-describing database that is independent of the name; in other words, it is
content-addressable. Now, we can respond to queries such as “find all boxes containing plantains
that weigh over 50 pounds, that were harvested before September 1, 1992, and that have been In
the warehouse for no more than one month”. (Plantains are variants of bananas.) Our techniques
can identify the bananas from their images.

A plausible alternative to the use of an image as a description of the contents of a box is to use a
preprocessing technique to identify its contents and attach a bar code to the box. The identification
can be manual or automatic. Our techniques are applicable to the latter. Nevertheless, the bar
code in itself may not be enough to characterize the shipment as we don’t know all of the possible
queries in advance. For example, we may wish to know if some of the fruits have imperfect colors
or if they have other characteristics which are not known a priori. Thus a real-time capability to
understand the contents of the box :s useful. Another argument against our methods is that all

. we have is a two-dimensional image of some of the contents of the box. However, quality control
inspections do work on the same principle of just looking at a subsample. If the subsample is
defective, then the entire sample is Tejected. We use the same principle.

QOur goal is to distinguish between the various fruits, as well as between instances of a particular
fruit, by use of shape-invariant classification techniques [22}. These techniques enable us to obtain
a signature in the form of a curve for each of the fruits. Occlusion is dealt with by using partial
signatures. The issue of size can be dealt with by specifying the position of the camera relative
to the box or conveyor belt. Factors which depend on the surface quality of the fruit (e.g., spots
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and blemishes) can be detected by the application of standard image processing techniques such as
histograms [23]. :

Our usage of invariants is superior to that of others in the sense that we use more of the infor-
mation available in the image. For example, other researchers working in the theory of invariants
[3, 9] suggest the use of invariants as a way of matching against stored models or indexing into
a database of imaged objects. However, the invariants are formed from a very limited subset of
the image, thereby not permitting variations or irregularities such as those arising from noise or
differences in the position of the viewer. For example, in the case of aircraft identification, Bar-
rett [3] suggests the use of five coplanar points. We can find five points on or near a plane and then
compute two invariants for these five points. The method of local invariants is much richer. Local
invariants can be defined at each point of a shape, and can be used to obtain a “signature” of that

.shape. Thus we take into account the shape properties at every point. Being local, the invariants
are much less sensitive to occlusion than global invariants.

Our techniques are also useful for queries that are based on the use of an image as part of the
query. For example, suppose that we want to know if a particular fruit is present in one of the
boxes in the warehouse. The query can be posed by using the picture of the fruit. Thus we are
using the well-known technique of query-by-example [30] where the picture is one of the fields of
the tuples stored in the database. This is especially useful if we don’t know the name of the fruit.
It enables us to pose the query in a language-independent manner.

As another example, suppose that we wish to find all shipments containing bananas typically
found in Martinique. The easiest way to handle this query is to have an attribute in the database
indicating the origin of the box. However, perhaps such bananas are now also grown in Costa
Rica. By using a picture of the banana, we can find similar bananas. Thus we have a more flexible
database; of course, at the added cost of processing since now we must perform the classification
in real time.

Another way is to use a graphical user interface to outline the fruit. A signature based on the
use of invariants can be computed from the outline and matched against the database. The use of
an outline, but not an invariant-based signature is used in the QBIC system [2].

Our approach is superior to that of Jagadish [18] which only works for objects that can be
decomposed into rectangles. His approach is classical in the sense that he parametrizes the image
(by decomposing it into a small number of rectangles) and then maps the object’s parametrized
representation into a point in a higher-dimensional space. This technique does not take full advan-
tage of the shape domain. In particular, the shape vocabulary is limited to orthogonal rectangles.
It also does not lend itself to queries about the relationships of the objects to their neighbors. For
example, it is difficult to find the nearest banana to a given point using such an approach (but
see [16] for a solution to such problems in the narrower domain of line segments). In [11} some
indexing techniques are proposed but the viewpoint problem is ignored.

3 Database Description and Sample Queries

In this section we describe a possible database as well as some sample queries. Associated with each
shipment in the database is a shipment identifier and a time-stamp which indicates the shipment’s
arrival time at the warehouse. Our database consists of two main parts: static and dynamic. The
static part is an atlas of fruits where information is stored about all the types of fruits known
to the database. The dynamic part contains the information that is relevant to the day-to-day
transactions involving the import, export, and handling of fruits as described above. The types of
queries that are expected are described below using an appropriate adaptation of SQL (e.g., [24]).
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The information in the atlas facilitates the recognition and classification processes. Each entry
in the atlas corresponds to one type of fruit. For each fruit type in the atlas, the following attributes
are stored: fruit-name, fruit-class, country of origin, color-code, quality-code, fruit-size, invariant-
signature, and image. One possible schema is:

create table fruit-atlas {
fruit-name VCHAR(30),
fruit-class VCHAR(30),
country-of-origin VCHAR(30),
color-code INTEGER,
quality-code INTEGER,
fruit-size FLOAT,
invariant-signature SIGNATURE,
jmage IMAGE);

jnvariant-signature is of type SIGNATURE while image is of type TMAGE. Both of these types
are abstract data types. The IMAGE data type can be implemented as a variable-length two-
dimensional array, or as a long field {20, 21]. : :

An example entry in the fruit-atlas database Is
(plantain, banana, Brazil, 112(level of yellow) , 9, 12, 12- 12-10~-10C, image-1).

This entry corresponds to plant ain bananas imported from Brazil with color code yellow, av-
erage quality 9/10, average size 12 inches, and invariant signature
12-12-10-10.

The interpretation and properties of the signature are discussed further in Section 4. The atlas
is populated by a learning system which computes the relevant signatures and associates them with
the corresponding instances of each fruit type. The signature is the classifier for the on-line fruit
recognition system. The signature attribute is assumed to be unique for each entry in the database
and hence can be used as a primary key. image-1 is the value of the attribute image. An example
of this for a pear is given in Figure 3.

Notice that the signature is independent of the shape or boundary of the fruit. It reflects neither
the actual size of the fruit nor its color. The values of these attributes are stored explicitly with the
fruit entry (tuple). In order to deal with issues of quality control, we must have 2 specification of
acceptable, as well as unacceptable, defects for each fruit. This information is stored in the relation
defects. One possible schema is:

create table defects (
defect-code VCHAR(30),
defect-name VCHAR(30},
fruit-signature SIGNATURE,
defect-signature SIGNATURE,
image IMAGE);

The dynamic portion of the database is composed of the following relation, termed shipment:



create table shipment (
shipment-id INTEGER,
time-stamp TIME,

image IMAGE),
invariant-signature SIGNATURE,
fruit~color COLOR,

fruit-size FLOAT,

defect-code SET OF INTEGER);

The shipment relation is populated by a realtime transaction that takes a picture of each box,
and assigns it a shipment-id and a time-stamp. The picture is stored in the attribute image, and
is processed further to generate the signature, size, color, and the defects of the fruit associated
with it. In order to identify the fruit type in a given shipment, the signature is matched with the
atlas (through an index on the signature attribute of the atlas).

Let us now consider a few example queries.

Query 1: Select all possible types of bananas and their images.

select into bananas all
from atlas
where class = "banana"

Query 2: What fruits arrived in today’s shipments?

select distinct a.name
from atlas a, shipments s
where s.time-stamp between TIME("0000/5/3/92") and TIME("2400/5/3/92")

and s.signature = a.signature
Query 3: Find all the defective fruits (i.e., with black spots) in today’s morning shipment.

select into defective s.box-id s.time-stamp a.country-of-origin a.fruit-name
from atlas a, shipments s, defects d
where s.time-stamp between TIME("1030/5/3/92") and TIME("1430/5/3/92")
and s.defect-code = d.defect-code
and ( d.defect-name = "spots"
or s.color = "black" )
and s.signature = a.signature

Query 4: Find out how many boxes of plantain bananas arrived today.

~select count(box-id)

from atlas a, shipments s ,

where s.time-stamp between 0000 and 2400
and a.fruit-class = "banana"
and a.fruit-name = "plantain"
and a.signature = s.signature



Query 5: Find out which fruit is in the given image.

select all
from atlas a
where a.signature = SIGNATURE(InputImage)

Query 5 is evaluated by computing the signature of the given image Inputlmage using the
scalar function SIGNATURE, and then using the index on a.signature to retrieve the matching
fruit from the atlas. Notice that there is no need to access OT Process a.image in this query
since this attribute (image) is preprocessed and only its signature is significant. Also notice that
InputImage and a.image don’t have to match exactly because the signature filters out scaling,
rotation, and translation. ’ :

Query 6: Find how many boxes were delivered today with the same defect as the one shown in the

given image.

select count(box-id)

from atlas a, shipments s

wvhere s.time-stamp between TIME("0000/5/3/92") and TIME("2400/5/3/92")
and s.defects in DEFECTS (InputImage)

DEFECTS is a function whose value is 2 table [14]. One way to evaluate query 6 is to use the
signature of InputImage and to access the shipment relation s through s.signature to select
the boxes with the same signature, and then to match the defects found in InputImage with the
defect attribute of each qualifying shipment. Only the shipments with the time stamp between
0000/5/3/92 and 2400/5/3/92 are reported. :

4 The Role of Invariants in Image Databases

It can be argued that searching 2 database for matching images is equivalent to searching for
invariants. This is also a way of characterizing the task of object recognition in computer vision
and our discussion makes heavy use of this analogy. Given an image of an «ject, we want to
extract one unique invariant. Given another image of the same object, differing from the first by,
e.g., viewpoint, we want to extract the same unique descriptor. To do this, we have to eliminate in
some way the effect of the transformations that gave rise to the differences between the images.

There are several methods of eliminating transformations between images. The simplest is by
performing every possible transformation of one image and seeing if any of its transformed versions
matches the other image. For instance, in template matching [1], it is assumed that a template
and an image differ only by translation, and the template is moved pixel by pixel over the image
until a match is found. However, when more complicated transformations are involved, such as
rotation, projection, etc. this search space becomes overwhelmingly large. :

To reduce the search space, “invariant features” can be used. These are features in the image
that stay invariant under some transformation and can be matched directly between the two images.
For example, an edge remains an edge, so edges can be used for matching. The problem here is
that the kinds of features usually used do not have much distinctiveness. Any edge in one image
can match any edge in the other. This leads to a correspondence problem, which can easily lead to
a combinatorial explosion. Invariant constraints [10] can also be used but they still leave a large

space to search in.



Other methods aimed at viewpoint invariance have their own drawbacks. Fourler descriptors
are not fully invariant and suffer from occlusion problems. Hashing methods such as the Hough
transform {1, 17] break down when a large number of parameters is involved.

The correspondence problem can be solved by using more distinctive invariant descriptors—that
is, descriptors that are invariant only to the transformation we are interested in and not to others.
For instance, a shape descriptor of a fish should be distinct from a descriptor of a frog—that is, it
should not be invariant to a transformation that maps the shape of the fish into that of the frog.
Edges, of course, are invariant to this since they can appear in both shapes. However, they are
“too” invariant—that is, they are invariant to too wide a set of transformations. Thus, we must
try to find features that are invariant only to the transformations that we want to eliminate and
to no others, so they are distinctive enough to match without ambiguity.

‘Change in the point of view is only one kind of geometric transformation that images can
undergo. For instance, we would like to identify an object as a “fish” even if the particular example
of a fish we are looking at is somewhat thinner or fatter than some standard fish. In this case
we need invariants to deformations, i.e., quantities that will not change under a not-too-great
deformation of the object. It is again important not to seek invariance to transformations that are
too general, because then the descriptors will blur the distinction between different objects.

A fundamental question immediately arises: what transformations do we want to eliminate?
When do we decide that two images come from the same object, even though they are different?
Viewpoint change is one example; other transformations will probably depend on the types of
objects in question.

Another consideration in choosing the kind of invariance we need is that the larger the set of
transformations, the harder it is to extract meaningful distinctive quantities that are invariant to
it. (For example: distance is a Euclidean invariant but is not preserved under projection.) Yet
the need for invariants is much more acute, because the larger set of transformations has more
unknown parameters and requires a search in a much bigger space. This consideration thus leads
to the same conclusion as the distinctiveness argument: we have to find optimal invariants, i.e.,
ones that will stay invariant under the set of transformations that we want to eliminate, but not
under a larger set.

A paradigm for matching in image databases can thus include the following:

1. Identify the transformations that an image can undergo and still describe the same object—
that is, the transformations that we want to eliminate for particular classes of objects.

2. Find descriptors that are invariant to these transformations but not to others.

3. Use these descriptors to index shapes and match them.

In the next section we discuss item 1 above, while items 2 and 3 are dealt with in the remaining
- sections. ‘

5 Which Invariants?

In this paper, we only deal with purely geometric invariants—that is, ones that can be calculated
from the shape alone. Other surface properties such as shading, reflectance, color, etc. can also be
considered as invariants, subject to the same considerations as above, but are bevond the scope of
this paper.



The most obvious useful invariants are the ones that are invariant to the FEuclidean transforma-
tions (i.e., translation and totation). A simple example is the length of a rod, which is invariant
under rotation. In a simple world consisting of rods that lie in a plane, and images that can only
rotate, we can identify a particular rod by measuring its length on the image and comparing it
to a database of rod lengths. The rod’s orientation is irrelevant and can be ignored. As another
example, when a 2-D curve is rotated or translated in the plane, its curvature at each point does
not change. Thus curvature is an invariant of the Euclidean transformations. It is common to plot
the curvature of such a curve as a function of its arc-length (which is invariant up to a starting
point [12]) to obtain a 9-D Euclidean invariant representation of the curve. Curvatures of surfaces
have also been used when they can be measured (e.g., from range data (4]}

The formation of images in general involves a larger set of transformations (including the Eu-
clidean ones). A projective transformation, for example, is more general than a Euclidean transfor-
mation, and includes projections between planes that are not parallel to each other. The number
of free parameters in this case is eight!, so finding the correct point of view can involve a search in
an 8-dimensional space! Clearly pro jective invariants, namely gquantities that are unchanged under
this transformation, are of crucial importance.

When enlarging the transformation set, the problem arises that the invariants of the smaller set
do not remain invariant. The length of a rod is no longer invariant under projective transformation.
Similarly, an oblique view of a circular disc yields an ellipse, and obviously neither arc-length nor
_ curvature is preserved under such projections [25].

To find invariants of larger sets, we have to extract more information from the image. While
finding length requires two points, a similar projective invariant needs four, so we need to extract
more data from the image to obtain reliable results. This is more than offset computationally by
the enormous savings resulting from the elimination of the search. However, it does lead us to
conclude that we should not enlarge the transformation group beyond what is absolutely necessary.

Projective transformations (termed projectivities) are the smallest group that includes all pos-
sible viewpoint-related changes in images, and therefore we concentrate on them. Apart from the
invariants issue, using projective geometry can unify and simplify the treatment of perspective and
orthographic projections, which are often treated separately [1]-

The most readily useful projectivities are the ones operating on a 2-D plane. One view is
sufficient to reconstruct a planar shape (except for the projectivity) [29). Therefore invariants by
themselves are sufficient as a means for indexing and recognizing planar shapes. They are also
applicable to 3-D objects, since many objects contain planar shapes, such as facets, symmetry
planes, etc., which are generally projected onto the image as planes. In addition, small areas of
a 3-D surface can be approximated as planar. Thus, 2-D projective transformations and their
invariants can be used for recognition of many 3-D objects.

Smaller subsets of the projective transformations are often quite useful. When the object is
{ar from the camera, we can assume that the projection rays are nearly parallel, which defines the
ffine transformations. If we can find one feature point that can be regarded as unchanged in the
projection, we have a perspective transformation. Euclidean transformations are a COMINON subset
of both the affine and perspective transformations.

In 3-D, we rarely need to consider a full projection. A surface in 3-D can be translated, rotated
or perhaps scaled, but not pro jected. However, 3-D pro jective invariants of curves and surfaces do
exist and they are summarized by Weiss [3, 6, 26). The Fuclidean and affine 3-D invariants have
the same role of indexing of 3-D shapes as the projective invariants have in 2-D.

'Translation, rotation, scaling {horizontal and vertical), shear, and slant (horizontal and vertical).
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The case of projecting a 3-D object into a 2-D image is of a different nature. In this case, true
invariants cannot be found because the depth information is missing and cannot be recovered by
purely geometrical methods. Additional, “model-based” knowledge is needed to reconstruct the
missing information, and this is beyond the capacity of invariants alone. However, invariants can
be very useful in combination with additional information.

The image of an object can change on account of more than just a change in the viewpoint.
Thus there is a need for more general geometric invariants. As mentioned before, it is interesting
to deal with invariants of small deformations, e.g., ones that change the shape of a fish somewhat
but still leave the general shape intact. Here we are only interested in small deformations because
if the distortion is too large it may change the object beyond recognition. Invariants for general
deformations probably do not exist because if they were invariant to any kind of change, then they
would be meaningless. However, we can find “quasi-invariants”, namely quantities that change
slowly relative to the transformation itself. Thus, if the deformation is small, then the change in
the quasi-invariant will be even smaller and it will be observed as an invariant for all practical
purposes. If the distortion is very large, then we may have a different object altogether and the

quasi-invariant is different too.

6 Highlights of Invariants

Deriving invariants can be quite mathematically involved and we cannot discuss them fully in this
short paper. We will only give here a number of examples of affine and projective invariants as well
as quasi-invariants. For more details see the review by Weiss [27].

There are two main kinds of invariants: global and local. The calculation of global invariants
requires knowledge of the entire shape. For example, we need a whole contour to find area, a Eu-
- clidean invariant. Moments and Fourier coefficients are other examples of global shape descriptors
which have some invariant properties. Global invariants are relatively easy to calculate but they
are sensitive to occlusion. That is, if part of the shape is missing from the image or is occluded by
another object, we obtain a totally incorrect value for the descriptor.

Local invariants avoid the occlusion problem by performing the calculation pointwise, i.e., in a
small neighborhood around each point of the visible contour of the shape. For example, it is quite
common to plot the curvature of a contour with respect to the arclength—that is, the length along
the contour from some starting point to some given point. This allows to deal with “incomplete”
queries, in which part of the information expected in the query is missing (due to occlusion)
but there is still enough information to retrieve the desired record. Denoting the curvature and
arclength by « and s respectively, we obtain a curve of x(s) representing the visible contour. Both
arclength and curvature are invariant to Euclidean transformation, and thus we obtain an “invariant
signature” that can identify the curve. This curve can be stored in a database and it will match
the signature of a similar object (contour) presented as a query, even if the query object is moved
or rotated with respect to the object originally stored in the database.

It is desirable that images be invariant to transformations more general than the Euclidean
ones. Below we give an example of affine and projective local signatures of objects. An affine
transformation is simply a general linear transformation in any coordinate space. Since images are
two-dimensional entities, most of the work on using invariants has been limited to the plane. An
. affine transformation in the plane has six degrees of freedom: the three Euclidean ones (translation
in z and y directions and rotation), scaling (independently in the z and y direction) and shear. A
projective transformation is more general. It includes the foreshortening of images resulting from
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slanting one plane with respect to the other. The slanting can occur in either the z or y directions
(or a combination of them), and thus we have two additional degrees of freedom.

We have already mentioned that length is a Euclidean invariant. Others are area, angle, and
curvature {the latter being a local invariant). None of these stay invariant under the more general
affine transformation. However, it is easy to show that ratios of areas are affine invariants. Ratios of
lengths are invariant only if the line segments are collinear. There are also local affine invariants, the
so called affine curvature and the affine arclength [12]. Local invariants are obtained from a curve
(or surface) point and its infinitesimal neighborhood, rather than from discrete features. These can
be used to obtain an affine invariant signature of a curve, by plotting the affine curvature against
the affine arclength. The signature can then be used to identify the curve as described earlier. The
curve can be the boundary of the object or some part of it. '

The easiest way to show the invariance of the ratios is by using the method of determinants.
Under a linear transformation, any determinant is multiplied by the J acobian of the transformation
(i.e., the determinant of the transformation itself), and that makes any determinant a “relative”
invariant. The ratio of determinants climinates the multiplicative factor and is thus an invariant.
Areas and lengths can be represented as determinants and thus their ratios are invariant.

In the projective case, the ratios are no longer invariant. However, the so called cross ratios (or
ratios of ratios) are. Figure 1 shows four collinear points projected from one line to another. The
cross ratio of the lengths of the line segments is

Liglag _ (z1 — z2)(®3 — z4)
Lilaa (21— z3)(z2 — z4)

where the z; are the coordinates of the point along the line and the [;; are lengths. This cross ratio
is invariant to projection. Similarly, given five points in the plane (no three of which are collinear),
‘the cross ratio of the areas of the triangles defined from triples of the points Is invariant. These
relations can be proven using determinants defined in so-called homogeneous pro jective coordinates.

Figure 1: Projection of four points from one line to another.
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As for local invariants, the situation is more complicated than in the affine and Euclidean cases,
and the method of determinants cannot be used. The difficulty lies in the non-linearity of the
transformation. However, local projective invariants have been found by several methods [28, 29].
The easiest way is probably the canonical method. The basic idea is to transform the given
coordinate system to a “canonical”, or standard system, which is determined by the shape itself.
Since this canonical system is independent of the original system, it is invariant. All quantities
defined in it are thus invariant.

This is easy to illustrate in the Euclidean case. To find an invariant at a given point on a curve,
we change the z,y axes so that the new z-axis is tangent to the curve at that point. We thus have
7' = 0, while the second derivative §" at this point is now the curvature. It is invariant since we
obtain this canonical system regardless of the coordinate system with which we start. We see that
by determining some of the properties of the system, the others are also determined and become
invariant. We have generalized this process to the affine and projective cases and found two local
invariants at each point [22]. These can be plotted against one another to obtain an invariant
signature curve. '

The next problem is finding invariants of small deformations, as mentioned before, so we can
deal with slightly different objects such as two apples. Here we can use the concept of quasi-
invariants, introduced by [5] Binford (albeit in a different context). Unlike strict invariants, which
are absolutely unchanged under a transformation, the quasi-invariants do change but at a much
slower rate than the transformation itself. Mathematically, the first derivative of the quasi-invariant
(with respect to the transformation) vanishes and the change is only in the second order. If we keep
the higher terms of the Taylor expansion of the transformation small, than the high order terms in
the invariants are also small and their change is slow.

It is easy to prove that affine invariants are quasi-invariants with respect to small deformations.
Any deformation can be expanded in a Taylor series, and the first order terms of the expansion
are of course linear. The affine invariants are already invariant to this linear part, and only the
small higher order parts can affect it. Thus the affine invariants meet the test of quasi-invariants of
the more general (small) deformations, namely they change only slightly. Thus, we use the affine
invariants as signature for classes of objects such as apples. In the following we use the boundaries
of objects as our curves. The quasi-invariance not only assures that we get the same signature for
slightly different apples but also accounts for the fact that different points of view make the visible
boundary somewhat different.

7 Experiments

Our sample database consists of a collection of fruits. The database is small because the imple-
mentation is still in the developmental stage, but it seems to be large enough to provide a proof
of the basic principles. In the following examples we make use of the occluding boundaries of the
fruits, i.e., the boundaries visible to the eye as we look from a particular point of view. Unlike a
rigid object which stays the same regardless of the point of view (even if it looks different), the
occluding boundary changes with the change in the point of view. That is, not only the projection
of the boundary in the image changes, but the boundary itself changes; we see a different boundary
when we change our viewpoint. Nevertheless, the basic shapes of the fruits remain more or less
similar. We can recognize a pear shape regardless of which boundary we look at, except for some
degenerate points of view,

Because the boundary changes, we cannot expect to find strict invariants to changes in point
of view. Such strict invariance can only hold for rigid two-dimensional objects. However, we can
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Figure 4: The projective signature for the pear in Figure 2b.

the signatures for the two pears in Figure 2. The difference between the affine signature of the
pear in Figure 2a and that of the banana in Figure 7 is shown in Figure 6b. The signatures are
superimposed on each other. '
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Figure 5: Affine signatures for the pears in Figure 2.

Figure 7 shows a different fruit, a banana. We computed the projective signature for the banana
and compared it with the projective signature of the pear in Figure 2a. The projective signature for
the banana is presented in Figure 8a, and the result of the comparison (via superposition) is shown
in Figure 8b. It should be emphasized that a bigger banana would result in an identical projective
signature. This is because the projective signature is invariant to projective transformations, which
include scaling.

The projective signature of the apple in Figure 9a was compared with the projective signature
obtained from the apple in the middle of the box of apples in Figure 9b. The signatures for the
two apples are shown in Figure 10. Figure 11a is the result of superimposing the signatures of the
two apples in Figure 9, while Figure 11b is the result of superimposing the signatures of the apple
in Figure 9a and the banana of Figure 7. Figure 12a shows a box.of.bananas,-while-Figure:-12b-is—;
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s Concluding Remarks

Image databases have many potential applications, but their development has been very Siow
because of the difficuities inherent in representing images. In this paper we have addressed some

of these difficulties by using the theory of geometric invariants. One of the major obstacles to
she creation of image databases is that the same object yields different images when seen from
different viewpoints, and this makes the matching of stored and observed images Very difficult. We
have overcome this problem by using invariant signatures of the images rather than the images
themselves as identifiers of the objects. We dealt with invariants to geometric transformations such
as rotaiion, projection, similarity, etc and also small deformations. More general types of invariance
are also of interesi—e.g., invariance to illumination or color. These invariants serve to represent the
essential information in the image and index i¢, thereby eliminating irrelevant information, which
is not part of the object itself, such as the viewpoint. Some of these methods may And use in other
types of pon-2lphanumeric databases as well, such as voice databases.
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