Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 1

Improved Bulk-Loading Algorithms for Quadtrees®

Gisli R. Hjaltason and Hanan Samet
Computer Science Department, Center for Automation Research, Institute for Advanced Computer Studies
University of Maryland, College Park, Maryland 20742
{grh, hj s}@s. und. edu

Abstract

Spatial indexes, such as the PMR quadtree, are important in
spatial databases for efficient execution of queries involv-
ing spatia constraints, especialy when the queries involve
spatia joins. In this paper we report recent improvements
in bulk-loading PMR quadtrees, which index arbitrary spa-
tial objects, and present anew agorithmfor bulk-loading PR
quadtrees, which index point data. Our agorithms assume
that the quadtree is implemented using a linear quadtree, a
disk-resident representation that stores objects contained in
the leaf nodes of the quadtree in a linear index (e.g., a B-
tree) ordered on the basis of a space-filling curve. We show
with experimentsthat our algorithmsyield significant perfor-
mance improvements for bulk-loading quadtrees.

1 Introduction

Spatial indexes are designed to facilitate spatial database op-
erations that involve retrieval on the basis of the values of
spatial attributes. A central problemin theimplementation of
spatial indexesisthe time needed to build them in the sense
that theindex isonly worthwhileif thetimeto execute the op-
eration without theindex is slower than the sum of the time
to build the index and the time to execute the operation. Of
coursg, if the database is static, then we can afford to spend
more time on building the index as the index crestion time
can be amortized over the number of queries made on thein-
dexed data. However, we are interested in the case that the
database is dynamic. This situation arises when the output
of an operation, such as a spatial join, resultsin the creation
of new datawhich can be used as input to subsequent oper-
ations. In this case, when we evaluate the efficiency or ap-
propriateness of a particular spatial index, we must also take
into account the time needed to build an index on the result
of the operation.

*The support of the National Science Foundation under Grant IRI-97-12715 is
gratefully acknowledged.

As an example of a spatia join where the output is use-
ful, supposethat given aroad relation and ariver relation we
want tofind all locationswhere aroad and river meet (i.e., the
actua physical locations of bridges and tunnels rather than
just the object pairs of roads and rivers that have a point in
common which isthejoin condition). The locations serve as
input to subsequent spatia operations (i.e., a cascaded spa
tial join as would be common in a spatial spreadsheet [8]).
Therefore, we aso need to construct a map for the output,
which means that we need to construct a spatia index. In
other words, the time to build the spatial index playsan im-
portant role in the overall performance of the index in ad-
dition to the time required to perform the spatia join itself
whose output is not always required to be spatial .

In this paper we examine the efficiency of building the
spatial index by use of bulk-loading which is the process of
buildingtheindex for aset of objectswithout any intervening
queries. In recent years, numerous bulk-loading agorithms
for spatia indexes have been introduced. Most of the atten-
tion has been focused on the R-tree, and related structures
(e.0. [1, 2]). Here weimprove upon an algorithm previoudly
developed by us for bulk-loading a disk-based PMR quad-
tree [7]. Although our presentation and experiments are in
terms of the PMR quadtree, our resultshold for any variant of
thequadtree. Infact, our approach can be adapted to speed up
the construction of many other spatial data structures based
on regular partitioning, such as the buddy-tree [12] and the
BANG file [4]. In our bulk-loading algorithm for the PR
quadtree, the fact that point data has no spatial extent en-
ablesustobuildtheleaf nodes of the quadtreein abottom-up
manner (loosaly speaking). Thisisin contrast to the PMR
quadtree bulk-loading agorithm, which must proceed in a
top-down manner (see [6] for more details including pseudo
codelistingsand atechniquefor extending the al gorithmsfor
bulk-insertions).

The rest of this paper is organized as follows. Section 2
describes the PR and PMR quadtrees and their implementa-
tion. Section 3 presents our bulk-loading approach for the
PMR quadtree. Section 4 describes a bulk-1oading method
for the PR quadtree. Section 5 discussestheresultsof our ex-
periments, while concluding remarks are drawn in Section 6.

Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 2

2 Quadtrees

By the term quadtree [11] we mean a spatia data structure
based on adigoint regular partitioning of space. Each quad-
treeblock (alsoreferred to asacell) coversaportion of space
that forms a hypercube in d-dimensions, usualy with aside
length that is a power of 2. Quadtree blocks may be further
divided into 2¢ sub-blocks of equal size.

The PMR quadtree [9] is a quadtree variant intended for
storing objects of arbitrary spatial type. Figure 1 shows
a PMR quadtree for a collection of line segments. Since
the PMR quadtree gives rise to a digoint decomposition of
space, and objects are stored only in leaf blocks, thisimplies
that non-point objects may be stored in more than one | esf
block. Thus, the PMR quadtree would be classified as apply-
ing clipping, as we can view an object as being clipped to the
region of each intersecting leaf block. The part of an object
that intersectsaleaf block that containsit is often referred to
as a g-object; for line segments, we usualy talk of g-edges.
For example, segment ainFigure 1issplitintothree g-edges
asit intersectsthree leaf nodes.

Figurel: A PMR quadtreefor line segmentswith a split-
tingthreshold of 2, where theline segmentshavebeen in-
serted in alphabetical order.

A key aspect of the PMR quadtreeisits splitting rule. If
the insertion of an object o causes the number of objectsina
leaf block b to exceed the splitting threshold 7" and & isnot at
themaximum level, thenb issplitand theobjectsiné (includ-
ing o) areinserted into the newly created blocksthat they in-
tersect. The sub-blocksare not split further at thistime, how-
ever, even if they contain more than /" objects.

Quadtrees can be implemented in many different ways.
One method, inspired by viewing them as trees, isto imple-
ment each block as a record, where nonleaf blocks store 2¢
pointersto child block records, and leaf blocks store alist of
objects. However, this pointer-based approach is ill-suited
for implementing disk-based structures. A general method-
ology for solving this problem is to represent only the leaf
blocks in the quadtree. The location and size of each leaf
block is encoded in some manner, and the result is used as
a key into an auxiliary disk-based data structure. This ap-
proach istermed alinear quadtree[5].

Thelinear quadtreeisused in anumber of spatial database
systems including SAND, a prototype spatial database sys-

tem built by our group. In SAND, theimplementation of the
PMR quadtree is based on a genera linear quadtree imple-
mentation called the Morton Block Index (abbreviated MBI).
The size of the space covered by an MBI has side length of
2% with O astheoriginfor each dimension, and the minimum
side length of a quadtree block that can be represented is 1.
The MBI encodes quadtree blocks using a pair of numbers,
termed a Morton block value. The first number is the Mor-
ton code of the lower-left corner of the quadtree block, while
the second number is the side length of the block (stored in
log, form). The Morton code of apointisconstructed by bit-
interleaving its coordinate val ues.

The MBI uses a B-tree to organi ze the quadtree contents,
with Morton block values serving as keys. When comparing
two Morton block values, we employ lexicographic order-
ing on the Morton code and the side length. When only rep-
resenting quadtree leaf nodes in the MBI, which isthe case
for most quadtree variants, only comparing the Morton code
vaueissufficient, asthe MBI will contain at most one block
size for any given Morton code value. For a quadtree | esf
nodewith & objects, the corresponding Mortonblock valueis
represented k timesinthe B-tree, oncefor each object. Inthe
B-tree, we maintain a buffer of recently used B-tree nodes,
and employ an LRU (least recently used) replacement policy
to make space for anew B-tree node.

3 Bulk-Loading PMR Quadtrees

The agorithm in [7] for bulk-loading PMR quadtrees was
based on trying to fill up memory with as much of the quad-
tree as possible before flushing some of its nodes into the
disk-based index. The key idea was to sort the input data
in such a way that the portions that were written out to the
disk would not be inserted into again. This strategy was
shown to achieve dramatic speedup compared to the regular
quadtreeinsertion algorithm. Nevertheless, it had two draw-
backs. First, the way in which it chose leaf nodes to flush,
and thereby result in their insertion in the MBI, did not al-
ways result in their being flushed in sorted order (based on
Morton block values) athoughthey were dmost sorted. The
problemwas that since we could not guarantee that the nodes
were flushed in sorted order, we could not use packing meth-
odstoinsurethat the MBI B-treenodeswere completely full.
Thus it was often the case that an MBI B-tree node would
overflow and hence be split thereby resulting in two nodes
that are 50% full yet thesetwo nodes might never beinserted
into again due to the sorted order. Thus storage utilizationin
the B-tree was very poor. Second, the algorithm relied on a
parameter termed “flushing quotient” to guide flushing. Un-
fortunately, although we found that the algorithm performed
well for arange of parameter values, it was unclear how to
choosethe optimal value or how robust thea gorithmwasfor
any given value.

Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 3

3.1 Improved Flushing Algorithm

To address these drawbacks, we developed a new flushing
algorithm. In the new agorithm, the objects are aways in-
serted in Z-order based on the lower-l€eft corner, i.e., theone
closest to the origin, of their bounding rectangl e (as opposed
tothecentroidin[7]). If available memory has been exhaust-
ed (i.e., the pointer-based quadtree occupiestoo much mem-
ory) upon inserting a new object o, then the algorithmuses o
to guidethe flushing of nodes from memory rather than mak-
ing use of the flushing quotient. Thisisillustrated in Fig-
ure 2, where all quadtree blocksin the striped region can be
flushed. The advantage of our new a gorithmisthat it inserts
leaf nodesin Z-order into the MBI, thusleading to items be-
ing inserted in strict key order into the corresponding B-tree.
This can be exploited to pack the B-tree nodes to capacity,
e.g., withtheagorithmof [10]. Thus, we can achieve nearly
100% storage utilizationin the B-tree.

yA

23 24

25
21|22

18 19]2Ue P

©0) s

Figure2: A portion of ahypothetical quadtree, wherethe
leaf nodesarelabeled in Z-order. Theshaded rectangleis
the bounding rectangle of the next object toinsert.

Another advantage of flushingtheleaf nodesinZ-order is
that thismakes it very efficient to bulk-insertinto an existing
PMR quadtree. Essentidly, it involves merging the ordered
stream of leaf nodes with theleaf nodesin an existing PMR
quadtree (which are stored in Z-order).

The flushing agorithm outlined above may fail to free
any memory. Thisoccurs if alarge number of objectsinter-
sects the boundary between flushed and unflushed leaf nodes
(e.g., the boundary of of the striped regionin Figure 2). We
have developed afall-back method that isinvoked when this
Situation occurs, termed “reinsertion freeing”. Thisinvolves
the removal of a selected set of leaf nodes from the pointer-
based quadtree, and scheduling the objects contained in them
for re-insertionat alater stage. Oneway of implementingthis
isto make the sorting phase and the bulk-1oad phase operate
intandem, in which case there-inserted objects are sent back
to the sorting phase with a new sort key.

3.2 Improved Insertion Algorithm

Likeinsertion agorithmsfor most hierarchical datastructur-
es, the PMR quadtree insertion agorithm is defined with a

top-down traversa of the quadtree. Thus, the CPU cost for
inserting an object isroughly proportional to the depth of the
leaf nodes intersecting it. The single largest contributor to
the CPU cost of the algorithm (besides the cost of updating
the B-treein the MBI implementation) istheintersection test
performed during the top-down traversal. When inserting
an object, the number of intersection tests is bounded from
above by 29 - Dy ax - ¢, Where Dy, iSthe maximum depth
of aleaf node and ¢ isthe number of leaf nodes intersected
by the object (recall that each nonleaf node has 2¢ children).
However, the averageistypically morelike 29 - Dy, where
Daye istheaverage leaf node depth, which is on the order of
log,a« N if the data distribution is not too skewed. Another
significant contributor to CPU cost in the MBI implementa-
tion is the computation of child blocks (in a pointer-based
quadtree, thiscost can be avoided sincethe Morton block val -
ues or some other representation for the quadtreeregions can
be stored in the nodes). The number of these computations
issimilar to the number of intersectiontests. Thus, they con-
tribute considerably to the CPU cost, especidly if this com-
putation is not highly optimized.

The number of intersection tests, aswell asthe number of
Morton code computations, can be dramatically reduced by
exploiting the structure of the quadtree. The key insight is
that based only on the geometry of an object, wecan compute
the quadtree block that minimally boundsthe object. Thisis
illustrated in Figure 3a, where weindicate potential quadtree
partition boundaries with broken lines. We can look up the
Morton block value of this block in the B-tree of the MBI,
which will locate aquadtree leaf block containing the object,
if any exists. Two cases can arise; the minimally enclosing
quadtree block can be inside (or coincide with) an existing
leaf node (e.g., Figure 3b), or there may be more than one
leaf node contained in the minimal enclosing quadtree block
(e.g., Figure 3c). Thus, in the improved PMR quadtree in-
sertion algorithm, instead of starting the top-down traversa
at theroot, we start at the smallest existingnode enclosing the
minimal enclosing quadtree block of theinserted object. The
same technique can a so be used to speed up PMR quadtree
node splits.

(@) (b) (©

Figure 3: (a) Computation of the minimum bounding
block for an object, denoted by heavy lines. Broken lines
indicate potential quadtree block boundaries. The mini-
mum bounding block can (b) be enclosed by a leaf node
or (c) coincide with a nonleaf node.

Thereductionin thenumber of intersection testsperform-
ed by theimproved insertionagorithm dependson D.,..., the

ave!

Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 4

average depth of the quadtree nodes (leaf or nonleaf) in the
final quadtree that minimally enclose each object. For ex-
ample, in Figure 3b, the object is minimally enclosed by a
leaf node at depth 1 (i.e., the leaf nodeisachild of theroot),
whereas in Figure 3c, the object is minimally enclosed by a
nonleaf node at depth 2. For an object o minimally enclosed
by anoder’ at depth D', theoriginad PMR quadtreeinsertion
agorithm must perform 2¢ D’ intersection tests to determine
that o iscontainedin»’. In contrast, our improved a gorithm
avoidsall of these intersection tests, and thus achieves an av-
erage reduction of 2¢ D/, per object in the number of inter-
sectiontests. If o iscontainedinaleaf noden at depth D, the
number of intersectiontestsperformedisat least 2¢(D—D'),
since al child nodes of the nonleaf nodes on the path from
n’ to n must be tested for intersection with o (e.g., in Fig-
ure 3c, the leaf nodes containing o are one level down from
n’/, so only 22 = 4 intersection tests are needed). Hence, the
number of intersection testsperformed by theimproved algo-
rithm on the average per obj ect can be expected to be approx-
imately p(Dave — Di..), Where Dy, isthe average depth of
leaf nodes, 2¢ < p < 2%¢, and ¢ isthe average number of g-
objects per object. If the objects are very small compared to
thesize of thedataspace, D, will benearly ashighas D,
so the number of intersection tests will be small. In the ex-
treme case of point objects, no intersection tests are needed
and D, ~ D! 1. Experiments[6] on typica line maps
showed that our improved algorithm reduces the number of
intersection tests by afactor of 3to 5.

4 Bulk-Loading PR Quadtrees

The bulk-loading method for quadtrees described in Sec-
tion 3 can be used to bulk-load a PMR quadtree for any type
of spatial objects. However, it is possible to do better for
point dataif weusethe PR quadtree[11] (or, moreaccurately,
the bucket PR quadtree) instead of the PMR quadtree. Inthe
PR quadtree (see Section 2), afixed bucket capacity isestab-
lished for theleaf nodesinstead of a splitting threshold. The
method we describe isrelated to the bulk-loading method for
PK-trees described in [13]. Our descriptionisin terms of a
PR quadtree stored in an MBI (see Section 2), but can easily
be adapted to any other representation. Thus, the quadtree
blocks are represented with Morton block values.

When bulk-loading the PR quadtree, we assume that the
data is sorted in Morton code order prior to being inserted,
aswe do in our PMR quadtree bulk-loading method. Rather
than first building a pointer-based quadtree in main mem-
ory, however, we can directly construct the leaf blocks of the
quadtree. Briefly, the algorithm works by adding points, one
by one, to alist of candidates for the current leaf node, ex-
panding thenode' sregion as needed (see Figure4). If adding

'Dave and D! aretypically not exactly equal for points, since D v iSan aver-
age over leaf nodeswhile D is an average over objects. Alternative, and perhaps
more accurate, definitions of D ,.. that makeit equal to D’ for points are as fol-
lows: 1) over al g-objects, the average depth of the leaf node containing them, or 2)
over al objects, the average depth of the smallest leaf node intersecting them.

anew point causes overflow (i.e., morethan ¢ points, where ¢
isthebucket capacity) or causes thenode’ sregiontointersect
aprevioudy crested node, then we construct anew leaf node
in the MBI with the largest possible subset of the candidates
(see Figure 5). For more details, see [6].

@ (b) © (d)

Figure 4: Example of insertions into candidate list, of
points 1-4 (in order), demonstrating expansion of the
current leaf node region (shown with heavy lines). The
squarewith broken linesdenotesthecurrent leaf nodere-
gion prior toitslast expansion.

new leaf new leaf
new leaf X \ X \
.« . ST
lastleaf | , o ° lastleaf | o ° lastleaf | o
buit [built [built o
o e o e . .
@ (b) ©

Figure 5: Conditions for constructing a new leaf node
where the most recently inserted point is denoted by x
assuming a bucket capacity of 8: (a) candidatelist over-
flowsand the new point isin the current leaf noderegion,
(b) candidatelist overflowsand thenew point isnot in the
current leaf noderegion, and (c) expansion of the current
leaf node region causes overlap of the leaf node that was
last built.

5 Empirical Results

5.1 Experimental Setup

Weimplemented thea gorithmspresented in Sections3 and 4
in C++ within an existing PMR quadtree and PR quadtree
testbed. The source code was compiled with the GNU C++
compiler with full optimization (-O3) and the experiments
were conducted on a Sun Ultra 1 Model 170E workstation,
rated at 6.17 SPECint95 and 11.80 SPECfp95 with 64MB of
memory. In order to better control the run-time parameters,
we used araw disk partition. Thisensures that the execution
times reflect the true cost of 1/0, which would otherwise be
partially obscured by the file caching mechanism of the op-
erating system. B-tree node size was set to 4KB, while node
capacity varied between 50 and almost 300, depending onthe
experiment. The maximum depth of the quadtree was set to
16 and the splitting threshold to 8.

The sizes of the data sets we used were perhaps modest
compared to some modern applications. However, we com-
pensated for this by using a modest amount of buffering. In

Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 5

our PMR quadtree bulk-loading algorithm, the space occu-
pied by the pointer-based quadtreewas limitedto 128K. This
proved more than adequate and a larger buffer did not im-
prove performance. A buffer of 512K bytes was alocated
to the sorting process. Interestingly, a smaller a buffer size
of 256K increased running time only dightly (typically less
than 3% of thetotal time). Only oneB-tree nodeat each level
had to be buffered when using our bulk-loading a gorithms,
due to the efficient B-tree packing algorithm that we used.
However, for dynamic insertions, we used a B-tree buffer of
1MB (i.e, for 256 nodes).

In reporting the results of the experiments, we use exe-
cution time. This takes into account the cost of reading the
data, sorting it, establishing the quadtree structure, and writ-
ing out the resulting B-tree. The reason for using execution
time, rather than such measures as number of comparisonsor
I/O operations, isthat no other measure adequately captures
the overdl cost of the loading operations. For each experi-
ment, we averaged the results of a number of runs (usually
10), repeating until achieving consistent results.

In our experiments, we used both non-point data and
point data. The point data consisted of two-dimensiona
line segment data, both real-world and synthetic. The real-
world data consists of three data sets from the TIGER/Line
File[3]. Thefirst two containall linesegment datafor Wash-
ington, DC and Prince George's County, MD, abbreviated
below as“DC” (19,185linesegments) and“PG” (59,551 line
segments). The third contains roads in the entire Washing-
ton, DC metro area, abbreviated “Roads’ (200,482 line seg-
ments). We a so used three synthetic line segment data sets,
containing 64K, 128K, and 260K non-intersecting line seg-
ments. The point data sets that we used were synthetic, con-
sisting of 100K pointseach, in dimensionsranging from 2 to
8. The sets of pointsform 10 normally-distributed clusters,
whose centers are uniformly distributed in the space.

5.2 Findings

Figure 6 shows the execution time for building PMR quad-
trees using dynamic insertions and with the PMR quadtree
bulk-loading a gorithm (using our improved PMR quadtree
insertion agorithm for both). The execution times are ad-
justed for map size, and reflect the average cost per 10,000
inserted line segments. The bulk-loadingalgorithm achieves
a speedup ranging from a factor of 4 to 12 compared to dy-
namicinsertions, i.e., when line segmentsare inserted one by
one into the disk-based PMR quadtree index. Much of this
speedup is dueto reduced CPU cost (typically by afactor of
at least 5). Moreover, as the size of the data sets increases,
the effectiveness of B-tree bufferingin the dynamicinsertion
algorithmis reduced, and most of the excess execution time
becomes due to resultant disk 1/0. On the other hand, as can
be seen in the figure, the insertion cost per line segment for
our bulk-loading a gorithm grows very slowly with the size
of the data set.

w
()]

HDyn.

B RN N W
g o oo o »u o

Ex. time per 10,000 ins. (sec.)

o

DC PG Roads R64K R128K R260K

Figure 6: Execution time per 10,000 line segments for
building quadtrees for the six data sets.

Figure 7 shows the speedup in execution time resulting
from the reduction in the number of intersection tests when
using the improved PMR quadtree insertion a gorithm when
bulk-loading PMR quadtrees for the line segment data sets.
The speedup is considerable, ranging from 30% up to nearly
50%. The speedup in CPU time is about twice that shown
in the figure, since performing 1/Os takes about half the ex-
ecution time when not using our improved insertion algo-
rithm (recall that our technique does not affect 1/0 cost). Fig-
ure 8 shows the corresponding speedup when bulk-loading
PMR quadtrees for point data sets of varying dimensiona-
ity. For the two-dimensional data set, the speedup is about
50%. More importantly, the speedup grows as the dimen-
sionality increases, and reaches a factor of nearly 8 for the
eight-dimensional point data set.

)
o
o
S

45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

Speedup for new insertion alg.

DC PG Roads R64K R128K R260K

Figure 7: Speedup in terms of execution time resulting
from the reduction in the number of intersection tests
when using the improved PMR quadtree insertion algo-
rithm for bulk-loading PMR quadtrees for line segment
data.

Figure 9 compares the execution time when bulk-loading
PMR quadtrees for the point data (with our improved PMR
quadtreeinsertion technique) withthat for bulk-loadinga PR
quadtree with the algorithm presented in Section 4. The ex-
ecution time appears to grow linearly with the dimension for
both bulk-loading algorithms. Thisis to be expected, since
the size of the point data as well as the time to compute ge-
ometric operations grows linearly with the dimension. The
PR quadtree bulk-loading algorithm is dightly faster for al
dimensions, but the difference between the two techniques

Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 6

Speedup for new insertion alg.

P N W b~ 0O N ©

Number of dimensions
2 "3 4 5 6 7 8

Figure 8: Speedup in terms of execution time resulting
from the reduction in the number of intersection tests
when using the improved PMR quadtree insertion algo-
rithm for bulk-loading PMR quadtrees for point data of
varying dimensionality.

gradualy decreases as the number of dimensions increases.
Thisdifference correspondsto the overhead (in terms of exe-
cutiontime) inthe PM R quadtree bulk-loadingal gorithmdue
to the use of the pointer-based quadtree and the associated
flushing process. From thefigure we see that theoverhead is
minor. However, the relative parity of the two bulk-loading
algorithmsisonly achieved when theimproved PMR quad-
tree insertion agorithm is used. Without it, the execution
timefor the PM R quadtree bulk-loading a gorithm grows ex-
ponentially with the dimension, as Figure 8 indicates.

30 x PMR
°PR

Number of dimensions
2 3 4 5 6 7 8

N
ol

N
o

Execution time (sec.)
[
o (&)}

(&)]

Figure 9: Execution time for bulk-loading PMR quad-
trees and PR quadtrees for point data sets of varying di-
mensionality.

6 Concluding Remarks

In thispaper we described improvementsto an existing bulk-
loading a gorithmfor the PMR-quadtree, which is capabl e of
indexing arbitrary spatial data. Theimprovementsresultina
more robust algorithm, higher storage utilization, and alow
the efficient implementation of bulk-insertion. In addition,
we presented anew techniquefor speeding up insertionsinto
PMR quadtree. It is applicable both to our improved bulk-
loading agorithm as well as to the traditional dynamic in-
sertion agorithm for the PMR quadtree. This new technique
dramatically reduces the number of intersection tests neces-
sary for locating leaf nodes that contain an object. We also

presented a new algorithm for bulk-loading the PR quadtree,
a quadtree variant for storing point data. Our experiments
confirmed the utility of our techniques.

Future work includes investigating whether our buffer-
ing strategies for bulk-loading may be used to speed up dy-
namic insertions and queries. Also, we wish to identify sit-
uations where a query engine can exploit fast spatial index
congtructionin order to speed spatia operations on interme-
diate query resultsor for un-indexed spatid relations. Thisis
particularly important for complex operationssuch as spatia
joins.

References

[1] L. Arge K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter.
Efficient bulk operations on dynamic R-trees. In Proc.
1st ALANEX Workshop, Baltimore, MD, Jan. 1999.

[2] J. van den Bercken, B. Seeger, and P. Widmayer. A
generic approach to bulk loading multidimensional in-
dex structures. InProc. 23rd VLDB Conf., pp. 406415,
Athens, Greece, Aug. 1997.

[3] Bureau of theCensus. Tiger/Lineprecensusfiles. Wash-
ington, DC, 1989.

[4] M. Freeston. The BANG file: anew kind of grid file.
In Proc. SGMOD Conf., pp. 260-269, San Francisco,
CA, May 1987.

[5] I. Gargantini. An effective way to represent quadtrees.
CACM, 25(12):905-910, December 1982.

[6] G. R. Hjatason and H. Samet. Speeding up construc-
tion of quadtreesfor spatial indexing. Comp. Sci. Dep.
TR-4033, Univ. of Maryland, College Park, MD, July
1999.

[7] G.R. Hjdtason, H. Samet, and Y. Sussmann. Speeding
up bulk-loading of quadtrees. In Proc. 5th ACM-GIS
Workshop, pp. 50-53, Las Vegas, NV, Nov. 1997.

[8] G. lwerksand H. Samet. The spatial spreadsheet. In
Proc. 3rd Conf. on Visual Info. Sys. (VISUAL99), Am-
sterdam, The Netherlands, June 1999.

[9] R. C. Nelson and H. Samet. A population analysis for
hierarchical data structures. In Proc. SGMOD Conf.,
pp. 270-277, San Francisco, CA, May 1987.

[10] A. L. Rosenberg and L. Snyder. Time- and space-
optimalityinB-trees. ACM TODS, 6(1):174-193,1981.

[11] H. Samet. The Design and Analysis of Spatial Data
Sructures. Addison-Wesley, Reading, MA, 1990.

[12] B. Seeger and H. P. Kriegel. The buddy-tree: an ef-
ficient and robust access method for spatial data base
systems. In Proc. 16th VLDB Conf., pp. 590-601, Bris-
bane, Australia, Aug. 1990.

[13] J. Yang, W. Wang, and R. Muntz. Yet another spatial
indexing structure. Comp. Sci. Dept. TR 970040, Univ.
of California, Los Angeles, CA, 1997.

