
Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 1

Improved Bulk-Loading Algorithms for Quadtrees�

Gı́sli R. Hjaltason and Hanan Samet
Computer Science Department, Center for Automation Research, Institute for Advanced Computer Studies

University of Maryland, College Park, Maryland 20742
fgrh,hjsg@cs.umd.edu

Abstract

Spatial indexes, such as the PMR quadtree, are important in
spatial databases for efficient execution of queries involv-
ing spatial constraints, especially when the queries involve
spatial joins. In this paper we report recent improvements
in bulk-loading PMR quadtrees, which index arbitrary spa-
tial objects, and present a new algorithm for bulk-loading PR
quadtrees, which index point data. Our algorithms assume
that the quadtree is implemented using a linear quadtree, a
disk-resident representation that stores objects contained in
the leaf nodes of the quadtree in a linear index (e.g., a B-
tree) ordered on the basis of a space-filling curve. We show
with experiments that our algorithms yield significant perfor-
mance improvements for bulk-loading quadtrees.

1 Introduction

Spatial indexes are designed to facilitate spatial database op-
erations that involve retrieval on the basis of the values of
spatial attributes. A central problem in the implementation of
spatial indexes is the time needed to build them in the sense
that the index is onlyworthwhile if the time to execute the op-
eration without the index is slower than the sum of the time
to build the index and the time to execute the operation. Of
course, if the database is static, then we can afford to spend
more time on building the index as the index creation time
can be amortized over the number of queries made on the in-
dexed data. However, we are interested in the case that the
database is dynamic. This situation arises when the output
of an operation, such as a spatial join, results in the creation
of new data which can be used as input to subsequent oper-
ations. In this case, when we evaluate the efficiency or ap-
propriateness of a particular spatial index, we must also take
into account the time needed to build an index on the result
of the operation.

�The support of the National Science Foundation under Grant IRI-97-12715 is
gratefully acknowledged.

As an example of a spatial join where the output is use-
ful, suppose that given a road relation and a river relation we
want to find all locations where a road and river meet (i.e., the
actual physical locations of bridges and tunnels rather than
just the object pairs of roads and rivers that have a point in
common which is the join condition). The locations serve as
input to subsequent spatial operations (i.e., a cascaded spa-
tial join as would be common in a spatial spreadsheet [8]).
Therefore, we also need to construct a map for the output,
which means that we need to construct a spatial index. In
other words, the time to build the spatial index plays an im-
portant role in the overall performance of the index in ad-
dition to the time required to perform the spatial join itself
whose output is not always required to be spatial.

In this paper we examine the efficiency of building the
spatial index by use of bulk-loading which is the process of
building the index for a set of objects without any intervening
queries. In recent years, numerous bulk-loading algorithms
for spatial indexes have been introduced. Most of the atten-
tion has been focused on the R-tree, and related structures
(e.g., [1, 2]). Here we improve upon an algorithm previously
developed by us for bulk-loading a disk-based PMR quad-
tree [7]. Although our presentation and experiments are in
terms of the PMR quadtree, our results hold for any variant of
the quadtree. In fact, our approach can be adapted to speed up
the construction of many other spatial data structures based
on regular partitioning, such as the buddy-tree [12] and the
BANG file [4]. In our bulk-loading algorithm for the PR
quadtree, the fact that point data has no spatial extent en-
ables us to build the leaf nodes of the quadtree in a bottom-up
manner (loosely speaking). This is in contrast to the PMR
quadtree bulk-loading algorithm, which must proceed in a
top-down manner (see [6] for more details including pseudo
code listings and a technique for extending the algorithms for
bulk-insertions).

The rest of this paper is organized as follows. Section 2
describes the PR and PMR quadtrees and their implementa-
tion. Section 3 presents our bulk-loading approach for the
PMR quadtree. Section 4 describes a bulk-loading method
for the PR quadtree. Section 5 discusses the results of our ex-
periments, while concluding remarks are drawn in Section 6.



Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 2

2 Quadtrees

By the term quadtree [11] we mean a spatial data structure
based on a disjoint regular partitioning of space. Each quad-
tree block (also referred to as a cell) covers a portion of space
that forms a hypercube in d-dimensions, usually with a side
length that is a power of 2. Quadtree blocks may be further
divided into 2d sub-blocks of equal size.

The PMR quadtree [9] is a quadtree variant intended for
storing objects of arbitrary spatial type. Figure 1 shows
a PMR quadtree for a collection of line segments. Since
the PMR quadtree gives rise to a disjoint decomposition of
space, and objects are stored only in leaf blocks, this implies
that non-point objects may be stored in more than one leaf
block. Thus, the PMR quadtree would be classified as apply-
ing clipping, as we can view an object as being clipped to the
region of each intersecting leaf block. The part of an object
that intersects a leaf block that contains it is often referred to
as a q-object; for line segments, we usually talk of q-edges.
For example, segment a in Figure 1 is split into three q-edges
as it intersects three leaf nodes.

h
a b

e

fi

c

d

g

Figure 1: A PMR quadtree for line segments with a split-
ting threshold of 2, where the line segments have been in-
serted in alphabetical order.

A key aspect of the PMR quadtree is its splitting rule. If
the insertion of an object o causes the number of objects in a
leaf block b to exceed the splitting threshold T and b is not at
the maximum level, then b is split and the objects in b (includ-
ing o) are inserted into the newly created blocks that they in-
tersect. The sub-blocks are not split further at this time, how-
ever, even if they contain more than T objects.

Quadtrees can be implemented in many different ways.
One method, inspired by viewing them as trees, is to imple-
ment each block as a record, where nonleaf blocks store 2d

pointers to child block records, and leaf blocks store a list of
objects. However, this pointer-based approach is ill-suited
for implementing disk-based structures. A general method-
ology for solving this problem is to represent only the leaf
blocks in the quadtree. The location and size of each leaf
block is encoded in some manner, and the result is used as
a key into an auxiliary disk-based data structure. This ap-
proach is termed a linear quadtree [5].

The linear quadtree is used in a number of spatial database
systems including SAND, a prototype spatial database sys-

tem built by our group. In SAND, the implementation of the
PMR quadtree is based on a general linear quadtree imple-
mentation called the Morton Block Index (abbreviated MBI).
The size of the space covered by an MBI has side length of
2w with 0 as the origin for each dimension, and the minimum
side length of a quadtree block that can be represented is 1.
The MBI encodes quadtree blocks using a pair of numbers,
termed a Morton block value. The first number is the Mor-
ton code of the lower-left corner of the quadtree block, while
the second number is the side length of the block (stored in
log

2
form). The Morton code of a point is constructed by bit-

interleaving its coordinate values.
The MBI uses a B-tree to organize the quadtree contents,

with Morton block values serving as keys. When comparing
two Morton block values, we employ lexicographic order-
ing on the Morton code and the side length. When only rep-
resenting quadtree leaf nodes in the MBI, which is the case
for most quadtree variants, only comparing the Morton code
value is sufficient, as the MBI will contain at most one block
size for any given Morton code value. For a quadtree leaf
node with k objects, the corresponding Morton block value is
represented k times in the B-tree, once for each object. In the
B-tree, we maintain a buffer of recently used B-tree nodes,
and employ an LRU (least recently used) replacement policy
to make space for a new B-tree node.

3 Bulk-Loading PMR Quadtrees

The algorithm in [7] for bulk-loading PMR quadtrees was
based on trying to fill up memory with as much of the quad-
tree as possible before flushing some of its nodes into the
disk-based index. The key idea was to sort the input data
in such a way that the portions that were written out to the
disk would not be inserted into again. This strategy was
shown to achieve dramatic speedup compared to the regular
quadtree insertion algorithm. Nevertheless, it had two draw-
backs. First, the way in which it chose leaf nodes to flush,
and thereby result in their insertion in the MBI, did not al-
ways result in their being flushed in sorted order (based on
Morton block values) although they were almost sorted. The
problem was that since we could not guarantee that the nodes
were flushed in sorted order, we could not use packing meth-
ods to insure that the MBI B-tree nodes were completely full.
Thus it was often the case that an MBI B-tree node would
overflow and hence be split thereby resulting in two nodes
that are 50% full yet these two nodes might never be inserted
into again due to the sorted order. Thus storage utilization in
the B-tree was very poor. Second, the algorithm relied on a
parameter termed “flushing quotient” to guide flushing. Un-
fortunately, although we found that the algorithm performed
well for a range of parameter values, it was unclear how to
choose the optimal value or how robust the algorithm was for
any given value.



Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 3

3.1 Improved Flushing Algorithm

To address these drawbacks, we developed a new flushing
algorithm. In the new algorithm, the objects are always in-
serted in Z-order based on the lower-left corner, i.e., the one
closest to the origin, of their bounding rectangle (as opposed
to the centroid in [7]). If available memory has been exhaust-
ed (i.e., the pointer-based quadtree occupies too much mem-
ory) upon inserting a new object o, then the algorithm uses o
to guide the flushing of nodes from memory rather than mak-
ing use of the flushing quotient. This is illustrated in Fig-
ure 2, where all quadtree blocks in the striped region can be
flushed. The advantage of our new algorithm is that it inserts
leaf nodes in Z-order into the MBI, thus leading to items be-
ing inserted in strict key order into the corresponding B-tree.
This can be exploited to pack the B-tree nodes to capacity,
e.g., with the algorithm of [10]. Thus, we can achieve nearly
100% storage utilization in the B-tree.

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

1 2

3 4
5

(0,0)

y

x

6
7 8

9 10

12 13

14 15
11

16 17

18
19 20

21 22

23 24

25

p

Figure 2: A portion of a hypothetical quadtree, where the
leaf nodes are labeled in Z-order. The shaded rectangle is
the bounding rectangle of the next object to insert.

Another advantage of flushing the leaf nodes in Z-order is
that this makes it very efficient to bulk-insert into an existing
PMR quadtree. Essentially, it involves merging the ordered
stream of leaf nodes with the leaf nodes in an existing PMR
quadtree (which are stored in Z-order).

The flushing algorithm outlined above may fail to free
any memory. This occurs if a large number of objects inter-
sects the boundary between flushed and unflushed leaf nodes
(e.g., the boundary of of the striped region in Figure 2). We
have developed a fall-back method that is invoked when this
situation occurs, termed “reinsertion freeing”. This involves
the removal of a selected set of leaf nodes from the pointer-
based quadtree, and scheduling the objects contained in them
for re-insertionat a later stage. One way of implementing this
is to make the sorting phase and the bulk-load phase operate
in tandem, in which case the re-inserted objects are sent back
to the sorting phase with a new sort key.

3.2 Improved Insertion Algorithm

Like insertion algorithms for most hierarchical data structur-
es, the PMR quadtree insertion algorithm is defined with a

top-down traversal of the quadtree. Thus, the CPU cost for
inserting an object is roughly proportional to the depth of the
leaf nodes intersecting it. The single largest contributor to
the CPU cost of the algorithm (besides the cost of updating
the B-tree in the MBI implementation) is the intersection test
performed during the top-down traversal. When inserting
an object, the number of intersection tests is bounded from
above by 2d �Dmax � q, where Dmax is the maximum depth
of a leaf node and q is the number of leaf nodes intersected
by the object (recall that each nonleaf node has 2d children).
However, the average is typically more like 2d �Dave, where
Dave is the average leaf node depth, which is on the order of
log

2d
N if the data distribution is not too skewed. Another

significant contributor to CPU cost in the MBI implementa-
tion is the computation of child blocks (in a pointer-based
quadtree, this cost can be avoided since the Morton block val-
ues or some other representation for the quadtree regions can
be stored in the nodes). The number of these computations
is similar to the number of intersection tests. Thus, they con-
tribute considerably to the CPU cost, especially if this com-
putation is not highly optimized.

The number of intersection tests, as well as the number of
Morton code computations, can be dramatically reduced by
exploiting the structure of the quadtree. The key insight is
that based only on the geometry of an object, we can compute
the quadtree block that minimally bounds the object. This is
illustrated in Figure 3a, where we indicate potential quadtree
partition boundaries with broken lines. We can look up the
Morton block value of this block in the B-tree of the MBI,
which will locate a quadtree leaf block containing the object,
if any exists. Two cases can arise: the minimally enclosing
quadtree block can be inside (or coincide with) an existing
leaf node (e.g., Figure 3b), or there may be more than one
leaf node contained in the minimal enclosing quadtree block
(e.g., Figure 3c). Thus, in the improved PMR quadtree in-
sertion algorithm, instead of starting the top-down traversal
at the root, we start at the smallest existingnode enclosing the
minimal enclosing quadtree block of the inserted object. The
same technique can also be used to speed up PMR quadtree
node splits.

(a) (b) (c)

Figure 3: (a) Computation of the minimum bounding
block for an object, denoted by heavy lines. Broken lines
indicate potential quadtree block boundaries. The mini-
mum bounding block can (b) be enclosed by a leaf node
or (c) coincide with a nonleaf node.

The reduction in the number of intersection tests perform-
ed by the improved insertion algorithm depends onD0

ave
, the



Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 4

average depth of the quadtree nodes (leaf or nonleaf) in the
final quadtree that minimally enclose each object. For ex-
ample, in Figure 3b, the object is minimally enclosed by a
leaf node at depth 1 (i.e., the leaf node is a child of the root),
whereas in Figure 3c, the object is minimally enclosed by a
nonleaf node at depth 2. For an object o minimally enclosed
by a noden0 at depthD0, the original PMR quadtree insertion
algorithm must perform 2dD0 intersection tests to determine
that o is contained in n0. In contrast, our improved algorithm
avoids all of these intersection tests, and thus achieves an av-
erage reduction of 2dD0

ave
per object in the number of inter-

section tests. If o is contained in a leaf noden at depthD, the
number of intersection tests performed is at least 2d(D�D0),
since all child nodes of the nonleaf nodes on the path from
n0 to n must be tested for intersection with o (e.g., in Fig-
ure 3c, the leaf nodes containing o are one level down from
n0, so only 22 = 4 intersection tests are needed). Hence, the
number of intersection tests performed by the improved algo-
rithm on the average per object can be expected to be approx-
imately p(Dave �D0

ave
), where Dave is the average depth of

leaf nodes, 2d � p � 2dq, and q is the average number of q-
objects per object. If the objects are very small compared to
the size of the data space, D0

ave
will be nearly as high asDave,

so the number of intersection tests will be small. In the ex-
treme case of point objects, no intersection tests are needed
and Dave � D0

ave

1. Experiments [6] on typical line maps
showed that our improved algorithm reduces the number of
intersection tests by a factor of 3 to 5.

4 Bulk-Loading PR Quadtrees

The bulk-loading method for quadtrees described in Sec-
tion 3 can be used to bulk-load a PMR quadtree for any type
of spatial objects. However, it is possible to do better for
point data if we use the PR quadtree [11] (or, more accurately,
the bucket PR quadtree) instead of the PMR quadtree. In the
PR quadtree (see Section 2), a fixed bucket capacity is estab-
lished for the leaf nodes instead of a splitting threshold. The
method we describe is related to the bulk-loading method for
PK-trees described in [13]. Our description is in terms of a
PR quadtree stored in an MBI (see Section 2), but can easily
be adapted to any other representation. Thus, the quadtree
blocks are represented with Morton block values.

When bulk-loading the PR quadtree, we assume that the
data is sorted in Morton code order prior to being inserted,
as we do in our PMR quadtree bulk-loading method. Rather
than first building a pointer-based quadtree in main mem-
ory, however, we can directly construct the leaf blocks of the
quadtree. Briefly, the algorithm works by adding points, one
by one, to a list of candidates for the current leaf node, ex-
panding the node’s region as needed (see Figure 4). If adding

1
Dave andD0

ave
are typically not exactly equal for points, sinceDave is an aver-

age over leaf nodes while D0

ave
is an average over objects. Alternative, and perhaps

more accurate, definitions of Dave that make it equal to D0

ave
for points are as fol-

lows: 1) over all q-objects, the average depth of the leaf node containing them, or 2)
over all objects, the average depth of the smallest leaf node intersecting them.

a new point causes overflow (i.e., more than c points, where c
is the bucket capacity) or causes the node’s region to intersect
a previously created node, then we construct a new leaf node
in the MBI with the largest possible subset of the candidates
(see Figure 5). For more details, see [6].

(a) (b) (c) (d)

1
2

3

4

1 1 1
2 2

3

Figure 4: Example of insertions into candidate list, of
points 1-4 (in order), demonstrating expansion of the
current leaf node region (shown with heavy lines). The
square with broken lines denotes the current leaf node re-
gion prior to its last expansion.

(a) (b) (c)

new leaf
new leaf

new leaf

last leaf
built

last leaf
built

last leaf
built

Figure 5: Conditions for constructing a new leaf node
where the most recently inserted point is denoted by x
assuming a bucket capacity of 8: (a) candidate list over-
flows and the new point is in the current leaf node region,
(b) candidate list overflows and the new point is not in the
current leaf node region, and (c) expansion of the current
leaf node region causes overlap of the leaf node that was
last built.

5 Empirical Results

5.1 Experimental Setup

We implemented the algorithms presented in Sections 3 and 4
in C++ within an existing PMR quadtree and PR quadtree
testbed. The source code was compiled with the GNU C++
compiler with full optimization (–O3) and the experiments
were conducted on a Sun Ultra 1 Model 170E workstation,
rated at 6.17 SPECint95 and 11.80 SPECfp95 with 64MB of
memory. In order to better control the run-time parameters,
we used a raw disk partition. This ensures that the execution
times reflect the true cost of I/O, which would otherwise be
partially obscured by the file caching mechanism of the op-
erating system. B-tree node size was set to 4KB, while node
capacity varied between 50 and almost 300, depending on the
experiment. The maximum depth of the quadtree was set to
16 and the splitting threshold to 8.

The sizes of the data sets we used were perhaps modest
compared to some modern applications. However, we com-
pensated for this by using a modest amount of buffering. In



Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 5

our PMR quadtree bulk-loading algorithm, the space occu-
pied by the pointer-based quadtree was limited to 128K. This
proved more than adequate and a larger buffer did not im-
prove performance. A buffer of 512K bytes was allocated
to the sorting process. Interestingly, a smaller a buffer size
of 256K increased running time only slightly (typically less
than 3% of the total time). Only one B-tree node at each level
had to be buffered when using our bulk-loading algorithms,
due to the efficient B-tree packing algorithm that we used.
However, for dynamic insertions, we used a B-tree buffer of
1MB (i.e., for 256 nodes).

In reporting the results of the experiments, we use exe-
cution time. This takes into account the cost of reading the
data, sorting it, establishing the quadtree structure, and writ-
ing out the resulting B-tree. The reason for using execution
time, rather than such measures as number of comparisons or
I/O operations, is that no other measure adequately captures
the overall cost of the loading operations. For each experi-
ment, we averaged the results of a number of runs (usually
10), repeating until achieving consistent results.

In our experiments, we used both non-point data and
point data. The point data consisted of two-dimensional
line segment data, both real-world and synthetic. The real-
world data consists of three data sets from the TIGER/Line
File [3]. The first two contain all line segment data for Wash-
ington, DC and Prince George’s County, MD, abbreviated
below as “DC” (19,185 line segments) and “PG” (59,551 line
segments). The third contains roads in the entire Washing-
ton, DC metro area, abbreviated “Roads” (200,482 line seg-
ments). We also used three synthetic line segment data sets,
containing 64K, 128K, and 260K non-intersecting line seg-
ments. The point data sets that we used were synthetic, con-
sisting of 100K points each, in dimensions ranging from 2 to
8. The sets of points form 10 normally-distributed clusters,
whose centers are uniformly distributed in the space.

5.2 Findings

Figure 6 shows the execution time for building PMR quad-
trees using dynamic insertions and with the PMR quadtree
bulk-loading algorithm (using our improved PMR quadtree
insertion algorithm for both). The execution times are ad-
justed for map size, and reflect the average cost per 10,000
inserted line segments. The bulk-loadingalgorithm achieves
a speedup ranging from a factor of 4 to 12 compared to dy-
namic insertions, i.e., when line segments are inserted one by
one into the disk-based PMR quadtree index. Much of this
speedup is due to reduced CPU cost (typically by a factor of
at least 5). Moreover, as the size of the data sets increases,
the effectiveness of B-tree buffering in the dynamic insertion
algorithm is reduced, and most of the excess execution time
becomes due to resultant disk I/O. On the other hand, as can
be seen in the figure, the insertion cost per line segment for
our bulk-loading algorithm grows very slowly with the size
of the data set.

E
x.

 ti
m

e 
pe

r 
10

,0
00

 in
s.

 (
se

c.
) 35

30

25

20

15

10

5

0
DC PG Roads R64K R128K R260K

Dyn.
Bulk

Figure 6: Execution time per 10,000 line segments for
building quadtrees for the six data sets.

Figure 7 shows the speedup in execution time resulting
from the reduction in the number of intersection tests when
using the improved PMR quadtree insertion algorithm when
bulk-loading PMR quadtrees for the line segment data sets.
The speedup is considerable, ranging from 30% up to nearly
50%. The speedup in CPU time is about twice that shown
in the figure, since performing I/Os takes about half the ex-
ecution time when not using our improved insertion algo-
rithm (recall that our technique does not affect I/O cost). Fig-
ure 8 shows the corresponding speedup when bulk-loading
PMR quadtrees for point data sets of varying dimensional-
ity. For the two-dimensional data set, the speedup is about
50%. More importantly, the speedup grows as the dimen-
sionality increases, and reaches a factor of nearly 8 for the
eight-dimensional point data set.

S
pe

ed
up

 fo
r 

ne
w

 in
se

rt
io

n 
al

g. 50%
45%
40%
35%
30%
25%
20%
15%
10%

5%
0%

DC PG Roads R64K R128K R260K

Figure 7: Speedup in terms of execution time resulting
from the reduction in the number of intersection tests
when using the improved PMR quadtree insertion algo-
rithm for bulk-loading PMR quadtrees for line segment
data.

Figure 9 compares the execution time when bulk-loading
PMR quadtrees for the point data (with our improved PMR
quadtree insertion technique) with that for bulk-loading a PR
quadtree with the algorithm presented in Section 4. The ex-
ecution time appears to grow linearly with the dimension for
both bulk-loading algorithms. This is to be expected, since
the size of the point data as well as the time to compute ge-
ometric operations grows linearly with the dimension. The
PR quadtree bulk-loading algorithm is slightly faster for all
dimensions, but the difference between the two techniques



Proc. of the 7th Intl. Symposium on GIS (ACM GIS ’99), Kansas City, MO, November 1999, pp. 110-115 6

S
pe

ed
up

 fo
r 

ne
w

 in
se

rt
io

n 
al

g. 8

7

6

5

4

3

2

1
2 3 4 5 6 7 8

Number of dimensions

Figure 8: Speedup in terms of execution time resulting
from the reduction in the number of intersection tests
when using the improved PMR quadtree insertion algo-
rithm for bulk-loading PMR quadtrees for point data of
varying dimensionality.

gradually decreases as the number of dimensions increases.
This difference corresponds to the overhead (in terms of exe-
cution time) in the PMR quadtree bulk-loadingalgorithmdue
to the use of the pointer-based quadtree and the associated
flushing process. From the figure we see that the overhead is
minor. However, the relative parity of the two bulk-loading
algorithms is only achieved when the improved PMR quad-
tree insertion algorithm is used. Without it, the execution
time for the PMR quadtree bulk-loadingalgorithm grows ex-
ponentially with the dimension, as Figure 8 indicates.

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

Number of dimensions

30

25

20

15

10

5

0
2 3 4 5 6 7 8

PMR
PR

Figure 9: Execution time for bulk-loading PMR quad-
trees and PR quadtrees for point data sets of varying di-
mensionality.

6 Concluding Remarks

In this paper we described improvements to an existing bulk-
loading algorithm for the PMR-quadtree, which is capable of
indexing arbitrary spatial data. The improvements result in a
more robust algorithm, higher storage utilization, and allow
the efficient implementation of bulk-insertion. In addition,
we presented a new technique for speeding up insertions into
PMR quadtree. It is applicable both to our improved bulk-
loading algorithm as well as to the traditional dynamic in-
sertion algorithm for the PMR quadtree. This new technique
dramatically reduces the number of intersection tests neces-
sary for locating leaf nodes that contain an object. We also

presented a new algorithm for bulk-loading the PR quadtree,
a quadtree variant for storing point data. Our experiments
confirmed the utility of our techniques.

Future work includes investigating whether our buffer-
ing strategies for bulk-loading may be used to speed up dy-
namic insertions and queries. Also, we wish to identify sit-
uations where a query engine can exploit fast spatial index
construction in order to speed spatial operations on interme-
diate query results or for un-indexed spatial relations. This is
particularly important for complex operations such as spatial
joins.

References

[1] L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter.
Efficient bulk operations on dynamic R-trees. In Proc.
1st ALANEX Workshop, Baltimore, MD, Jan. 1999.

[2] J. van den Bercken, B. Seeger, and P. Widmayer. A
generic approach to bulk loading multidimensional in-
dex structures. In Proc. 23rd VLDB Conf., pp. 406–415,
Athens, Greece, Aug. 1997.

[3] Bureau of the Census. Tiger/Line precensus files. Wash-
ington, DC, 1989.

[4] M. Freeston. The BANG file: a new kind of grid file.
In Proc. SIGMOD Conf., pp. 260–269, San Francisco,
CA, May 1987.

[5] I. Gargantini. An effective way to represent quadtrees.
CACM, 25(12):905–910, December 1982.

[6] G. R. Hjaltason and H. Samet. Speeding up construc-
tion of quadtrees for spatial indexing. Comp. Sci. Dep.
TR-4033, Univ. of Maryland, College Park, MD, July
1999.

[7] G. R. Hjaltason, H. Samet, and Y. Sussmann. Speeding
up bulk-loading of quadtrees. In Proc. 5th ACM-GIS
Workshop, pp. 50–53, Las Vegas, NV, Nov. 1997.

[8] G. Iwerks and H. Samet. The spatial spreadsheet. In
Proc. 3rd Conf. on Visual Info. Sys. (VISUAL99), Am-
sterdam, The Netherlands, June 1999.

[9] R. C. Nelson and H. Samet. A population analysis for
hierarchical data structures. In Proc. SIGMOD Conf.,
pp. 270–277, San Francisco, CA, May 1987.

[10] A. L. Rosenberg and L. Snyder. Time- and space-
optimality in B-trees. ACM TODS, 6(1):174–193,1981.

[11] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.

[12] B. Seeger and H. P. Kriegel. The buddy-tree: an ef-
ficient and robust access method for spatial data base
systems. In Proc. 16th VLDB Conf., pp. 590–601, Bris-
bane, Australia, Aug. 1990.

[13] J. Yang, W. Wang, and R. Muntz. Yet another spatial
indexing structure. Comp. Sci. Dept. TR 970040, Univ.
of California, Los Angeles, CA, 1997.


