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Abstract

SAND is a spatial database and information browser systemalged at
University of Maryland which supports 2D and 3D data mod&lse experi-
ence in extending SAND to include a spherical data modeétheenabling
SAND to perform spatial queries on spherical data and to beotleir re-
sults in an incremental manner is described. The focus is@issues that
arise in adding a spherical data model to a database thatkadhilt on the
basis of the planar data model. Special emphasis is placbdwrihe data
structure was chosen for the task. The various geometrigaitives that
were needed for modeling spherical data as well as the #igasithat were
required in the implementation are also described. As SAdIased on the
qguadtree representation, a natural method for adding isplhdata to SAND
was to find a spherical adaptation of the quadtree. The sphesanapped
into a quadtree representation by projecting the spheeaotibe, and then
constructing the quadtree on the faces of cube. Alterrgtiités also pos-
sible to map the sphere into a plane, and then simply use apiaadtree.
Some of the differences between these approaches are stiscul addi-
tion, the display models and visual query mechanisms us&hAND with
our new spherical data model to ease the task of navigatioggh the data
are described. By adding a spherical sector primitive, fiaissible for users
to locate data on the sphere which are located in a sphenizaldnchored at
two antipodal spherical points.

*The support of the National Science Foundation under GEI#t99-00268 and IRI-97-12715
is gratefully acknowledged.



In Proc. of Intl. Conf. on Discrete Global Grig§anta Barbara, CA, March 2000.

1 Introduction

SAND [ES96] is an interactive spatial database and browseeldped at Uni-
versity of Maryland. SAND combines a graphical user integfavith a spatial
and non-spatial database engine. It supports queries dialspad non-spatial
data, such as spatial selections and spatial joins. SANPastgpa number of
different spatial data structures, including the PMR qresd{NS86] and the R*-
tree [BKSS90]. In this paper we focus on the PMR quadtree lwhica variant
of the region quadtree (e.g., [Sam90]) that can handleapztjects of arbitrary
dimensionality (i.e., including 2D and 3D). For example two dimensions, the
PMR quadtree subdivides the underlying rectangular spact four congruent
rectangular areas whenever the number of objects thatapuedxceeds a prede-
fined values, termed the splitting threshold. Each of the resulting suamtains
references via pointers to the spatial descriptions of bjeats that overlap them.
The PMR quadtree is different from other bucketing methad¢hat when the
number of objects that overlap exceeds the splitting threshold, theris only
subdivided once even though some of the resulting areas, $agy still be over-
lapped by more thar objects. The key is that will be subdivided the next time
an object is inserted that overlaps it. In this way, regiaesret subdivided many
times when more thamnobjects are very close to each other.

Spatial selections in SAND are in the form of finding all datgects, where
the value of one of their spatial attributes overlaps a paldar region in space. Of
particular interest are range queries where SAND enablssraaifind data objects
whose distance to another data object is within a given rakge example, this
feature enables a user to find all warehouses that are beti@&and 200 miles
of a particular retail store. Another query feature of SANDws the user to find
all the objects which have a certain orientation with respganother data object.
For example, a user can locate all warehouses which are ofoathyiven location.

SAND also supports the join operation. There are many veariairthis opera-
tion whose result is a set whose elements are the members Ghittesian product
of the tuples of two relations that satisfy the join conditioWhen the join con-
dition is based on the values of the spatial attributes, treraiion is known as a
spatial join The join condition often involves tuples that are co-lechbr within a
given distance of each other. Another variant of the joihédistance joifHS98]
in which case the resulting tuples are ordered accordingetgpatial proximity of
the objects associated with the joined tuples. The distaaog-join [HS98] is a
special case of the distance join in which case each item@bbithe joined sets
is paired up with the closest member (in terms of the spatiabate values of the
two sets) of the other of the joined sets. The resulting siple ordered according
to the distance between their constituent spatial ateguEFor example, consider
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the case that one data set contains the locations of the saes of a merchant,
and another dataset contains the locations of retail stiréee merchant. Using
the distance semi-join, a user can find the closest wareHousach retail store.
SAND performs this kind of spatial join by utilizing an algwm that finds the
nearest neighbors of spatial objects in an incremental erdht899].

In this paper we report on an effort to design and implemergheescal data
model for SAND. The goal was to give SAND the ability to perfocorrect queries
for data on the surface of the Earth. The original SAND immetation was based
on a planar model of space, and hence was not able to perferectoomputations
for distances of data objects on the surface of the Earthaiticplar, the planar
model only provided reasonably accurate responses to &gon@abn of the Earth.
The main shortcoming of SAND was that the distance functichndt take into
account the curvature of the Earth.

The rest of this paper is organized as follows. Section 2idises the different
considerations that were taken into account in choosingpadgial data structure
to support spherical data. Section 3 presents the spafettetthat are needed
in our spherical data model. Section 4 describes the afgositneeded to deal
with spherical geometry in our implementation. Section &idates the limited
number of changes that needed to be made to the SAND Browseakie viewing
spherical data. Section 6 contains concluding remarks @edtiwns for future
research.

2 Spatial Data Structureto Support Spherical Data

In this section, we describe the different approaches tieaaittempted in order to
extend SAND to support spherical data. Before our extenssé&ND supported
polygons, lines, and points on a plane. We enhanced SANDpjostitheir coun-
terparts on the surface of a sphere — that is, spherical pogjgpherical lines, and
points on a sphere. Given that SAND already contains a lasigene of software
to support spatial data structures for 2D space, we focussele different ways
in which a sphere could be mapped to a 2D space (plane). Iollog/ing discus-
sion, we use the termata spacdo describe the space in which the data resides,
andgrid spacefor the space in which the data structure manipulations pédee.
For example, if the sphere is mapped onto a plarend a quadtree decomposition
is subsequently developed on the plane, thexthe ‘grid space’. Obviously, there
should exist a mapping between the data space and the gdel. dpgarticular, an
appropriate mapping permits efficient operations on tha.dat

There are two ways to implement the mapping. One approadah risap the
data objects directly onto the grid space whenever they awdifiad or inserted
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into the database. An alternative approach is to map thespade into the data
space whenever a decision should be made about where an siopeitd reside in
the partition of the data space induced by the grid. In thiecave are mapping
the partition lines of the grid space into the data spacehérfitst approach, all of
the data must be mapped from the data space onto the grid, splaeeas in the
second approach only the grid partitions must be mapped tihergrid space onto
the data space. Assuming that there is more data than pariies, it appears
that mapping the grid space onto the data space is cheapeafcmmputational
complexity standpoint than mapping the data space ontorttiesgace.

Mapping the grid space onto the data space is made more efffipjestoring
the result of the mappings of the grid space onto the dateespabe actual data
structure. For example, in the case of a quadtree-like sigial in the grid space,
we can maintain the result of mapping the partition poirasfthe grid space onto
the data space in the data structure. In addition, we shaaddib mind that even
for a database with a few insertions or modifications, mappiata objects onto
the grid space may not be computationally feasible. For @&nin the case of
mapping a sphere onto a plane, a spherical line may not reedgdse mapped into
a line on the plane. Hence, performing computations on thdtref the mappings
is not a straightforward task. Similar problems can be entayed when designing
a mapping from the grid space onto the data space. For exasyppose again
that the grid space is the plane which is subdivided intagfia blocks, and we use
the Lambert equal-area cylindrical projection [Sny87] aesalibed in Section 2. In
this case, the mapping of non-vertical non-horizontal edgfegrid triangles, are
not simple arcs on the sphere. The mappings of partitionseoftid should make
use of simple geometrical primitives where the requirechgetoical algorithms —
distance and intersection — are easy to implement.

In the case of the spherical data model, we used the seconobappvhere we
do not map the data objects onto the grid space. Instead, we¢haalata structure
grids onto the data space, and perform the geometricalitiigw in the data space.
This idea is frequently used in applications involving sgdadata structures. For
example, in the case of the PM quadtree representation tdnelgjects (i.e., non-
raster objects) [SW85], although the underlying space é¢eigposed into blocks,
the objects are never decomposed into the subobjects tbathpraugh each block.
In particular, in each block that overlaps objeat, we store a pointer to instead
of clipping o to b [NS86]. In this way we need not have to worry about whether
or not, for example, two connected line segments in adjdulecks are part of the
same line. Moreover, we can safely remove and add parts ctifne line without
concerns about roundoff errors resulting from the clippgmgcess [FvDFH9O0].
This solution is also used in overcoming the null object ckade problem in solid
modeling applications (e.g., [Til84]).
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We investigated three different mappings between the geteesand the grid
space. The first two were based on embedding a cube in theesphérproject-
ing locations on the cube to the sphere, or vice versa as tigegcmivalent since
the mappings are 1-1 and onto. The third was based on an egaatydindrical
projection of the plane onto the sphere (also known as Latelmstindrical equal
area projection [Sny87]). The first two mappings were basetthe ideas proposed
by Scott [Sc096].

In the first mapping that we tried, once we mapped the spheretbea cube,
we modeled each face of the resulting cube with a quadtreestiaicture thereby
resulting in 6 quadtrees. This mapping has the propertygeth line on the cube
is a mapping of a spherical line on the sphere (i.e., a greglecrc). Therefore,
we only needed to implement the geometrical algorithmsimigabith spherical
lines. However, if one wants to model parallels to the Equdlen the resulting
projection onto the cube will not be a line anymore. It shooadded that while
Scott’s idea of projecting onto the cube is novel, his mefl8mb96] of calculating
mapping between the subdivisions of cubical faces and sphierical counterparts
is wrong. In particular, by using a parallel projection, soparts of the sphere
are not covered on the cube. The problem can be solved bycfingjghrough the
center of the sphere.

Another interesting feature of this mapping is that splapolygons are mapped
into polygons on the cube, and by keeping the cubic projeaifaeeach data object
we can use the faster planar geometric algorithms instedlkeo$pherical ones.
However, a drawback of this mapping is that it is not an equeh grojection.
This means that the projections on the grid space of unifpdigtributed data in
the data space are not uniformly distributed. Although enmnting this approach
seemed straightforward initially, we encountered corsidle difficulties when we
tried to modify many parts of SAND to incorporate it. For exaa) in the case of
a general spatial join, we would have to perform 36 pairwigersections — one
for every possible pair of faces of the two cubes that comedpo the two joined
sets. However, in many of the standard functions in SANDe&hsran implicit
assumption that the data is stored in a single quadtreeingirashd debugging all
the related code seemed impractical for this task.

Observing the infeasibility of using six quadtrees for aajedet, we employed
an alternative approach where we flattened the cubic facespmlane. In other
words, the grid space was considered to be a single rectarigtd contains all
resultant six faces of result of projecting the sphere ohéodube (see Figure 1).
This approach allowed us to reuse many of the SAND routindsma extra effort.
However, the main drawback of this approach was that somaeofdgions in
the grid space did not have a counterpart (i.e., were undbfinghe data space.
Thus some of the algorithms in SAND failed to work properlytheut further
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modification. In particular, not every connected regionhie grid space had a
corresponding region on the sphere. This was a problem becsame of the
operations in SAND examined every block spanned by the ndgithe grid space
and some of these blocks were not well-defined on the sphedehence difficult

to deal with. The dotted rectangle in Figure 1 shows such ekblo

Figure 1: Flattening a cube on the plane.

Based on experiments with the first two approaches, we cdedlthat an ap-
propriate mapping for SAND should have the following prdies.

1. Map a sphere into a single rectangle,
2. Any rectangle on the plane should map to a simple shapehmresp

We used Lambert’s cylindrical equal area projection as thpping. This mapping
is also an equal area projection and hence preserves tlwraitif of data points.
However, it has singularities at the poles, where the polkbg/mapped into lines
in grid space. A side effectis that data primitives arourgdables will be elongated
in the projection.

In the sections that follow, we describe more details abpliéscal data prim-
itives and geometrical algorithms needed for the impleitén.
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3 Spatial Objectsin the Spherical Data M odel

This section introduces the spatial objects in our sphlediata model. The spheri-
cal objects include spherical points, spherical linesesphl polygons, and Lam-
bert rectangles. In the next section, we describe the gemalealgorithms on
these objects.

3.1 Prdiminariesand Notations

All objects in our spherical data model reside on the surtd@esphereof radius

1 (i.e., the unit sphere). The center of the sphere servesasetiter of all of the
coordinate systems that we use. (etlenote the center of the sphere anddét
denote the surface of the sphere. While all the objectseesif?, it is convenient

to also use three-dimensional Euclidean sgat&vhenever needed. We use either
a Cartesian coordinate system, or a spherical coordinateray or both to specify
the coordinates of objects. The trifle, y, z) and the paif\, ¢) denote a point in
the two coordinate systems, respectivelyis also known as thiongitudeof the
point, andg is known at itdatitude

For any pointP on S? there is exactly one corresponding point and vector in
R3 both of which are denoted b§. A x™ B denotes the normalized cross product
of two vectorsA and B.

The distance between any two poimtsand B can be either defined iR?,
which is the length of the shortest line connecting themiiadgkdimensional space,
orin 2, in which case it is the length of the shortest arc on the spthet connects
them. The former is denoted k¢ (A, B), while the latter is denoted hig (A, B).

For any pointP with coordinate valueéz, y, z), we define itantipodal point
P as the point with coordinate values @fz, —y, —z). A point, its antipodal, and
O are collinear. Furthermore, the distance from a péirib O equals the distance
from P’s antipodal pointP to O, or formally d3(O, P) = d3(O, P).

The intersection of a sphere with a plane forms a circle. df plane passes
through the center of the sphere, then the intersectiorledcagreat circleg and it
has the same radius as the sphere. Any other circle is termmelacircle

Any three non-collinear points iR? specify one and only one plane passing
through them. Hence, the center of the sphere and any twaniyoedal points on
the sphere specify exactly one plane and exactly one gmet of the sphere.

Any two points A and B and the origin specify a plane passing through them
such that the plane’s normal & x™ B. The angle between two normal vectots
andB is arccos(A - B).

Spherical data is any kind of spatial data on the surface phare. The basic
unit of data is aspherical point A spherical lineis the collection of all points that
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lie on the sphere on the shortest path between two spheoggkghat are termed
its two endpoints. Notice that if the two endpoints of a spiatine are antipodals,
then there are many spherical lines defined by them.

A spherical polygoris a list of spherical points where the edges of the polygon
are the spherical lines between adjacent elements (iteerispl points) of the list.

3.2 Spherical Point

A spherical point is a single point on the surface of the uplitese centered at the
origin. Given a spherical poinP with Cartesian coordinate valué¢s, y, z), and
spherical coordinate valuégs, ¢), the following relationships hold:

@ A = arctan(y,x)

2
3)
4)
5)
(6)

= arcsin(z)

= cos(A) cos(o)
= sin(A) cos(¢)
— sin(9)

= 22 4+y*+ 27

_H o < 8 ©

Recall that) is also known as the longitude of the spherical point, and
known at its latitude.

3.3 Spherical Line

Any two non-antipodal spherical points specify a uniquessiglal line which is de-
fined as the shortest path on the surface of the sphere cormést two spherical
points. The great circle formed by two non-antipodal sptadrpoints is divided
into two arcs where the spherical line is the shorter arc. [€hgth of this arc is
defined to be the length of the spherical line. Figure 2 shawesspherical points
A and B and the depicted circle is the great circle passing throbhgmtandO.
The length of the arc shown with a bold line2isrcsin(d/2), or more formally:

(7) ds(A, B) = 2arcsin (M) .

of

3.4 Spherical Polygon

A spherical polygon is a closed region on the sphere boungetbi-intersecting
spherical lines. We represent a spherical polygon by afispberical points or-
dered in such a way that two adjacent spherical points irishegecify a spherical

8
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Figure 2: Length of a spherical line between spherical points A and
B

line (edge) bounding the spherical polygon. Figure 3 shawexample spherical
triangle.

Figure 3. Example spherical triangle

The angle between two intersecting spherical lines is defasethe angle be-
tween the tangents of the great circles of the sphericas linat pass through the
intersection point. If the intersection point of two adjatepherical line segments
of a spherical polygon is denoted [ and the other endpoints of the spherical
line segments are denoted HyandC, then the angle at verte® of the spherical

polygon is equal to the angle between the planes contaihimgreat circles of the
spherical lines, which is:
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(8) 7w — arccos((A x" B) - (B x" C)).

The area of a spherical polygon is related to the sum of itéearas follows.
Assume the spherical polygon haserticesv; . . . v,, and the angle at vertex is
denoted byy;, then

9) Area = Zn: a; — (n —2)7.
i=1

A spherical polygon divides the sphere into two areas. Waraesthat the
smaller of these two areas is inside the polygon. Consigdliat the area of the
unit sphere isl, the area of a spherical polygon is always less than

3.5 Lambert Rectangle

When indexing 2D data objects in SAND, the underlying spacibdivided into
rectangles. Rectangular subdivisions have two desiratdpepties. First, it is
relatively easy to test for inclusion of a point in them. Setdt is easy to subdivide
them into smaller rectangles. Re-examining equation 9 ¢ti@e 3.4, we see that
a four-sided spherical polygon with four right angles hasaega of 0. In other
words, a spherical rectangle with four sides covers jushglsipoint of sphere.
Therefore, a right-angled quadrilateral cannot be defirmdrivially on a sphere
which means that we needed another form of a rectangle fosplerical data
model. We define such an entity below which we terbraenbert rectangle

A Lambert rectanglés a collection of spherical points with their longitude and
latitude values in a given rangé\;, \2), (¢1, ¢2)). The area of such a rectangle is
(A2—M\1)(sin ¢ —sin ¢1 ) [Wei98]. Remembering that for any spherical pointzits
coordinate value is equal to the sin of its latitude={ sin ¢), and also the fact that
sin(.) is a monotonically increasing function fromr/2 to 7/2, we can specify
the range with((A1, A2), (21, 22)) instead. Hence, The area of such a Lambert
rectangle ig\2 — A1)(z2 — 21). Figure 4 is an example of a Lambert rectangle.

One of the benefits of using Lambert rectangles is that wepaeify the whole
sphere with a single Lambert rectangle with longitudinalgeof (—, ) and lat-
itudinal range of(—7/2,7/2). A Lambert rectangle is also easily divisible into
smaller Lambert rectangles. Another advantageous profethat Lambert rect-
angles are the natural choices for a spherical quadtreebalivigling a Lambert
rectangle into four equal area smaller rectangles can bly elasme by using the
center of the rectanglé\; + X\2)/2, (21 + 22)/2). Assuming that the objects
on a sphere are uniformly distributed, the Lambert recesglrovide the same
performance for quadtree-based data structures as indharptase (i.e., in 2D).

10



In Proc. of Intl. Conf. on Discrete Global Grig§anta Barbara, CA, March 2000.

Figure 4: Example Lambert rectangle.

In particular, we can see that if the latitude values rangedéen 0 and 80 de-
grees, then a subdivision &t\; + A2)/2, (¢1 + ¢2)/2) results in four Lambert
rectangles which do not have equal area (see Figure 5 whemubidivision is at
¢ = 40 degrees), while a subdivision &t\; + \2)/2, (21 + 22)/2) does result
in four Lambert rectangles of equal area (see Figure 5 winersubdivision is at
z = sin(¢) = sin(29.50) = .4924).

4 Spherical Geometry Algorithms

In order to implement the spherical data model in SAND, we &ddl algorithms

for determining if two spatial objects intersect and forceddting the distance be-
tween two spatial objects. In particular, for any pair ofeabjtypes in our spherical
data model, we had to implement the distance and intersefttitctions between
them. In this section, we describe some of the algorithmd usthe implementa-

tion of the spherical data model in SAND.

4.1 Distance between Two Spherical Points

The distance between two spherical points is the length phargcal line having
them as is endpoints.

4.2 Intersection of Two Spherical Points

Two spherical points intersect if and only if they have theeaoordinate values.

11



In Proc. of Intl. Conf. on Discrete Global Grig§anta Barbara, CA, March 2000.

Latitude Z
80 :
40 ...................... : ......................
2950 r------------ e
O |
0 15 30

Longtitude

0.9848

0.6428

0.4924

0.000

Figure 5: Example demonstrating the subdivision of a Lambert rect-

angle.

12
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4.3 Distance between a Spherical Point and a Spherical Line

The distance from a spherical pointto a spherical lind is the distance fronp
to one of the endpoint&A, B) of | (see Figure 6a), or some poigton I. ¢ has
the property that it is colinear with the line joining the tamrO of the sphere and
the projectionC' of p on the plane containing If m is the normal vector of the
plane containing the spherical lingm = A x™ B), thenC' = p — (p - m)m. We
also need to check if lies on the spherical linklt is easy to see thatlies on the
spherical ling (i.e., the shorter arc betweehand B) if and only if angleAqb in
triangle AgB is obtuse (see Figure 6b). Based on these consideratioogjento
find the distance between a spherical pgi@tnd a spherical linéwith endpoints
A and B, functiondPoi nt Li ne, on the sphere (i.edgs) from p to eitherA, B,
orgq.

Pe

(a) (b)

Figure 6: Example of the computation of the distance from a spher-
ical point to a spherical line.

1 function dPoi nt Li ne(p,l:11ine<pi,py>)

n = p1x"p
c = p—(p-n)n
q = c/|

if (poi nt1nArc(q,p1,p2))
return dg(p,q)
ese

NOoO o~ WDN
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8 return min(dgs(p, p1), ds(p, p2))

FunctiordPoi nt Li ne makes use of the functigmoi nt | nAr ¢ to determine
if point ¢, which lies on the great circle of a spherical liheith endpoints ofp;
andps, is onl. As we pointed out above, this is only true if the anglep, is
obtuse. This check is simple to make in the sense that angie is 90 degrees if
the sumsS of the squares of the lengths of the two edges that compiisedfual to
the square of the length of the edgg- denoted by{. The angle is acute (obtuse)
if C is less (greater) thaH .

1 function poi nt | nArc(q,p1,p2)
2 return (d3(q,p1) + d3(q,p2) < d3(p1,p2))

4.4 Distance between a Spherical Point and a Spherical Polygon

In order to to find the distance between a spherical point asgharical polygon,
we need to consider two cases: either the spherical poimt ikepolygon or not.
In the first case, the distance is simply zero. In the secogé, ¢the point is not on
the polygon and the distance is the minimum of all distanca® tthe point to the
edges of the polygon.

FunctiondPoi nt Spher e, given below, achieves this test.

1 function dPoi nt Sphere(p, g : pol ygon<iy,ls,...,1,,>)
2 if intersects(p,yg)

3 return 0

4 dse

5 return min; ds(p, ;)

4.5 Intersection of two Spherical Lines

Two spherical lined; and s intersect if and only if one of the two intersec-
tion points of their corresponding great circles lies onhbigtand . Function
i nt er sect Li nes, given below, achieves this test.

section.

1 function i ntersectLines(ly:1ine<py,ps>ls:1ine<py,ps>)

14
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2 <x1,x9> =1 ntersectionPoi nt s(ly.plane, ly.plane)

3 for j=11to 2

4 if pointlnAr C(l’i,ll.pl,ll.pg,) and poi nt | nAr C(l‘i,lg.pl,lg.pg)
5 return True

6 endfor

7 return False

Functioni nt er sect Li nes makes use of the functidmt er sect i onPoi nt s
to determine two points on the sphere which correspond tetigpoints of the
spherical line formed by the intersection of two plapesdq of two great circles.

1 function i nt ersecti onPoi nts(p: pl ane<n>,q : pl ane<n>)
2 r = pnx"qgn
3 return <r,7>

5 Additionstothe SAND Browser

The SAND Browser, which is the graphical user interface (JZa3ISAND, uses a
two-dimensional display system for displaying the datasarwitilizes the GUI for
performing queries. Incorporating the spherical data tppethe SAND Browser
was conceptually very simple. The main modification to th&N&Browser’s GUI
was the addition of the ability to render spherical linesthie current implementa-
tion, a spherical line is approximated by many short linavsegts on the display.
We used a heuristic to decide how many segments are needadémd approxi-
mation of the spherical line. The heuristic that we devisseksuhe latitude of the
two endpoints and the length of line. If the endpoints ardrfan poles or the line
is long, then the heuristic uses more line segments.

An additional feature of the SAND Browser is the spatial stde operation
which enables a user to select data items that are locateddntar. A sector is
represented by a point and two rays emanating from that .pdiatsupport the
sector on a sphere, we use a spherical lune [Wei98], whiolvalthe user to select
the spherical data that is located on a spherical lune. lardadspecify the lune,
the user selects one endpojnbf the lune, and two spherical lines havipgand
the antipodal op as their endpoints. Notice that onlyneed be specified (i.e., the
antipodal ofp need not be specified by the user).

Since there is an infinite number of spherical lines betweand the antipodal
of p, the user is specifying which of the spherical lines sendstmarcate the lune.

15
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6 Concluding Remarksand Directionsfor Future Research

circle. The performance of the geometric primitives for esptal polygons was
improved by making use of the notion of a minimum bounding.bB&hen deter-
mining whether a point is inside a polygon, for example, we gaickly dismiss
any points outside the minimum bounding box, without exangjrany of the ver-
tices of the polygon. In addition, minimum bounding boxeslda the use of a
filter-and-refine query processing strategy. In partigulae minimum bounding
box serves to yield a set of candidate objects (the filter) sidyde the full descrip-
tion of the objects is used as a refinement step to producerthleafiswer to the
guery. In SAND, we store a minimum bounding rectangle witthe2D polygon.
In the implementation of the spherical data model in SAND teeesa minimum
bounding Lambert rectangle with each spherical polygone 3dme idea is also
be applied to spherical lines. However, the minimum boundiambert rectangle
is not so simple to compute as in the planar case becausenipe ohlatitude and
longitude values that span a spherical lirannot in general be obtained by sim-
ply examining the latitude and longitude valued’sfspherical endpoints. Rather,
one must consider the entire trajectoryl of

Future work involves the incorporation of additional priives into the spher-
ical model of SAND. Examples include great circles and amydadrthem, small
circles and any arc of them, and spherical polygons thatramaze than half of
the sphere. Also, the ability to perform spherical visualian is a desirable feature
(i.e., visualizing on a spherical surface rather than orptiogection of the sphere
on the plane).

The current implementation of the spherical sector queBARND is somewhat
restricted in the sense that a sector can only span half afohere. This restriction
is a result of the definition of a spherical sector to be a luh&lwis represented
using a spherical polygon. Recall that spherical polyg@amsaover at most half of
the sphere in the current implementation. Thus, permittiroge general spherical
polygons (i.e., with surface area greater tRah will immediately allow spherical
sectors covering more than half of the sphere. In fact, cetagenerality can be
obtained by permitting the user to select both endpointhefspherical sector,
instead of implicitly anchoring the sector at the other epdising the antipodal of
the user-specified anchor point as the second endpoint sptierical sector.

The definition of a spherical line segment is also restrciivthe sense that the
extent of a spherical line segment is always less than 18fdeg One possible
way of allowing longer spherical line segments would be tecify the extent of
the arc traversed by the spherical line. We can define aryemliich we term a
spherical arcas any arc of a great circle. A simple specification of a sphedrc
can be achieved by giving its great circle and two endpoikiswever, the two
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endpoints divide a circle into two arcs and thus we need iadait information to
distinguish between them. We note that a great circle isispedy the normal
vector of the plane that contains it. By using the directiéthés normal vector,
we can specify a spherical arc unambiguously. We say thasgherical arc is
counterclockwisevhen we orient the great circle so that its normal vectordsifa
outwards.

Similarly, the definition of a spherical polygon is also dyeestrictive in the
sense that the area of the polygon cannot exceed one ha# afdla of the sphere.
Moreover, the length of any edge of the spherical polygoroimbled, in the same
way as the length of a spherical line segment. The polygoa i@griction could
be easily lifted by specifying a point that is located in tpaerical polygon. Alter-
natively, we can use an anchor pointn the sphere (such as the North Pole), and
associate a flag with each spherical polygdhat indicates whether or netcon-
tainsp. Longer polygon edges can be allowed by using the sphericaledinition
given above.

It is also worthwhile to compare the performance of our repneation in
SAND of the spherical data with other representations. Rétat some of our
decisions were heavily influenced by the current implentemtaof 2D data types
in SAND. Some other techniques could involve making useiahgular spheri-
cal elements for the grid space as would be the case when amedcbn [Dut84,
Dut90, GY92, 0Z93] or an icosahedron [FD84, Fek90], as wediquare spherical
elements for the case that a cube [Sco096], are embedded aplieee instead of
the mapping of a plane onto the sphere that we used.
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