
In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

Augmenting SAND with a Spherical Data Model∗

(EXTENDED ABSTRACT)

Houman Alborzi and Hanan Samet
Department of Computer Science
Center for Automation Research

Institute for Advanced Computer Studies
University of Maryland

College Park, MD 20740
{houman,hjs}@cs.umd.edu

November 30, 2014

Abstract
SAND is a spatial database and information browser system developed at

University of Maryland which supports 2D and 3D data models.The experi-
ence in extending SAND to include a spherical data model thereby enabling
SAND to perform spatial queries on spherical data and to browse their re-
sults in an incremental manner is described. The focus is on the issues that
arise in adding a spherical data model to a database that has been built on the
basis of the planar data model. Special emphasis is placed onhow the data
structure was chosen for the task. The various geometrical primitives that
were needed for modeling spherical data as well as the algorithms that were
required in the implementation are also described. As SAND is based on the
quadtree representation, a natural method for adding spherical data to SAND
was to find a spherical adaptation of the quadtree. The spherewas mapped
into a quadtree representation by projecting the sphere onto a cube, and then
constructing the quadtree on the faces of cube. Alternatively, it is also pos-
sible to map the sphere into a plane, and then simply use a planar quadtree.
Some of the differences between these approaches are discussed. In addi-
tion, the display models and visual query mechanisms used inSAND with
our new spherical data model to ease the task of navigating through the data
are described. By adding a spherical sector primitive, it ispossible for users
to locate data on the sphere which are located in a spherical lune anchored at
two antipodal spherical points.

∗The support of the National Science Foundation under GrantsEIA-99-00268 and IRI-97-12715
is gratefully acknowledged.

1

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

1 Introduction

SAND [ES96] is an interactive spatial database and browser developed at Uni-
versity of Maryland. SAND combines a graphical user interface with a spatial
and non-spatial database engine. It supports queries on spatial and non-spatial
data, such as spatial selections and spatial joins. SAND supports a number of
different spatial data structures, including the PMR quadtree [NS86] and the R*-
tree [BKSS90]. In this paper we focus on the PMR quadtree which is a variant
of the region quadtree (e.g., [Sam90]) that can handle spatial objects of arbitrary
dimensionality (i.e., including 2D and 3D). For example, intwo dimensions, the
PMR quadtree subdivides the underlying rectangular spacer into four congruent
rectangular areas whenever the number of objects that overlapr exceeds a prede-
fined values, termed the splitting threshold. Each of the resulting areas contains
references via pointers to the spatial descriptions of the objects that overlap them.
The PMR quadtree is different from other bucketing methods in that when the
number of objects that overlapr exceeds the splitting threshold, thenr is only
subdivided once even though some of the resulting areas, saya, may still be over-
lapped by more thans objects. The key is thata will be subdivided the next time
an object is inserted that overlaps it. In this way, regions are not subdivided many
times when more thans objects are very close to each other.

Spatial selections in SAND are in the form of finding all data objects, where
the value of one of their spatial attributes overlaps a particular region in space. Of
particular interest are range queries where SAND enables a user to find data objects
whose distance to another data object is within a given range. For example, this
feature enables a user to find all warehouses that are between100 and 200 miles
of a particular retail store. Another query feature of SAND allows the user to find
all the objects which have a certain orientation with respect to another data object.
For example, a user can locate all warehouses which are northof a given location.

SAND also supports the join operation. There are many variants of this opera-
tion whose result is a set whose elements are the members of the Cartesian product
of the tuples of two relations that satisfy the join condition. When the join con-
dition is based on the values of the spatial attributes, the operation is known as a
spatial join. The join condition often involves tuples that are co-located or within a
given distance of each other. Another variant of the join is thedistance join[HS98]
in which case the resulting tuples are ordered according to the spatial proximity of
the objects associated with the joined tuples. The distancesemi-join [HS98] is a
special case of the distance join in which case each item of one of the joined sets
is paired up with the closest member (in terms of the spatial attribute values of the
two sets) of the other of the joined sets. The resulting tuples are ordered according
to the distance between their constituent spatial attributes. For example, consider

2

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

the case that one data set contains the locations of the warehouses of a merchant,
and another dataset contains the locations of retail storesof the merchant. Using
the distance semi-join, a user can find the closest warehousefor each retail store.
SAND performs this kind of spatial join by utilizing an algorithm that finds the
nearest neighbors of spatial objects in an incremental manner [HS99].

In this paper we report on an effort to design and implement a spherical data
model for SAND. The goal was to give SAND the ability to perform correct queries
for data on the surface of the Earth. The original SAND implementation was based
on a planar model of space, and hence was not able to perform correct computations
for distances of data objects on the surface of the Earth. In particular, the planar
model only provided reasonably accurate responses to a small portion of the Earth.
The main shortcoming of SAND was that the distance function did not take into
account the curvature of the Earth.

The rest of this paper is organized as follows. Section 2 discusses the different
considerations that were taken into account in choosing thespatial data structure
to support spherical data. Section 3 presents the spatial objects that are needed
in our spherical data model. Section 4 describes the algorithms needed to deal
with spherical geometry in our implementation. Section 5 indicates the limited
number of changes that needed to be made to the SAND Browser toenable viewing
spherical data. Section 6 contains concluding remarks and directions for future
research.

2 Spatial Data Structure to Support Spherical Data

In this section, we describe the different approaches that we attempted in order to
extend SAND to support spherical data. Before our extension, SAND supported
polygons, lines, and points on a plane. We enhanced SAND to support their coun-
terparts on the surface of a sphere — that is, spherical polygons, spherical lines, and
points on a sphere. Given that SAND already contains a large volume of software
to support spatial data structures for 2D space, we focussedon the different ways
in which a sphere could be mapped to a 2D space (plane). In the following discus-
sion, we use the termdata spaceto describe the space in which the data resides,
andgrid spacefor the space in which the data structure manipulations takeplace.
For example, if the sphere is mapped onto a planep, and a quadtree decomposition
is subsequently developed on the plane, thenp is the ‘grid space’. Obviously, there
should exist a mapping between the data space and the grid space. In particular, an
appropriate mapping permits efficient operations on the data.

There are two ways to implement the mapping. One approach is to map the
data objects directly onto the grid space whenever they are modified or inserted

3

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

into the database. An alternative approach is to map the gridspace into the data
space whenever a decision should be made about where an object should reside in
the partition of the data space induced by the grid. In this case, we are mapping
the partition lines of the grid space into the data space. In the first approach, all of
the data must be mapped from the data space onto the grid space, whereas in the
second approach only the grid partitions must be mapped fromthe grid space onto
the data space. Assuming that there is more data than partition lines, it appears
that mapping the grid space onto the data space is cheaper from a computational
complexity standpoint than mapping the data space onto the grid space.

Mapping the grid space onto the data space is made more efficient by storing
the result of the mappings of the grid space onto the data space in the actual data
structure. For example, in the case of a quadtree-like subdivision in the grid space,
we can maintain the result of mapping the partition points from the grid space onto
the data space in the data structure. In addition, we should bear in mind that even
for a database with a few insertions or modifications, mapping data objects onto
the grid space may not be computationally feasible. For example, in the case of
mapping a sphere onto a plane, a spherical line may not necessarily be mapped into
a line on the plane. Hence, performing computations on the result of the mappings
is not a straightforward task. Similar problems can be encountered when designing
a mapping from the grid space onto the data space. For example, suppose again
that the grid space is the plane which is subdivided into triangle blocks, and we use
the Lambert equal-area cylindrical projection [Sny87] as described in Section 2. In
this case, the mapping of non-vertical non-horizontal edges of grid triangles, are
not simple arcs on the sphere. The mappings of partitions of the grid should make
use of simple geometrical primitives where the required geometrical algorithms —
distance and intersection — are easy to implement.

In the case of the spherical data model, we used the second approach where we
do not map the data objects onto the grid space. Instead, we map the data structure
grids onto the data space, and perform the geometrical algorithms in the data space.
This idea is frequently used in applications involving spatial data structures. For
example, in the case of the PM quadtree representation of vector objects (i.e., non-
raster objects) [SW85], although the underlying space is decomposed into blocks,
the objects are never decomposed into the subobjects that pass through each block.
In particular, in each blockb that overlaps objecto, we store a pointer too instead
of clipping o to b [NS86]. In this way we need not have to worry about whether
or not, for example, two connected line segments in adjacentblocks are part of the
same line. Moreover, we can safely remove and add parts of thesame line without
concerns about roundoff errors resulting from the clippingprocess [FvDFH90].
This solution is also used in overcoming the null object detection problem in solid
modeling applications (e.g., [Til84]).

4

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

We investigated three different mappings between the data space and the grid
space. The first two were based on embedding a cube in the sphere and project-
ing locations on the cube to the sphere, or vice versa as they are equivalent since
the mappings are 1-1 and onto. The third was based on an equal area cylindrical
projection of the plane onto the sphere (also known as Lambert’s cylindrical equal
area projection [Sny87]). The first two mappings were based on the ideas proposed
by Scott [Sco96].

In the first mapping that we tried, once we mapped the sphere onto the cube,
we modeled each face of the resulting cube with a quadtree data structure thereby
resulting in 6 quadtrees. This mapping has the property thateach line on the cube
is a mapping of a spherical line on the sphere (i.e., a great circle arc). Therefore,
we only needed to implement the geometrical algorithms dealing with spherical
lines. However, if one wants to model parallels to the Equator, then the resulting
projection onto the cube will not be a line anymore. It shouldnoted that while
Scott’s idea of projecting onto the cube is novel, his method[Sco96] of calculating
mapping between the subdivisions of cubical faces and theirspherical counterparts
is wrong. In particular, by using a parallel projection, some parts of the sphere
are not covered on the cube. The problem can be solved by projecting through the
center of the sphere.

Another interesting feature of this mapping is that spherical polygons are mapped
into polygons on the cube, and by keeping the cubic projection of each data object
we can use the faster planar geometric algorithms instead ofthe spherical ones.
However, a drawback of this mapping is that it is not an equal area projection.
This means that the projections on the grid space of uniformly distributed data in
the data space are not uniformly distributed. Although implementing this approach
seemed straightforward initially, we encountered considerable difficulties when we
tried to modify many parts of SAND to incorporate it. For example, in the case of
a general spatial join, we would have to perform 36 pairwise intersections — one
for every possible pair of faces of the two cubes that correspond to the two joined
sets. However, in many of the standard functions in SAND there is an implicit
assumption that the data is stored in a single quadtree. Finding and debugging all
the related code seemed impractical for this task.

Observing the infeasibility of using six quadtrees for any dataset, we employed
an alternative approach where we flattened the cubic faces ona plane. In other
words, the grid space was considered to be a single rectanglewhich contains all
resultant six faces of result of projecting the sphere onto the cube (see Figure 1).
This approach allowed us to reuse many of the SAND routines with no extra effort.
However, the main drawback of this approach was that some of the regions in
the grid space did not have a counterpart (i.e., were undefined) in the data space.
Thus some of the algorithms in SAND failed to work properly without further

5

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

modification. In particular, not every connected region in the grid space had a
corresponding region on the sphere. This was a problem because some of the
operations in SAND examined every block spanned by the region in the grid space
and some of these blocks were not well-defined on the sphere, and hence difficult
to deal with. The dotted rectangle in Figure 1 shows such a block.

Figure 1: Flattening a cube on the plane.

Based on experiments with the first two approaches, we concluded that an ap-
propriate mapping for SAND should have the following properties:

1. Map a sphere into a single rectangle,

2. Any rectangle on the plane should map to a simple shape on sphere.

We used Lambert’s cylindrical equal area projection as the mapping. This mapping
is also an equal area projection and hence preserves the uniformity of data points.
However, it has singularities at the poles, where the poles will be mapped into lines
in grid space. A side effect is that data primitives around the poles will be elongated
in the projection.

In the sections that follow, we describe more details about spherical data prim-
itives and geometrical algorithms needed for the implementation.

6

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

3 Spatial Objects in the Spherical Data Model

This section introduces the spatial objects in our spherical data model. The spheri-
cal objects include spherical points, spherical lines, spherical polygons, and Lam-
bert rectangles. In the next section, we describe the geometrical algorithms on
these objects.

3.1 Preliminaries and Notations

All objects in our spherical data model reside on the surfaceof a sphereof radius
1 (i.e., the unit sphere). The center of the sphere serves as the center of all of the
coordinate systems that we use. LetO denote the center of the sphere and letS2

denote the surface of the sphere. While all the objects reside inS2, it is convenient
to also use three-dimensional Euclidean spaceR

3 whenever needed. We use either
a Cartesian coordinate system, or a spherical coordinate system, or both to specify
the coordinates of objects. The triple(x, y, z) and the pair(λ, φ) denote a point in
the two coordinate systems, respectively.λ is also known as thelongitudeof the
point, andφ is known at itslatitude.

For any pointP on S2 there is exactly one corresponding point and vector in
R

3 both of which are denoted byP . A×n B denotes the normalized cross product
of two vectorsA andB.

The distance between any two pointsA andB can be either defined inR3,
which is the length of the shortest line connecting them in three-dimensional space,
or in S2, in which case it is the length of the shortest arc on the sphere that connects
them. The former is denoted byd3(A,B), while the latter is denoted bydS(A,B).

For any pointP with coordinate values(x, y, z), we define itsantipodalpoint
P as the point with coordinate values of(−x,−y,−z). A point, its antipodal, and
O are collinear. Furthermore, the distance from a pointP to O equals the distance
from P ’s antipodal pointP to O, or formallyd3(O,P) = d3(O,P).

The intersection of a sphere with a plane forms a circle. If the plane passes
through the center of the sphere, then the intersection is called agreat circle, and it
has the same radius as the sphere. Any other circle is termed asmall circle.

Any three non-collinear points inR3 specify one and only one plane passing
through them. Hence, the center of the sphere and any two non-antipodal points on
the sphere specify exactly one plane and exactly one great circle of the sphere.

Any two pointsA andB and the origin specify a plane passing through them
such that the plane’s normal isA ×n B. The angle between two normal vectorsA
andB is arccos(A · B).

Spherical data is any kind of spatial data on the surface of a sphere. The basic
unit of data is aspherical point. A spherical lineis the collection of all points that

7

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

lie on the sphere on the shortest path between two spherical points that are termed
its two endpoints. Notice that if the two endpoints of a spherical line are antipodals,
then there are many spherical lines defined by them.

A spherical polygonis a list of spherical points where the edges of the polygon
are the spherical lines between adjacent elements (i.e., spherical points) of the list.

3.2 Spherical Point

A spherical point is a single point on the surface of the unit sphere centered at the
origin. Given a spherical pointP with Cartesian coordinate values(x, y, z), and
spherical coordinate values(λ, φ), the following relationships hold:

λ = arctan(y, x)(1)

φ = arcsin(z)(2)

x = cos(λ) cos(φ)(3)

y = sin(λ) cos(φ)(4)

z = sin(φ)(5)

1 = x2 + y2 + z2(6)

Recall thatλ is also known as the longitude of the spherical point, andφ is
known at its latitude.

3.3 Spherical Line

Any two non-antipodal spherical points specify a unique spherical line which is de-
fined as the shortest path on the surface of the sphere connecting the two spherical
points. The great circle formed by two non-antipodal spherical points is divided
into two arcs where the spherical line is the shorter arc. Thelength of this arc is
defined to be the length of the spherical line. Figure 2 shows two spherical points
A andB and the depicted circle is the great circle passing through them andO.
The length of the arc shown with a bold line is2 arcsin(d/2), or more formally:

dS(A,B) = 2 arcsin

(

d3(A,B)

2

)

.(7)

of

3.4 Spherical Polygon

A spherical polygon is a closed region on the sphere bounded by non-intersecting
spherical lines. We represent a spherical polygon by a list of spherical points or-
dered in such a way that two adjacent spherical points in the list specify a spherical

8

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

O

B

A

d

Figure 2: Length of a spherical line between spherical points A and
B

line (edge) bounding the spherical polygon. Figure 3 shows an example spherical
triangle.

B

A

C

O

Figure 3: Example spherical triangle

The angle between two intersecting spherical lines is defined as the angle be-
tween the tangents of the great circles of the spherical lines that pass through the
intersection point. If the intersection point of two adjacent spherical line segments
of a spherical polygon is denoted byB and the other endpoints of the spherical
line segments are denoted byA andC, then the angle at vertexB of the spherical
polygon is equal to the angle between the planes containing the great circles of the
spherical lines, which is:

9

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

π − arccos((A ×n B) · (B ×n C)).(8)

The area of a spherical polygon is related to the sum of its angles as follows.
Assume the spherical polygon hasn verticesv1 . . . vn, and the angle at vertexvi is
denoted byαi, then

Area =
n

∑

i=1

αi − (n − 2)π.(9)

A spherical polygon divides the sphere into two areas. We assume that the
smaller of these two areas is inside the polygon. Considering that the area of the
unit sphere is4π, the area of a spherical polygon is always less than2π.

3.5 Lambert Rectangle

When indexing 2D data objects in SAND, the underlying space is subdivided into
rectangles. Rectangular subdivisions have two desirable properties. First, it is
relatively easy to test for inclusion of a point in them. Second, it is easy to subdivide
them into smaller rectangles. Re-examining equation 9 in Section 3.4, we see that
a four-sided spherical polygon with four right angles has anarea of 0. In other
words, a spherical rectangle with four sides covers just a single point of sphere.
Therefore, a right-angled quadrilateral cannot be defined nontrivially on a sphere
which means that we needed another form of a rectangle for ourspherical data
model. We define such an entity below which we term aLambert rectangle.

A Lambert rectangleis a collection of spherical points with their longitude and
latitude values in a given range((λ1, λ2), (φ1, φ2)). The area of such a rectangle is
(λ2−λ1)(sin φ2−sinφ1) [Wei98]. Remembering that for any spherical point, itsz-
coordinate value is equal to the sin of its latitude (z = sin φ), and also the fact that
sin(.) is a monotonically increasing function from−π/2 to π/2, we can specify
the range with((λ1, λ2), (z1, z2)) instead. Hence, The area of such a Lambert
rectangle is(λ2 − λ1)(z2 − z1). Figure 4 is an example of a Lambert rectangle.

One of the benefits of using Lambert rectangles is that we can specify the whole
sphere with a single Lambert rectangle with longitudinal range of(−π, π) and lat-
itudinal range of(−π/2, π/2). A Lambert rectangle is also easily divisible into
smaller Lambert rectangles. Another advantageous property is that Lambert rect-
angles are the natural choices for a spherical quadtree as subdividing a Lambert
rectangle into four equal area smaller rectangles can be easily done by using the
center of the rectangle((λ1 + λ2)/2, (z1 + z2)/2). Assuming that the objects
on a sphere are uniformly distributed, the Lambert rectangles provide the same
performance for quadtree-based data structures as in the planar case (i.e., in 2D).

10

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

O

Figure 4: Example Lambert rectangle.

In particular, we can see that if the latitude values range between 0 and 80 de-
grees, then a subdivision at((λ1 + λ2)/2, (φ1 + φ2)/2) results in four Lambert
rectangles which do not have equal area (see Figure 5 where the subdivision is at
φ = 40 degrees), while a subdivision at((λ1 + λ2)/2, (z1 + z2)/2) does result
in four Lambert rectangles of equal area (see Figure 5 where the subdivision is at
z = sin(φ) = sin(29.50) = .4924).

4 Spherical Geometry Algorithms

In order to implement the spherical data model in SAND, we hadadd algorithms
for determining if two spatial objects intersect and for calculating the distance be-
tween two spatial objects. In particular, for any pair of object types in our spherical
data model, we had to implement the distance and intersection functions between
them. In this section, we describe some of the algorithms used in the implementa-
tion of the spherical data model in SAND.

4.1 Distance between Two Spherical Points

The distance between two spherical points is the length of a spherical line having
them as is endpoints.

4.2 Intersection of Two Spherical Points

Two spherical points intersect if and only if they have the same coordinate values.

11

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

0.4924

0.6428

0.9848

Latitude

80

40

29.50

0

0 15 30

0.000

z

Longtitude

Figure 5: Example demonstrating the subdivision of a Lambert rect-
angle.

12

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

4.3 Distance between a Spherical Point and a Spherical Line

The distance from a spherical pointp to a spherical linel is the distance fromp
to one of the endpoints(A,B) of l (see Figure 6a), or some pointq on l. q has
the property that it is colinear with the line joining the center O of the sphere and
the projectionC of p on the plane containingl. If m is the normal vector of the
plane containing the spherical linel (m = A ×n B), thenC = p − (p · m)m. We
also need to check ifq lies on the spherical linel It is easy to see thatq lies on the
spherical linel (i.e., the shorter arc betweenA andB) if and only if angleAqb in
triangleAqB is obtuse (see Figure 6b). Based on these considerations, inorder to
find the distance between a spherical pointp and a spherical linel with endpoints
A andB, functiondPointLine, on the sphere (i.e.,dS) from p to eitherA, B,
or q.

O

B

O

B

A

C
q

p

(b)

p

A

(a)

Figure 6: Example of the computation of the distance from a spher-
ical point to a spherical line.

1 function dPointLine(p, l : line<p1, p2>)
2 n = p1 ×

np2

3 c = p − (p · n)n
4 q = c/|c|
5 if (pointInArc(q, p1, p2))
6 return dS(p, q)
7 else

13

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

8 return min(dS(p, p1), dS(p, p2))

FunctiondPointLinemakes use of the functionpointInArc to determine
if point q, which lies on the great circle of a spherical linel with endpoints ofp1

andp2, is on l. As we pointed out above, this is only true if the anglep1qp2 is
obtuse. This check is simple to make in the sense that anglep1qp2 is 90 degrees if
the sumS of the squares of the lengths of the two edges that comprise itis equal to
the square of the length of the edgep1p2 denoted byH. The angle is acute (obtuse)
if C is less (greater) thanH.

1 function pointInArc(q, p1, p2)
2 return (d2

3
(q, p1) + d2

3
(q, p2) < d2

3
(p1, p2))

4.4 Distance between a Spherical Point and a Spherical Polygon

In order to to find the distance between a spherical point and aspherical polygon,
we need to consider two cases: either the spherical point is on the polygon or not.
In the first case, the distance is simply zero. In the second case, the point is not on
the polygon and the distance is the minimum of all distances from the point to the
edges of the polygon.

FunctiondPointSphere, given below, achieves this test.

1 function dPointSphere(p, g : polygon<l1, l2, . . . , ln>)
2 if intersects(p, g)
3 return 0
4 else
5 return mini dS(p, li)

4.5 Intersection of two Spherical Lines

Two spherical linesl1 and l2 intersect if and only if one of the two intersec-
tion points of their corresponding great circles lies on both l1 and l2. Function
intersectLines, given below, achieves this test.

section.

1 function intersectLines(l1 : line<p1, p2>, l2 : line<p1, p2>)

14

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

2 <x1, x2> = intersectionPoints(l1.plane , l2.plane)
3 for j = 1 to 2
4 if pointInArc(xi, l1.p1, l1.p2,) and pointInArc(xi, l2.p1, l2.p2)
5 return True

6 end for
7 return False

FunctionintersectLinesmakes use of the functionintersectionPoints
to determine two points on the sphere which correspond to theendpoints of the
spherical line formed by the intersection of two planesp andq of two great circles.

1 function intersectionPoints(p : plane<n>, q : plane<n>)
2 r = p.n ×n q.n
3 return <r, r>

5 Additions to the SAND Browser

The SAND Browser, which is the graphical user interface (GUI) of SAND, uses a
two-dimensional display system for displaying the data. A user utilizes the GUI for
performing queries. Incorporating the spherical data typeinto the SAND Browser
was conceptually very simple. The main modification to the SAND Browser’s GUI
was the addition of the ability to render spherical lines. Inthe current implementa-
tion, a spherical line is approximated by many short line segments on the display.
We used a heuristic to decide how many segments are needed fora good approxi-
mation of the spherical line. The heuristic that we devised uses the latitude of the
two endpoints and the length of line. If the endpoints are farfrom poles or the line
is long, then the heuristic uses more line segments.

An additional feature of the SAND Browser is the spatial selection operation
which enables a user to select data items that are located in asector. A sector is
represented by a point and two rays emanating from that point. To support the
sector on a sphere, we use a spherical lune [Wei98], which allows the user to select
the spherical data that is located on a spherical lune. In order to specify the lune,
the user selects one endpointp of the lune, and two spherical lines havingp and
the antipodal ofp as their endpoints. Notice that onlyp need be specified (i.e., the
antipodal ofp need not be specified by the user).

Since there is an infinite number of spherical lines betweenp and the antipodal
of p, the user is specifying which of the spherical lines serve todemarcate the lune.

15

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

6 Concluding Remarks and Directions for Future Research

circle. The performance of the geometric primitives for spherical polygons was
improved by making use of the notion of a minimum bounding box. When deter-
mining whether a point is inside a polygon, for example, we can quickly dismiss
any points outside the minimum bounding box, without examining any of the ver-
tices of the polygon. In addition, minimum bounding boxes enable the use of a
filter-and-refine query processing strategy. In particular, the minimum bounding
box serves to yield a set of candidate objects (the filter step) while the full descrip-
tion of the objects is used as a refinement step to produce the final answer to the
query. In SAND, we store a minimum bounding rectangle with each 2D polygon.
In the implementation of the spherical data model in SAND we store a minimum
bounding Lambert rectangle with each spherical polygon. The same idea is also
be applied to spherical lines. However, the minimum bounding Lambert rectangle
is not so simple to compute as in the planar case because the range of latitude and
longitude values that span a spherical linel cannot in general be obtained by sim-
ply examining the latitude and longitude values ofl’s spherical endpoints. Rather,
one must consider the entire trajectory ofl.

Future work involves the incorporation of additional primitives into the spher-
ical model of SAND. Examples include great circles and any arc of them, small
circles and any arc of them, and spherical polygons that cover more than half of
the sphere. Also, the ability to perform spherical visualization is a desirable feature
(i.e., visualizing on a spherical surface rather than on theprojection of the sphere
on the plane).

The current implementation of the spherical sector query inSAND is somewhat
restricted in the sense that a sector can only span half of thesphere. This restriction
is a result of the definition of a spherical sector to be a lune which is represented
using a spherical polygon. Recall that spherical polygons can cover at most half of
the sphere in the current implementation. Thus, permittingmore general spherical
polygons (i.e., with surface area greater than2π) will immediately allow spherical
sectors covering more than half of the sphere. In fact, complete generality can be
obtained by permitting the user to select both endpoints of the spherical sector,
instead of implicitly anchoring the sector at the other end by using the antipodal of
the user-specified anchor point as the second endpoint of thespherical sector.

The definition of a spherical line segment is also restrictive in the sense that the
extent of a spherical line segment is always less than 180 degrees. One possible
way of allowing longer spherical line segments would be to specify the extent of
the arc traversed by the spherical line. We can define an entity which we term a
spherical arcas any arc of a great circle. A simple specification of a spherical arc
can be achieved by giving its great circle and two endpoints.However, the two

16

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

endpoints divide a circle into two arcs and thus we need additional information to
distinguish between them. We note that a great circle is specified by the normal
vector of the plane that contains it. By using the direction of this normal vector,
we can specify a spherical arc unambiguously. We say that thespherical arc is
counterclockwisewhen we orient the great circle so that its normal vector is facing
outwards.

Similarly, the definition of a spherical polygon is also overly restrictive in the
sense that the area of the polygon cannot exceed one half of the area of the sphere.
Moreover, the length of any edge of the spherical polygon is bounded, in the same
way as the length of a spherical line segment. The polygon area restriction could
be easily lifted by specifying a point that is located in the spherical polygon. Alter-
natively, we can use an anchor pointp on the sphere (such as the North Pole), and
associate a flag with each spherical polygons that indicates whether or nots con-
tainsp. Longer polygon edges can be allowed by using the spherical arc definition
given above.

It is also worthwhile to compare the performance of our representation in
SAND of the spherical data with other representations. Recall that some of our
decisions were heavily influenced by the current implementation of 2D data types
in SAND. Some other techniques could involve making use of triangular spheri-
cal elements for the grid space as would be the case when an octahedron [Dut84,
Dut90, GY92, OZ93] or an icosahedron [FD84, Fek90], as well as square spherical
elements for the case that a cube [Sco96], are embedded in thesphere instead of
the mapping of a plane onto the sphere that we used.

Acknowledgments

We want to thank Gisli R. Hjaltason for his invaluable assistance in helping to
incorporate our techniques into the SAND system.

References

[BKSS90] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R∗-
tree: an efficient and robust access method for points and rectangles.
In Proceedings of the ACM SIGMOD Conference, pages 322–331,
Atlantic City, NJ, June 1990.

[Dut84] G. Dutton. Geodesic modelling of planetary relief.Cartographica,
21(2&3):188–207, Summer & Autumn 1984.

17

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

[Dut90] G. Dutton. Locational properties of quaternary triangular meshes. In
Proceedings of the Fourth International Symposium on Spatial Data
Handling, pages 901–910, Zurich, Switzerland, July 1990.

[ES96] C. Esperanca and H. Samet. Spatial database programming using
SAND. In M.J. Kraak and M. Molenaar, editors,Proceedings of the
Seventh International Symposium on Spatial Data Handling, pages
A29–A42, Delft, The Netherlands, August 1996.

[FD84] G. Fekete and L. S. Davis. Property spheres: A new representation for
3-d object recognition. InProceedings of the Workshop on Computer
Vision: Representation and Control, pages 192–201, Annapolis, MD,
April 1984. (Also University of Maryland Computer Science TR-
1355).

[Fek90] G. Fekete. Rendering and managing spherical data with sphere
quadtrees. InProceedings of Visualization ’90, pages 176–186, San
Francisco, CA, October 1990.

[FvDFH90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, Reading, MA,
second edition, 1990.

[GY92] M. F. Goodchild and S. Yang. A hierarchical spatial data structure for
global geographic information systems.CVGIP: Graphical Models
and Image Understanding, 54(1):31–44, January 1992.

[HS98] G. R. Hjaltason and H. Samet. Incremental distance join algorithms
for spatial databases. InProceedings of the ACM SIGMOD Confer-
ence, pages 237–248, Seattle, WA, June 1998.

[HS99] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.
ACM Transactions on Database Systems, 24(2):265–318, June 1999.

[NS86] R. C. Nelson and H. Samet. A consistent hierarchical representation
for vector data.Computer Graphics, 20(4):197–206, August 1986.

[OZ93] E. J. Otoo and H. Zhu. Indexing on spherical surfaces using semi-
quadcodes. In D. Abel and B. C. Ooi, editors,Advances in Spatial
Databases — Third International Symposium, SSD’93, pages 510–
529, Singapore, June 1993. (Also Springer Verlag Lecture Notes in
Computer Science 692).

18

In Proc. of Intl. Conf. on Discrete Global Grids, Santa Barbara, CA, March 2000.

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990.

[Sco96] G. M. Scott. The cubic quadtree: a spatial data structure for spherical
surfaces. scholarly paper CSC 1024, University of Maryland, College
Park, MD, December 1996.

[Sny87] J. P. Snyder.Map projections – a working manual. U.S. geological
survey professional paper 1395. United States Government Printing
Office, Washington, DC, 1987.

[SW85] H. Samet and R. E. Webber. Storing a collection of polygons using
quadtrees.ACM Transactions on Graphics, 4(3):182–222, July 1985.
(Also Proceedings of Computer Vision and Pattern Recognition 83,
Washington, DC, June 1983, 127–132; and University of Maryland
Computer Science TR–1372).

[Til84] R. B. Tilove. A null–object detection algorithm forconstructive solid
geometry.Communications of the ACM, 27(7):684–694, July 1984.

[Wei98] E. W. Weisstein. The CRC Concise Encyclopedia of Mathematics.
CRC Press, Boca Raton, FL, 1998.

19

