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Efficient Regular Data Structures and Algorithms for
Dilation, Location, and Proximity Problems?

A. Amir,? A, Efrat® P. Indyk? and H. Samét

Abstract. In this paper we investigate data structures obtained by a recursive partitioning of the multi-
dimensional input domain into regionsequalsize. One of the best known examples of such a structure is the
guadtreeltis used here as a basis for more complex data structures. We also provide multidimensional versions
of the stratified treeby van Emde Boas [VEB]. We show that under the assumption that the input points have
limited precision (i.e., are drawn from the integer grid of sizéhese data structures yield efficient solutions to

many important problems. In particular, they allow us to achi@ey®g logu) time per operation for dynamic
approximate nearest neighbor (under insertions and deletions) and exact on-line closest pair (under insertions
only) in any constant number of dimensions. They all@og logu) point location in a given planar shape

or in its expansion (dilation by a ball of a given radius). Finally, we provide a linear time (optimal) algorithm

for computing the expansion of a shape represented by a region quadtree. This result shows that the spatial
order imposed by this regular data structure is sufficient to optimize the operation of dilation by a ball.

Key Words. Quadtree dilation, Approximate nearest neighbor, Point location, Multidimensional stratified
trees, Spatial data structure.

1. Introduction. In this paper we consider spatial data structures which are based on
(possibly recursive) decomposition of a bounded region into blocks, where the blocks of
each partition are of equal size; we call such structregslar. One of the most popular
examples of such structures is the quadtree (e.g., [S1] and [S2]), which is based on a
recursive decomposition of a square into four quadrants; another example is the stratified
tree structure of van Emde Boas [VEB]. The quadtree data structure and its numerous
variants are some of the most widely used data structures for spatial data processing,
computer graphics, GIS, etc. Some of the reasons for this are:

e Simplicity: the data structures and related algorithms are relatively simple and easy
to implement.
o Efficiency: they require much less storage to represent a shape than the full bit map.
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o \ersatility: many operations on such data structures can be performed very efficiently
(for example, computing the unigimtersection, or connected component labeling
[DST], [S2)).

Despite their usefulness, however, regular data structures for geometric problems
have not been investigated much from the theoretical point of view. One of the main
reasons is that in the widely adopted input model where the points are allowed to have
arbitrary real coordinates, the depth and size of (say) a quadtree can be unbounded,
thus making worst-case analysis of algorithms impossible. On the other hand, such a
situation is rarely observed in practice. One reason is that in many practical applications
the coordinates are represented with fixed precision, thus making the unbounded size
scenario impossible. Another reason is that the regions encountered in practice are not
worst-case shapes; for example, they are often composed of fat dbjgutsefore, for
both practical and theoretical purposes, it is important to study such cases.

In this paper we give a solid theoretical background for these cases. First, we prove
that if the input precision is limited to sdybits (or, alternatively, the input coordinates
are integers from the intervall = {0- - - u — 1} whereu = 2), then by using regular
data structures, several location and proximity problems can be solved very efficiently.
We also show that if the input shapes are unions of fat objects, then the space used by
these data structures, as well as their construction time, is small.

Our first sequence of results applies to problems about sgisiofs In this con-
nection, we propose two multidimensional generalizations of the stratified tree. The
one-dimensional version, by van Emde Boas [VEB], yields a dynamic data structure for
nearest-neighbor queries. The running time which it guaran@gsg logu), has been
recently improved td (log logu/log log logu) (see [BF]). We are not aware, however,
of any prior work in which its multidimensional version has been used.

The first multidimensional stratified tree allov@log logu) time per operation for
dynamic approximate nearest neighbor (when insertions and deletions of points are
allowed) and maintains the (exact) on-line closest pair when insertions are allowed.
The result holds for any fixed number of dimensions (the dependence on number of
dimensions, however, is exponential). The data structure is randomized and the bounds
hold in the expected sense.

The second multidimensional data structure is deterministic and static. It enables
answering an approximate nearest neighbor quedydimensions inO(d + log logu)
time andd'°9'°9'°9u O (1/¢)9n log®® u space. Recently, Beame and Fich [BF] showed
a lower bound o2 (log logu/log log logu) time for the casel = 1, assumingn®®
storag€’. Thus our algorithm is within a factor log log lagof optimal as long asl =
O(logn) (note thatO(d) is a trivial lower bound).

The remaining results apply to the case where the input shape is a union of objects
which are more complex than points. In this case, the stratified tree structure does not
seem to suffice and therefore we resort to quadtrees. We consider two operations on
shapes: expansion (dilation with a circle) and point location. Dilation and point location

6 Later in this paper we provide mathematical definitions for all of these terms.
7 Although their proof works for thexactearest neighbor, we show it generalizes taghgroximateproblem
as well.
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are fundamental operations in various fields such as robotics, assembly, geographic in-
formation systems (GIS), computer vision, and computer graphics. Thus having efficient
algorithms for these problems is of major practical importance. Before describing these
results in more detail, we need the following definitions: Among the many variants of
gquadtrees that exist in the literature, we consider the following types of quadtrees:

Region quadtreéor just quadtree): obtained by recursive subdivision of squares un-
til each leaf is blackwhite (i.e., is insidg¢outside the shape).

Segment quadtrger mixed quadtree we allow the leaves to contain shapes of con-
stant complexity< « (e.g., at mosk points)®

Compressed quadtree variant of either the region quadtree or the mixed quadtree,
in which all sequences of adjacent nodes along a path of the tree having only one
nonempty child (i.e., only one child that contains a part of the shape) are compressed
into one edge. An important property of compressed quadtrees is that the number
of nodes in the resulting tree, called gieeof the tree, is at most twice the number
of its (honempty) leaves.

Let Sbe a planar shape, and tdbe a fixed radius. Thdilated shap@f S, denoted by
D(9), is the Minkowski sum oS and the diskD, of radiusr. Thatis,D(S) = {d + s |
d € Dy, s € S}. In Section 4 we provide an algorithm that takes a region quadtrée of
nodes representingand a radius and compute® (S) in optimal timeO(N).

In Section 5 we first address the efficiency of a region quadtree as a planar shape
representation. It is well known that the size of a region quadtree can be much greater
than the complexity of the shap@ it represents. However, there are cases where a
segment quadtree can be much more efficient. We show in Section 5.1 $hedirif be
expressed as a collection mffat convex objects inJ]?, thenS can be represented as a
segment quadtree witN = O(]9 S| logu) leaves, whergd S| is the complexity of the
boundary ofS, which in turn is known to be close to linearinE].

After we show that a segment quadtree can be an efficient shape representation, in
Section 5.2 we give an efficient algorithm to construct it. Given a decompositién of
into n (not necessarily fatisjoint objects, the segment quadtree represerfingn be
constructed in timéO (N logu), whereN is the size of the output quadtree. It follows
that D(S) can be computed and stored in a segment quadtree inQifhelog? u), and
as a compressed segment quadtree in time and $péddog logu).

In Section 5.3 we provide an efficient point location algorithm for a shapep-
resented by a region quadtree. Since the tree has d@ftiyu), point location inS
can easily be performed i@ (logu) time. However, by performing a binary search on
levels of the tree, one can reduce this tim&dog logu), with preprocessing time and
spaceO(N) = O(nlogu), whereN andn are the number of nodes and leaves in the
tree, respectively [W]. We show that for a compressed quadtree, the query time is also
O(log logu) with preprocessing tim@apaceO (N log logu) = O(nloglogu). Thus for
the same shap8& we reduce the preprocessing time and storage f@glogu) to
O(nloglogu).

8 We assume that the boundary of an object can be expressed as a collection of algebraic arcs, connected at
vertices. The number of these vertices isd¢benplexityof the object.
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Most of the algorithmic problems above haw€logn) or 2 (nlogn) lower bounds in
a standard algebraic data model (assuming arbitrary-precision input). Thus by resorting
to a fixed-precision model we are able to replacendny log logu in several run time
bounds. Notice that in most situations this change yields a significant improvement. For
example, when the numbers are represented using 32 bits, logddgwhile logn > 5
already fom > 32. Moreover, the regular data structures are usually much simpler than
the corresponding solutions for the real data model, and thus the “big-O” constants are
likely to be smaller. Therefore, we expect our algorithms to yield better running times
in practice, especially for scenarios where the input size is large.

There have been a number of papers discussing computational geometry problems
on a grid. Examples include nearest neighbor searching using;therm [RGK], the
point location problem [M], and orthogonal range searching [O]. The solutions given
in these papers provide static data structures for two-dimensional data with query time
O(loglogu). A number of off-line problems have been also considered (see [O] for
more details). However, to our knowledge, dynamicdata structures are known for a
grid with query'update times better than those for arbitrary input. In fact, this is one of
the open problems posed on page 273 of [O].

2. Dynamic Multidimensional Stratified Trees. In this section we present the mul-
tidimensional stratified tree (MDST), a multidimensional extension of the stratified tree.
It addresses the dynamic approximate nearest neighbor problerfirpt P  [u]®
be a set of points, and let> 0 be a prespecified parameter. et [u]® denote a query
point, and letp,, € P denote the (exact) closest neighbogtdVe say thapap, € Pise
approximate nearest neighboropif d(q, papp < (1+€)d(q, pnn) (see, e.g., [AMN]).
The dynamic data structure supports update operations (inserting or deleting a point) and
approximate nearest neighbor queries in i/ °@ log logu) in [u]? (for d > 2).
In addition, a simple reduction provides an algorithm to main&dactclosest pairs
(under insertions of new points) in the same time. For clarity, we describe the algorithm
for the two-dimensional case. The extension to higher dimensions is straightforward.
The one-dimensional space subdivision technique calgatfied treevas proposed
by van Emde Boas [VEB]. It supports the performance of a nearest neighbor query in
the integer intervaly] in O(loglogu) time. The data structure can be made dynamic
(see [J]). Each addition or deletion of a point tak&gog logu) time. The tree requires
O(n) space, whera denotes the maximum number of points present in the tree at any
time? It is assumed that standard Boolean and arithmetic operations on words of size
logu can be performed in constant time. Some of our results require this assumption.
The MDST, like the stratified tree, supports the following four proceduces:
struct (which constructs a tree for a given set of pointggjd anddelete(which enable
additiorydeletion of a point tgfrom the set), andearch(which finds an approximate
nearest neighbor of a given query point). Below, we give the description obtieruct
(together with the description of the data structure) aedrchprocedures. Thadd
and delete(nontrivial) procedures are essentially the same as in the one-dimensional

9 The original paper by van Emde Boas providestiu) space bound, but this can be reduced®ta) by
using randomized dynamic hashing [W]. In such a case, the time bounds are expected values.
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CONSTRUCT([v}?, P):
Let A= 1/ezlog2u , Up = 278

Case 0. |P|=1: /] single-point leaf

store the point p from P.

Case 1. |P| > 1 and v > vo: // internal node
1. split [v]? into v square blocks Bij, 4,5 = 0.../0 — 1, cach of size /v X /T
2. for each Bi;
Di; = CONSTRUCT(By;, P 1 Bij)

3. if A < /v then for each Bj;

(a) split By; into A? square blocks Cii, k, I =0... A~ 1

(b) compute the set Si; = {(k,1) : Cra N P # B}

(¢) By =CONSTRUCT([N, Si;)
4. compute a set H = {(¢,7) : B;; N P # #}
5. F =CONSTRUCT([v/%)%, H)

Case 2. |P] > 1 and v < vo (we assume v = vo): /] bitmap leaf
1. compute the bitmap M = bitmap(P) of size v X v

2. store the concatenated rows of M as a vector W of length v? bits
// motice that v* = O(y/Togw) and so W fits into one word

Fig. 1. Theconstructprocedure builds the MDST data structure for approximate nearest neighbor queries.

case, and the reader is therefore referred to [J] for details. In the rest of this section
we first define the data structure and discuss the algorithm in general, including the
intuition behind this construction. Then we proceed with its correctness and complexity
analysis.

The MDST data structure consists of three recursively coupled components, denoted
by D, E, andH. Let B C [2u]? denote dlock the region corresponding to a node of the
recursive construction. At the root, the MDST starts wBth= [2u]2. A block B of size
v x v is divided at the next level intoblocks, denote;;, of size\/v x \/v. LetP C B
denote a given set of points. The recursive procedure CONSTRBH), shown in
Figure 1, builds the MDST for the set of poinisin the blockB. Each node can be
either a single-point leaf (case 0), an internal node (case 1), or a bitmap leaf (case 2).
We focus first on internal nodes. An internal node, illustrated in Figure 2, contains three
components: an arra;; of its v children, an arrayg;; of v coarse (siz& x 1) binary
maps, one for each of the children, and a bitnfp of v bits that map the nonempty
children. Note that by moving one level down along a path in the tree we determine
half of the remaining bits of a point (e.g., compared with one bit in the case of a binary
tree). Hence the maximal depth of the tre€diffog logu). For anyp € P C [v]?> we
can quickly retrieve (after some preprocessiagjneactual data set point belonging
to the same sub-block containimqg We refer to such a point as attual point of p.
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Fig. 2. lllustration of the MDST data structure components at the internal node corresponding to 8ibck
sizev X v.

We use the MDST data structure for the construction of each of the three components
of the node’s data structure. Hence, all three components are recursively coupled
together.

The bitmap leaf is a leaf small enough to be processed directly by bitmap techniques
that are described later. Lef = 1Y/8 denote the minimal size of a block in the tree, where
A = 1/e - log? u. Rather than pursuing the recursive process until it ends with leaves of
single points, we also stop the recursive process whenvy and use a bitmap leaf to
store that region. As shown later, this reduces the query complexi®/(lmg log logu).

In practice, however, it may be omitted for code simplification.

During the preprocessing we first randomly translate the data; this is why the root
block is of size [2i]? instead of {i]2. We also precompute certain lookup information
used during theearchprocedure. The information consists of rougkiylog®“ u) bits
and can be computed in the same time. The precomputation procedure is as follows.
Consider any poirg € [—1/¢ - vo, 1/€ - vo]? and any integer such that, (q) (a disk of
radiusr centered af]) intersects but does not contain]?. For each such a paiy, r we
compute a binary matrik, (q) of sizevy x vg. The matrix has 1's at points such that
d(p,q) € [r,r +1) and O’s otherwise. Next, we concatenate the rowdaiq) forming
a bit vectorA; (q). Finally, we concatenata, (q) for all r's into A(q) and create a table
mappingq to A(Q).

The procedure for finding an approximate nearest neighbor is described in Figures 3
and 4. To avoid rounding details and to simplify the description we assume that both
the input and output points are membersdf[rather than §]2. Each type of node is
handled separately. Again, we focus first on the process in an internal node (case 1).
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SEARCH(P, ¢):
Case 0. |P| = 1: trivial. // single-point leaf
Case 1. |P| > 1 and v > vg: // internal node

1. Let S be the set of (at most 1/¢”) non-empty blocks B;; within distance at
most /1/¢ from q.

2. if § =0, then
return SEARCH(H, q)
3. otherwise //S#D
(a) let B’ be the block in S closest to q and let r be its distance to g
(b) let §' = {By; € S:r <d(q,Bi;) <7+ V2/}
(c) if Ey;’s exist then
i. for each block B;; € §', SEARCH(E;,q)
ii. let 7' be the distance to the closest actual point returned (say p)
i, il > 1/e4E
return p
otherwise
let R denote all (at most 4) blocks Bi; s.t. d(q, Bi;) <1
otherwise
assign R =5
(d) for all Bi; € R, SEARCH(D;;,q) and output the closest point
returned.

Case 2. [P] > 1 and v = vg: // bitmap leaf
call procedure BITMAP.

Fig. 3. The search procedure for approximate nearest neighbor.

In, general there are three possible situations, illustrated in Figure 5. The algorithm first
applies a (large) circle test, of radiygv/e, which in a sense divides the (unknown)
bits of the result into two parts: the upper bits (most significant bits) and the lower bits
(least significant hits). If there is no data point within the circle (Figure 5(a)), then it
is a lower bound on the distance to the nearest point which, within the approximation

BITMAP(q):
1. if g ¢ [=1/e o, /e vo]® then output any point from P
2. otherwise
(a) construct a word W' by concatenating O(vo) copies of W (by using one mul-
tiplication); notice that W' has length vo®
(b) compute A" = W' AND A{q) (where A(q) is a word prepared during the pre-
processing)
(c) find the first non-zero bit iv A’, and return the point p corresponding to that
bit

Fig. 4. The Bitmap procedure (case 2, Figure 3).
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Fig. 5. The three possible search situations in an MDST internal node.

parametek, allows us to ignore the lower bits and continue the search for the upper
bits only. That is, it is accurate enough to search for an actual poiHt i@therwise,
we consider all the relevant bloclg; and use theiE;; coarse mapping to get a finer
estimation of the distance to the closest point. If this is outside a (small) circle of radius
1/e(/v/2) (Figure 5(b)), then the actual point of the closEgtsub-block is the query
result. Otherwise, there is a point in the small circle (Figure 5(c)) and the algorithm
proceeds recursively to the corresponding cliiigl. In such a case we have already
found the upper bits of the result. In the rare event where the small circle intersects two
or more nonempty sub-blocks of differeBf; blocks, the algorithm has to process all
nonempty intersecte®;; (up to four) recursively. This case is further explored in the
complexity analysis.

This completes the description of the data structure and the algorithm. Now we proceed
with the proofs. We first provide a proof of correctness and then a complexity analysis.

2.1. Correctness The correctness ofthe MDST search procedure will be proved in two
steps. First, we prove that the data structufgsreturn approximate nearest neighbors,
i.e., there is a constantsuch that the returned poigts within a distancél + ce) times
the nearest neighbor distance. In the second step (using a similar technique) we prove
the correctness of the whole procedure.

The correctness of the data structugsis shown as follows. First, observe that none
of the Ej;'s sub-blocks may contain any othEr; structure (as = X and therefore in
the nextleveh > /v). Therefore, each recursive call invokes either data struciifes
step 3(d), orH, case 2. For simplicity, we can assume that in step 3(d) the algorithm
invokes only thaD;; which contains the closest pointpamong all other data structures.
Since the actual algorithm invokes all tbg 's, the above assumption does not influence
the output. Due to this assumption we can represent the search procedure as a sequence
of recursive calls of length 3; each call invokes eitleror D;;. Invoking H might
clearly result in an additive error of size bounded by the diameter of the bBgKn
the units of the universai[?); however, the distance to the nearest neighbor is at least
1/€ times this quantity. On the other hand, invokiBg involvesno error at all. Let
e - - - & denote the additive errors incurred as above. As after each ddlkhe size of
the region corresponding toB; grows by a factor of at least 2, we can assume that the
sum of theg s is smaller than &. On the other hand, we know that the distance to the
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actual nearest neighbor is at leagt 1e.. Therefore, the multiplicative error incurred is
at most(1 + 2¢).

We can now proceed with the whole data structure. The recursive calls to the algorithm
can be modeled in a similar way to that described above; however, the algorithm has
an additional option of stopping at step 3(c)iii. The latter case can incur an additive
error bounded by the diameter of the blo€kg, whereCy, is as defined in Figure 1. As
the distance to the nearest neighbor is lower-bounded byithes the side o€y, the
multiplicative error is at mostl + +/2¢). It is easy to verify that the remaining cases are
exactly as in the case &;;.

In this way we proved the following lemma.

LEMMA 2.1. The distance from p to the point g returned by the algorithm is at most
(1+ O(e)) times the distance from p to its nearest neighbor

2.2. Complexity The complexity bounds for the proceduemstructadd anddelete
are essentially as in [VEB]. Therefore, below we focus on the complexity of procedure
SEARCH, which follows from the following sequence of claims.

CLAIM 2.2. Case2 of procedureSEARCHtakes time Qe, u) = [(1/€)%8/log"* u].

ProOOF We show that when the whole wowd fits within one word, then the procedure
can be implemented in constant time. Otherwise (i.e., v&enu) = (1)), we perform
the same procedure sequentially on all word$\6f
The steps are implemented as follows. Step (a) is performed by multipWirty
a concatenation of bit sequences, each consistingaol followed byv? — 1 zeros.
Step (b) uses just one Boolean operation. The last step can be implemented using a
constant number of Boolean and arithmetic operations as in [FW]. O

CLAaM 2.3. Forany i, j searching in E; takes time @(C(e, u) + 1/¢) - 1/€3).

ProoF Recall that the data structuig; does not contain otheE-type structures.
Therefore, it contains onlid -type andD-type structures. The recursive structuresgf

can be represented as a tree. We observe that the depth of this tree is 3, because by using
three recursive calls we reduce the block size fiom A (the size ofEjj) to A8 = vy,
Searching in any “leaf” data structure (i.e., with= 11/8) can be solved in tim€ (e, u).

The number of such problems is at mogt3, as the se€ of data structures invoked
recursively is of size at mosy/& and the level of recursion is 3. This contributes the first

term of the cost function, i.eC (e, u)/e3. The second term follows from the fact that

the complexity of step 1 is/&? and this step is invoked at mostel- 1/¢ times. O

CLAIM 2.4. Consider ste(d) of thesearchalgorithm If the input P is translated by
a random vectqithen

1. The probability thaiR| > 1is at most Q(1/¢)/1).
2. The probability thatR| > 2 is most Q((1/€)/A)?).
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PrROOE We might haveR| > 1if plies within distance’ of a boundary of some block

Bi; (the probability of this event is even smaller as it also requires that the intersected
Eij is not empty). As the side oBj; is /v, this event can happen with probability
O(r'//v) = O((1/€)/1). The other case involves lying within distanceO(r’) from

a vertex of someB;;. The probability of such an event can be estimated in the same
way. O

CLaim 2.5, If for all executions of ste@@(d), the set R has cardinality at mo4t
procedureSEARCHTruns in O((C(e, u) + 1/¢) - loglogu - 1/¢%).

PROOF As each seR has cardinality 1, the recursion path is a path of depth loglog
The cost of each step is dominated by the cost of involéng|S| = 1/e times. The
cost estimate follows. O

CLam 2.6. If for all executions of stef3(d), the set R has cardinality at mogt
procedureSEARCHruns in time Q(C(e, u) + 1/¢) - 2109/09u . 1 /¢4y,

PROOFE The argument is similar to the above, but now two recursive calls are allowed.
Thus the size of the recursion tree [¥29 O

CLAIM 2.7. The worst case running time of the search procedure(@@, u)+1/¢) -
4Iog|ogu . 1/64).

PROOFE The argument is again similar to the above. In this case, up to four recursive
calls are allowed. This is the (very rare) case in whidies within a distance’ from a
vertex of up to four nonempt;; blocks. O

LEMMA 2.8. The expected running time of teearclprocedure is Q(C(e, u) +1/¢) -
loglogu - 1/€%).
PrROOF Note that:

o If |R| = 1for all executions of step 3(d), then the number of times this step is executed
is at mostO(log logu).

o If |R|] < 2forall executions of step 3(d), then the number of times this step is executed
is at mostO(2'°9'°9¥) = O(logu).

The expected cost is then on the order of

1/e 2 1/e 2 2 4
1.loglogu + (Iogu . T) logu + [ log“u - (T) log”u | (C(e, u)+1/¢)-1/€

which can be verified to be bounded BY((C(e, u) + 1/¢) - loglogu - 1/€%). O
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2.3. Closest Pair Under Insertions Maintaining the closest pair under insertions can
be reduced to dynamic approximate nearest neighbor (sayewith 1) as follows.
First, observe that for arly, we can retrievék approximate nearest neighbors in time
O(kloglogu). To this end, we retrieve one neighbor, temporarily delete it, retrieve the
second one and so on, urkipoints are retrieved. At the end, we add all deleted points
back to the point set. Next, observe that if we allow point insertions only, then the closest
pair distance (calliD) can only decrease with time. The latter happens only if the distance
of the new pointp to its nearest neighbor is smaller thBn To check if this event has
indeed happened, we retrieke= O(1) approximate nearest neighborsmpénd check
their distance t@. If any of the point’s distances are smaller tanwe updateD.

To prove the correctness of this procedure, it is sufficient to assume that the distance
from p to its closest neighbor (say) is less thanD. Note that in this case there is
at most a constant number of 1-nearest neighbois @fs all such points have to lie
within distance D of p but have a pairwise distance of at le@st Therefore, one of
the retrieved points will be the exact nearest neighbgr,a&fnd thusD will be updated
correctly.

3. Stratified Trees for Higher Dimensions. In this section we present a multidimen-
sional variant of stratified trees that solves the approximate nearest neighbor problem in
time O(d + loglogu + log 1/¢) under the assumption thdt< logn. The data struc-

ture is deterministic and static. We first describe a simple variant of the data structure
which usesd'°9'°9uQ(1/¢)9n? logu storage. We then comment on how to reduce it to
d'oglogloguy(1/¢)9nlogu.

The main component of the algorithm is a data structure which fiddssgproximate
nearest neighbor in tHg, norm. Having a rough approximation of the nearest neighbor
distance (call itR), we refine it by using the techniques of [IM] to obtain®h+ ¢)-
approximation in the following manner. During the preprocessing, foraayl, (1 +
€), (1+¢€)?, ... (i.e., forO((logu)/e) different values of ) and for each database point
p we build the following data structure, which enables checking (approximately) for a
query poing if q is within distance from any database point that lies withig distance
of O(dr) from p (denote the set of such points by (p)). The rough idea of the data
structure is to impose a regular grid of side lengtk/d on the space surroundirg
and store each grid cell within distance (approximatelfrbm N; (p) in the hash table
(see [IM] for details). The data structure used(1/¢)? storage for each and p. The
time needed to perform the query is essentially equal to the time needed to find the grid
cell containing the query poirg and compute the value of the hash function applied
to the sequence of all coordinates of that cell. In order to bound this time, notice that
after finding thed2-approximate nearest neighbor @fwe can (in timed) represent
g’s coordinates using lod/e bits per coordinate. Therefore, all coordinatesjafan
be represented usin@(dlogd/¢) bits. Since we are allowed to perform arithmetic
operations on words consistingaf< logu bits in constant time, it is easy to implement
the hashing procedure usi@logd/e¢) operations.

In ordertofind a1+¢)-approximate nearest neighboipive perform abinary search
on log, . d values ofr as described in [IM]. This take®(log(logd)/¢) - O(logd/e)
operations, which is negligible compared withd).
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Therefore, it is sufficient to find d?-approximate neighbor af quickly. In order
to do this, we apply a variant of the multidimensional stratified trees described in the
previous section. Since the techniques are similar, we only give a sketch. The idea is
to split the universe into squares of sidg/u (instead of,/u), as long agl®> < ,/u.
Moreover, instead of using only one square grid as before, wed o$¢hem, such that
theith grid is obtained from the first one by translating it by vediayu, ..., i4/u).

The reason for this is that for any poigtthere is at least oniesuch that the distance
from q to the boundary of the cell it belongs to is at leg4t/2. Thus the correctness
argument of the previous section follows. Also, notice that the depth of the data structure
does not change, as in each step the universe size goes down by a fadligdof u'/4.
However, the storage requirements are now multiplied'®#}°9", since at each level we
multiply the storage byD(d).

In order to bound the running time, we observe that during each recursive step the
value of logu is reduced by a constant factor. Therefore, the description sizévdiich
is initially d log u bits long) is reduced by a constant factor (spgs well, which means
(by the above arguments) that titk step takes roughl@(d/c') operations, as long as
d > ¢'. Thus, the total time i©(d + log logu).

In order to reduce the storage overhead frdf§'°9" to d'°9'°9'°9u  notice that the
above analysis contains some slack; the time needed for the rough approximation is
much greater than the time needed for the refinement. One can observe, however, that if
during the refinement step each coordinate can be represented usirtpiptpgu bits,
its running time is stillO(d). Therefore, we can stop the first phase as soon as the log of
the universe size drops below laglog logu, i.e., after the first log log log steps.

The dependence of the storage sizacan be reduced to linear by using the covering
technique of [IM]. More specifically, we can merge those neighborhdgdp) which
have very large overlap in such away that the total size of all neighborhoods is only linear
and the diameter of the merged neighborhoods gets multiplied by at@mtmin).

4. Quadtree Dilation in Linear Time. Given a shapé& stored as a region quadtree,
T = T(S) as in Section 5.1, we present an algorithm for computing the dilated region
D(S) in O(n) time. The algorithm consists of two major parts. First, it dilates blocks of
a certain size, calledtom blocksand then it merges the results in a depth-first search
(DFS), bottom-up fashion. During the merging process, the algorithm computes and
reports the vertices afD(S). Each of these parts consists of several steps which are
briefly described below.

We use the following notation: Lé®(T) denote the axis-parallel bounding square of
the region occupied by . For a nodev of T, let T, denote the subtree rootedwgtand
let R, = R(T,). Sometimes we refer to (and its regiorR,) as theblockv. We say that
v is agray blockif R, contains both white (i.e., empty) and black (i.e., full) regions.
Let d denote a directiond e {up, down left, right}, let ejoun denote the lower edd
of R, and letxy be a point oregewn. Let £y, denote the vertical line passing through
Xo. We define theenvelope poinbf S with respect toR at Xg in the down direction,

10 The same applies to all other three directions.
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op(Sy,down)

Fig. 6. Left: the envelopeny R,, down) of the shapes, is marked by the dashed line, and its dilation under
the down-edge (hence its outer-path(R,, down) is filled with black. Right: the selection af, given the
dilation radius.

denoteden R, down)(xp), as the lowest point ofy, " RN S, if {x, "NRN S # ¢

and the distance of this point froByown is at mostr (otherwiseenW R, down) (Xp) is

not defined). We define the (partially defined) functiem R, down) (x), which is a
polygonal x-monotone path(s) (see Figure 6). We define dger pathof Sin the

down direction, denoted lgp(R, down), as the collection of vertically lowest points in
€4own U D(SN R) that lie below the line containingyown (Se€ Figure 6). Observe that
op(R, down) is also arx-monotone path(s) consisting of circular arcs of radiasd of
straight horizontal segments.

The next lemma, whose proof is easy and is thus omitted, shows the importance of

the envelope of a shape term.

LEMmMA 4.1. Letwv and u be vertices of ;Tsuch that R and R, are interior disjoint
then

D(S) N R, = D(en(R,,d)) N Ry,

where d is the direction at which,Refers to R. That is only en(R,, d) counts in terms
of influencing R by the dilation of &.

Letrg = 2K, for an integek such that/2ro <r < 2/2ro. We say thatablock € T
is anatom blockif the side ofR, is exactlyrq. Clearly, for a gray atom block (which
may contain as many &g black and white blocksP(S,) is a simply connected region
that includesk,. One can observe thgi is the side of the largest tree block having this
property (see Figure 6 right). large block(respectivelylarge leaf) is any tree block
(respectively leaf) larger in size than an atom block.

A crucial observation is that i is a point in the plane, then there is only a constant
number of atom blocks and large (black) leaves in the vicinity, ¢fie dilations of which
intersecq (no more than three atom blocks away in any given direction, or 32 blocks all
around). We call the set of these blocks #ffective neighborhoodf v. Also, observe
that all atom blocks and large leaves are interior disjoint, and their union cajjérg he
dilation algorithm first dilates each of these elementary regions by directly computing
their outer paths, and then it computes the union of these dilated shapes in a bottom-up
fashion. We will show how to computB (S,) for an atom blockv in linear time, and
then use these observations to compute the union in linear time. These observations are
the basis for the efficiency of our dilation algorithm.
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Computing the Dilation of an Atom Block The dilation of a gray atom block (of
sizerg x rg) is a simply connected region, and it can be represented by one list of
the arcs and straight lines along its boundary, which is a concatenation of the four
outer paths ob in the four directions. By Lemma 4.1, the outer path in directioa

{up, down left, right} can be computed from the envelaggre( R,, d). Hence the dilation

of the atom block requires the computation of its four envelopes and then its four outer
paths.

To computeenV R,, down) we need to find the partition df, = ejown(R,) into
intervals, to compute thg-location associated with each interval and to construct the
envelope as a list. This is done in two steps. First, we prdjge¢he sub-quadtree rooted
atv, into a binary treeT,. Then we traverse the binary tree and compute the segments
and they-location of each segment. Let the nodé € T, denote the projection of a
nodew € T,. The path from’ to w’ in T, is derived from the path fromto w in T, by
following the horizontal branches (and ignoring the vertical ones) along the path in
An example for a region quadtree and its projected binary tree in the down direction is
shown on the left of Figure 7.

The procedure PROJECT,) traversesl, in a DFS order, and simultaneously con-
structs and traverseg. This is called aprojection as all the nodes; € T, having
(1) the same depth (in the quadtree), and (2) the same suppgsiitigrval, 1, = 1,
are projected to a single nodé € T,, associated with this interval (e.g., the three small
blocks which lie along one column in Figure 7 are projected to a single node which is
a leaf in this example). During the projection process, each ndéde T, maintains its
Ymin(w")—the smallesy value of the down-edge of all the black leaves projected to it,
if any; otherwise ynmin(w’) = oo.

16
15 L
14 X
13 s
o OO O
it : . : ; :
10 - : . .
N 5 I T fPROJECT(T,,);
8 : o 1. Initialize an empty binary tree T = §.
: 2. Traverse T, in a depth first search order and follow the
; projected path in T;.
4 When visiting node v; € To, ¢
I : (a) i (1 € 7))
2 o : . insert{v}, T%)
\ : Ymin{v]) = 00
il

(bY if (eolor(v;) = BLACK)

Ymin(v) = Min{Ymin (0), Ymin (V1) }

Fig. 7. Left: An atom block and its down-projection binary tree. Right: The projection algorithm.
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The envelope is found in the second step by traverEjrig a DFS order. The partition
of |, into envelope segments is just the lisixaintervals associated with the leaves. The
y location for an interval,,,, however, is not necessarily equaltgn(w’). Itis computed
recursively during this DFS traversal ©f as the smallesty, among all the nodes along
the path from the roat’ down to the leafv’. For example, refer to the envelope segment
(the thick line) aty = 4, and notice that its leftmost part corresponds to a leaf that carries
ymin = 12. The time and space required for the constructiof odnd its traversal is
linear,O(n,), wheren, is the size ofT,.

The next lemma shows that the result of this process is indeed the envelope. Let
path(T,, w') = {v1 = V', vp, ..., vx = w'} denote the path iff, from the rootv’ to a
nodew’ € T,. Letymin(path(T,, w’)) = min{ymin(v)): i = 1, ..., k} denote the minimal
value ofymin(v{) that is encountered alommath(T,, w’).

LEMMA 4.2. Letx € u, and assumege |, wherew’ is a leaf of T. Then

enyR,, down (o) = Ymin(path(T,, w’)).

PrROOF Letw; € T, be the black leaf (if any) ifT, which intersects the vertical line
X = Xp at the lowesty value,yp = Ymin(w1). That is, X € |, and, by definition,
Yo = enuR,, down(xg). Let w]; € T, denote the projection oi;. It follows that
Ly S luy (w' is a leaf inT)) andw; € path(T,, w’). Henceymn(path(T,, w’)) <
Ymin(w1) < Ymin(w1) = Yo. The selection ofv; ensures that there is no lower black leaf
on the path, that isymin(path(T,, w’)) > ymin(w1) = Yo. If there is no such black leaf
wy € Ty, thenymin(v)) = oo, Yvi € path(T,, w’). O

Computing the Outer Path of an x-Monotone PathWe describe the algorithm for one
direction,d = down Let ¢ be a horizontal line, and I€& be anx-monotone piecewise-
linear path, lying completely abovke (In our application| is the down edge of a block
andC is the down envelope). We need to compafEC, down), the region ofD(C)
which is below¢ (see Figure 8). To perform this task, we need the following lemma,
taken from [El];

LEMMA 4.3. Assume C consists of,& left part and G, its right part, where G is
completely to the left of CThen ofgC;, down and o C;, down) intersect at most once

Fig. 8. Computing the outer path.
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We scanC from right to left, and process one segmertdf C at a time. Each such
segment is a constagtpiece. Leta, o’ denote the right and left points of the current
segmeng, respectively. Le€C,, denote the part & which is to the right ofx. Letopd(«)
denoteop(enC,, down). Assume that we have already compubgd(«), and let8 be
the leftmost point obpd(«). We seelopd(«’). For this, we only need to find the inter-
section poing (if it exists) of opd(«) and the region oD (e) below¢. Next, we remove
the part ofopd(«) lying betweeng andg, and concatenate the “new” regionagd(«)
which lies betweelg and the leftmost point adp(e, R, down (the outer path o).

Finding and deleting the pagg from opd(«) is achieved as follows: We traverse
opd(x) right, starting fromg, as long as we are iD (e). g is the point at which we leave
D(e). Lemma 4.3 ensures that no other intersection point exists. The time needed for
computingopd(«’) (afteropd(«) has been determined) is proportional to the complexity
of the deleted portiog8. Since each part in the region is created only once, and can
be removed only once, and since the number of elemerdpd() is proportional to
the complexity ofC (by [KLPS] cited above) the execution time over the course of the
procedure is linear in the complexity Gf.

The Merging(Zipping) Process To explain the dilation merging procedure, we need
the following definition: For any large blocdk, let si',g denote théth corridor of R, in
directiond, fori = 0, 1, 2. This is a maximal lengthg-wide rectangle contained iR,

that lies along the-edge ofR, at a distancér o from that edge (see Figure 9). A corridor

is represented by a double-linked list of all the atom blocks it contains and the large
leaves it intersects, in the order of their appearance along the corridor. These corridors
play a central partin our algorithms, and are catlelcorridors associated with Each

block v which is an atom block or larger maintains its corridors and their envelopes.

The dilation merging process (zipping) takes place in large gray blocks. First, we
construct the data structure associated with each hlpaking the data structures of its
children. Next, we process tlaetive zipper area-those parts of its child’s corridors
which are not included in its own corridors. These corridor parts are found near the edges
shared by two children (see Figure 9). It is easy to see that this region, calladtibe

(0.1 and 2) ¢ (2.] and 0)
Svleft Sy, right

‘v “’ \» Corridors linking ‘i/ \" \&

(2)
S \;, ]({ men
< Sy, down

- (1)

Active Zipper area

=
D(S) had beén computed

Fig. 9. Two large blocks are shown, during their merging (zipping) process.
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(or the zipper) region in the figure, is disjoint from the dilated area of any p&wdfich
is outsideR,. Moreover, all the effective neighborhood of this area is either in corridors
or in interior regions (for whictD(S) has already been computed).

The main invariant of the algorithm is the following: When the algorithm exits a
vertexv toward its parent, all vertices @(S,) whose distance to the boundary I®f
is at least By have already been reported (see Figure 9). More precisely, before leaving
v we compute the vertices @(S,) which lie in those parts of the corridors of its four
children that do not intersect with its own corridors (note tiatcorridors are a subset
of the union of its children’s corridors). It also updates relevant data structures required
for further steps of the algorithm. This process is caftestgingor zippingof blocks.

Next, we explain how to compute all the intersections between two outer paid
¥. We later extract from the results the verticedafS).

If ¢ andyr are both outer paths in opposite directions (e:gs,defined upward ang
is defined downward), then the problem is solvable in linear time using a standard merge-
like procedure. Therefore, we assume that this is not the case. Assume for example that
Y is defined on a horizontal direction, so let= op(Ry, up) andy = op(Ry, right).

See Figure 10.

Let By, (respectivelyB,) denote the union of disks and rectangles contributing parts
to v. We traversep from left to right, starting from the leftmost point to the right of the
right edge ofys (the horizon ofy). Let p(t) (for t > 0) denote the location at tinte
Let py (t) (see Figure 10) denote the point which is the horizontal projectigi(tfon
¥, and letpy (t) denote the highest point in

{py () [t <t, andpy (t") ¢ By ).

The reason for this odd-looking definition is that it is possible (and sufficient) to maintain
py (t), while we are not able to maintain the position @jf(t) efficiently. If a point
p(t) € ¢ is outsideBy (t), then so are all points gf which are to the right op(t) and
not higher tharp(t). We maintainpy (t) as follows. Att = 0, p(0) is either insideB,

Fig. 10. The merge process between an up outer patftoming from the horizontal zigzag region) and a
right outer pathys (coming from the vertical zigzag region). The pojmit) “traverses” alongy from left to

right. At the timet of this snapshot all three intersection points between the two outer paths have already been
reported. Note the position @, which keeps the highest projection pointmbn ¢ seen so far.
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or to the right ofyy. We distinguish between these two situations by scanning the arcs of
Y from the bottom upward and seeking an arc whpsgpan contains thg-coordinates
of p(0). The algorithm now iterates between the following two modes:

First mode p(t) ¢ B,. As long as the poinp(t) is outsideB,, it traversesy to the
right, while maintaining the position gy (t) on . This is doable using a merge-like
process, in amortized tim@(1) per arc ofp. Oncep(t) andpy (t) coincide, we are at a
new intersection point; of ¢ andg. We record this point, and switch to the second mode.

Second modep(t) € B,. Assume thap(t) is at the point; that lies on the arg,
of ¢ and the arg/, of ¢, which in turn lies on a disk or rectangtg of . We check
whether the endpoint of y, to the right ofv, is insideb, . If yes, we sety,, to be its
successive upper arc ¢f, and repeat the checking (that is, traversing upward ajong
until u is outsideb,, . Theny,, has intersection point, with the boundary ob,,, but not
necessarily withy,, . If v, also lies ory,, (and hence ow), thenv, is another intersection
point of ¢ andg by which we “leave”B,,. We setpy, (t) to v,, and switch to the first
mode. In the second case (i&.does not lie o), we conclude that; is inside another
disk or rectanglé’ of B, that contributes an ang, to . A key observation is that,,
is abovey,, since all centers of disks d@,, are above all centers of disks @f Thus we
proceed advancing o#i until we find the first disk or rectanglag/,(t) that containg,
(b” must exist, as otherwisg would be a point of). We repeat the whole process of
the second mode at this stage. Since at each stage we proceed ejtleran v, the
time needed for the whole process is linear in the complexity afd .

5. Quadtree Complexity, Construction and Point-Location

5.1. Complexity of a Segment Quadtree

Fat Objects A planar convex objeatis «-fatif the ratio between the radii of the disks
s~ ands™ is at leastr, wheres™ is the smallest disk containirgands™ is a largest disk
that is contained in. (For fat, nonconvex objects, the definition is more involved.) Here,
we consider only convex fat objects. L@be a collection oh convexa-fat objects in
the plane, for a constant, such that the combinatorial complexity of each of them is a
constant, and the boundaries of each pair of objects intersetimes for a constarg.

Let As(n) denote the maximal length of tha, s)-Davenport—Schinzel sequences (see
[SA]). It is known thatis(n) is almost linear im for any constans. It is shown in [E]
(see also [ES]) that the numbidrof vertices ofd UC is only O(is.»(n) log? nlog logn).

THEOREMS5.1. Let T be a segment quadttemnstructed for the union @f. Then the
number of leaves in T is QN logu), provided thatc, the maximal number of arcs and
vertices ofd(|_J C) stored at each leaf of T is a large enough constaritich depends
Onca.

PROOF SetL to be a level ofT (that is, a collection of all nodes df whose distance
from the root is the same). We will show that the number of leavés iof £ is O(N).
The proof of the theorem is obtained by summing this bound over aludeyvels of T.
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Let v be a leaf node of. The complexity ofRparentyy N 3 (JC is larger tharn
(otherwiseparentiv) would have been a leaf). L& be a square whose center coincides
with the center ofR,, and whose edge-length is larger by some faetas 1 than the
edge-length oR, wherex’ > 1 depends on. Using arguments similar to the ones used
in [EKNS], we can show that at least one of the following cases must occur:

e There is an objeat e C such thatR containsz, a rightmost, a leftmost, a highest or a
lowest point ofdc.

¢ Rcontains a vertex of § | JC.

e There is an objeat € C such that the area & N c is at least a constant fraction of
the area ot.

In the first two cases, the pointan be charged for at mastblocksv. Similarly, in the
third case, we charge the region®fSince the number of verticesof 3 | JC is O(N)
and the number of elements that we charge in the first and third ca®&r)is= O(N),
we conclude that the number of leaf-nodes L is O(N), as asserted. O

Let T = T(S) denote a (region) quadtree representing a sigpad letN, denote
the number of leaves if. It is known that sinceS consists of< N; disjoint convex
objects, namely the black blocks, theé®(S) containsO(N)) vertices (see [KLPS]).
Combining this bound with the fact that the dilation of a black block a$ always a fat
region, we can prove the following lemma, using exactly the same argument as in the
proof of Theorem 5.1.

LEMMA 5.2. LetT be a segment quadtree constructedd#dr(S). Then the number of
leaves inT is O(N; logu).

REMARK. Recall that the number of nodes in a compressed (respectively uncom-
pressed) quadtree is at most two (respectivelyulagmes the number of leaves.

5.2. Constructing Quadtrees

Storing IXS). The above discussion shows tHatS) can be efficiently stored in a
quadtree. In Section 4 we showed h®xS) can be computed in (optimal) linear time.
We later employ this algorithm in order to store the result in a convenient form, e.g., a
segment quadtree (this requires only a slightly higher complexity).

In this section we show that it is convenient to store the output of the dilation algorithm
of Section 4 as a segment quadtree.

THEOREMS.3. Let S be a planar shape given as a region quadtreednsisting of n
nodesand let r be a given radiusNVe can construct a segment quadtiieghat stores
D(S) in time and space Qhlog? u).

PrOOF The constructive proof requires the following definitions (see [dBvVKOS]): A
balancedquadtree is a quadtree with the additional property thataihdv, are nodes in
the tree such theR,, andR,, share an edge or a portion of an edge, then the depth of
differs by at most 1 from the depth of. A quadtree of siza can be balanced by adding



Efficient Regular Data Structures 183

O(n) additional nodes [dBvKOS, Theorem 14.4]nattedquadtree is a quadtree where
if R,, andR,, are neighboring squares, then there exists a pointer, calietlgointer
from v; to v, and fromu, to v1 [S1]. The combination of both attributes guarantees that
only a constant number of net pointers are attached to each node.

We can now describe the algorithm. We start with an empty outpuftréée maintain
T as both netted and balanced, and all its nodes are stored in a hasH takierun the
dilation algorithm of Section 4, whose output can be arranged (that is, directly reported)
as a collection of closed curves ®D (S). The output quadtree is built in two phases.

First, we perform the following procedure for each of the closed curvesClLig¢
such a curve. We pick an arbitrary pombf C, and find the leaf celb of T containing
g, usingH, by the point-location data structure of Section 5.3. We insert the ai€Cs of
into v, in the order they appear alo@ If at some point the number of arcsiurexceeds
the threshold of T, we splitv, and accordingly update the hash table, the net pointers,
and perhaps split node(s) in order to keep the tree balanced (which may require further
splits, but, as stated above, it requires only a linear number of additional nodes). If, on
the other hand, the aicof C we follow intersects the boundary &, and “leaves” this
block, then we use the net pointers to find the neighbor leaf into whitdnters,” and
continue the process in that block. As noted, each node has only a constant number of
neighbors to keep track of.

Next, we have to scan the empty block (that does not inte@®¢B)) and label
each such block as to whether it is fully inside or outsiBiS). This is done using an
algorithm similar to the connected component labeling algorithm [S1]. We traverse the
tree, while adding all the nonempty leaves to a queue. Next, we pop one leaf at a time,
use it to label its (yet unlabeled) empty neighbors, and add only those newly labeled
nodes to the queue.

When bounding the running time of this algorithm, itis clear that phase two takes only
linear time. For phase one, we first have to calculate the time needed to perform all the
single point-location operations, one per boundary path (#). Their number cannot
exceedO(n) (and is assuredly much smaller). Using the technique from Theorem 5.5,
each one take®(loglogu) time, or a total ofO(nloglogu). The remaining running
time is proportional (since no vertex is ever deleted) to the number of nodes created in
T, which we denote byn. By Lemma 5.2 we know thah = O(nlog?u) and thus we
have proved Theorem 5.3. O

The size of the resulting quadtree can be improved by a factor af/log logn by
using the compressed quadtree (as in this case the tree size is proportional to the number
of leaves). The following lemma shows that in this case the running time is improved by
almost the same factor.

LEMMA 5.4. Given ninterior disjointobjects a compressed quadtree representatation
of their union can be computed in timg @ log logu), where N is the size of the resulting
guadtree

PrROOF Theideais similar to the algorithm described above. The difference is that now
we need to perform the point location@y(log logu) time in a compressed tree, instead
of O(logu) time as before. Also, the time needed to jump between neighboring leaves is



184 A. Amir, A. Efrat, P. Indyk, and H. Samet

no longer constant, as we cannot afford to maintain a balanced tree. Thus, we will have
to make sure that this operation can be don®itog logu) time as well. We use the
corresponding technique from Theorem 5.5, i.e., haglog logu) paths per tree edge
to achieveO(log logu) query time. The total time spent on updating the hash tables is
O(N loglogu), which is within the bounds.

The last point we have to verify is that while constructing the output quadtree we
do not generate long paths which should be replaced by single edges in the compressed
quadtree. This can be easily done by applying unbounded binary search. O

By applying the technique from the above lemma to Theorem 5.3, we obtain an
algorithm for computing a compressed quadtree of the dilated shapéNhlog logu)
time, whereN’ is the size of the quadtree.

Finally, we address the problem of point location in quadtrees. First we consider
queries in arbitrary quadtrees and compressed quadtrees. Then we consider queries in
quadtrees of dilated shapes. In the latter we show that in order to answer such queries
efficiently we do not even need to calculate the dilated shape.

5.3. A Point-Location Data Structure

THEOREMS5.5. Let S be a planar shape consisting of a union of cells of the integer grid
[u]?, and given as an uncompressed quadtreecdnsisting of n nodeghen in time
O(n) we can construct a data structure of siz&n), such that given an integer query
point g, we can determine whether q lies inside @rpectefitime O(loglogu). If T

is a compressed quadtrelien we can construct the data structure in time and space
O(nloglogu) and expected query time(@g logu).

ProOF Consider first the case in whidhis an uncompressed quadtree. We store the
nodes ofT in a hash table. The key of each nogdés the binary representation of the
path from the root off to v, which is merely the position iru]? of the blockv. Given a
query point, we perform binary search on the height of the tree to find the leaf level. At
each level probed we check if there is a nodd ait that level (which lies on the path
leading to the leaf including). We can find the leaf containirgy or determine that no
such block exists, in expected tindylog logu). This idea has appeared in the literature
[w].

WhenT is a compressed tree, the analysis is a bit more complicated. This is due
to the fact that simple replication of the previous approach would seemingly require
hashing all the paths in the tree, which would imply @iint) storage requirement,
wheret = O(logu) is the depth of the tree. However, the following observation allows
us to reduce the storage @(nloglogu). Call an interval{i --- j} C [t] a primitive
interval ifi = k2P andj = (k+ 1)2P for somek and p. Each such interval corresponds
to a subtree of a binary tree decomposition @§f Thus {] can be decomposed into
primitive intervals in a tree-like fashion, by finding the largest primitive intedvd [t],
removingJ from [t], and recursing ort]\ J. One can observe that such a decomposition
is unique, andt] is decomposed int®(log, t) primitive intervals, since for everp, at
most one primitive interval of lengthPZan appear in the decomposition.
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The algorithm proceeds as follows. Each compressed edge is spliDicitgt)
primitive intervals. Instead of hashing all paths, the algorithm hashes only the paths with
endpoints at primitive intervals. The following claim, whose proof is straightforward and
omitted, shows that this restriction does not influence the behavior of the binary search
procedure, and thus concludes the proof of Theorem 5.5. g

CLaM 5.6. Let e be a compressed edge in the quadtree from level i to lexal gnd
let | be any level probed during the binary search for any pointhen | has to be an
endpoint of one of @og(j — i + 1)) primitive intervals from the decomposition of the
interval[i --- j].

5.4. Point Location in Dilated Shape We address the problem of point location in the
dilation of a given shape. We show that in order to answer such queries efficiently we
do not even need to calculate the dilated shape.

THEOREMbS.7. Let S be a planar shape given as a region quadtree T consisting of n
nodes defined on the integer gifid]?, and let r be a given radiusThen in time @n)

we can construct a data structure of siz&n, such that given an integer query point

g, we can determine whether g lies insidé3) in expected time Qoglogu).

PROOF The data structure consists of two parts. The first part enables us to find whether
g lies in Sitself, for which we use the data structure of Theorem 5.5. If the query point
is not in S, then we need to check if it falls in the dilated region, which is the goal of
the second part of the data structure. The construction of the second part takes place
during the execution of the dilation algorithm of Section 4. Cebe a grid imposed
on [u]? such that each point df corresponds to an atom block of side Thus every
atom block has a unique identifier—a pair of integers representing its locatibn in
Similarly, we give a unique identifier to each corridor we encounter during the dilation
algorithm. All these identifiers are stored in a hash table. Thus for any queryqoint
we can find each atom block which contaogand at most three blocks in its vicinity
vertically above and below) and accordingly access the data structure associated with
this corridor.

The additional data structure associated with a corréderas follows. Assums is
vertical. We describe a data structure &g, the outer path coming inte from the
region of Sthat lies to the right o6. The structure for the outer paths emerging from
other three directions is analogous. To conclude the construction of the data structure, we
sweep the vertices ofpy, and truncate the coordinates of their vertices to integers, thus
unifying sequences of vertices whose integer truncated value is the same into a single
vertex. Next, we assign to each verigxhe arcs ofop.; adjacent tau, and construct
a van Emde Boas tree for thecoordinate of the vertices apgy. The construction
time isO(k), wherek is the number of vertices amp.y. By performing a query to that
data structure (in tim&®(log logu)) we find the objects (disks and rectangles) whose
boundaries form the arcs associated withand thus determine if one of them contains
g. Similar data structures are constructed for the upper and lower outer paths of each
of the atom blocks, which allows us to perform similar queries on the blocks above and
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belowq. Clearly if a disk or a rectangle of the dilated area contginse will find it in
this way. O

6. Discussion. This paper provides optimal and near-optimal algorithms for several
problems in computational geometry on the integer grid. We show that under the as-
sumption that the input points have limited precision (i.e., are drawn from the integer
grid of sizeu) these data structures vyield efficient solutions to many important prob-
lems. In many cases we are able to repl@gtog n) with O(log logu). This requires an
efficient evaluation of the log bits required to write the result. We solve this problem
using regular data structures. Some of these regular data structures, like the quadtree,
can be stored in hash tables, which allow us to process, for example, a point location
query without having to traverse the whole path from the root to the leaf (which would
take O(logu)). In other cases, as with the MDST, the regular data structure divides the
location bits at each recursive level into two significantly large parts, and therefore the
height of the tree becomes log lagMost of these algorithmic problems otherwise have

Q (logn) lower bounds in a standard algebraic tree model, assuming arbitrary precision
input. These basic ideas can be used to improve the efficiency of many other algorithms.

In several of the algorithms we stop the recursion process before it reaches the trivial
type of leaf, and handle the rather complex “leaf” using a separate, nonrecursive algo-
rithm. For example, in the quadtree dilation algorithm, if we try to eliminate the notion of
an atom block, and just apply the dilation and merge starting directly from the quadtree
leaves, the complexity will no longer be linear and independeRt &f order to achieve
the desired efficiency we must identify the level at which the recursion process must be
stopped and replaced with a nonrecursive algorithm.

In some situations, the random translation in the MDST algorithm and the correspond-
ing expected complexity bounds are undesired. In such a case, the problem that occurs
near the borders betwe@&y blocks can be transferred from the query time to the update
time. If one extends the borders of tBg blocks to have them overlap in a'avide
region, then there will always be a block that contains the entire small circle around the
query pointq (see Figure 5(c)). Therefore, there is no need to recurse into more than
one child (i.e.|R| = 1 at all times). This requires, however, some modification of the
insert and delete procedures, which in turn should allow inseidieletion of a point
into/from all the blocks it intersects with.
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