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Efficient Regular Data Structures and Algorithms for
Dilation, Location, and Proximity Problems1

A. Amir,2 A. Efrat,3 P. Indyk,4 and H. Samet5

Abstract. In this paper we investigate data structures obtained by a recursive partitioning of the multi-
dimensional input domain into regions ofequalsize. One of the best known examples of such a structure is the
quadtree. It is used here as a basis for more complex data structures. We also provide multidimensional versions
of thestratified treeby van Emde Boas [vEB]. We show that under the assumption that the input points have
limited precision (i.e., are drawn from the integer grid of sizeu) these data structures yield efficient solutions to
many important problems. In particular, they allow us to achieveO(log logu) time per operation for dynamic
approximate nearest neighbor (under insertions and deletions) and exact on-line closest pair (under insertions
only) in any constant number of dimensions. They allowO(log logu) point location in a given planar shape
or in its expansion (dilation by a ball of a given radius). Finally, we provide a linear time (optimal) algorithm
for computing the expansion of a shape represented by a region quadtree. This result shows that the spatial
order imposed by this regular data structure is sufficient to optimize the operation of dilation by a ball.

Key Words. Quadtree dilation, Approximate nearest neighbor, Point location, Multidimensional stratified
trees, Spatial data structure.

1. Introduction. In this paper we consider spatial data structures which are based on
(possibly recursive) decomposition of a bounded region into blocks, where the blocks of
each partition are of equal size; we call such structuresregular. One of the most popular
examples of such structures is the quadtree (e.g., [S1] and [S2]), which is based on a
recursive decomposition of a square into four quadrants; another example is the stratified
tree structure of van Emde Boas [vEB]. The quadtree data structure and its numerous
variants are some of the most widely used data structures for spatial data processing,
computer graphics, GIS, etc. Some of the reasons for this are:

• Simplicity: the data structures and related algorithms are relatively simple and easy
to implement.
• Efficiency: they require much less storage to represent a shape than the full bit map.
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• Versatility: many operations on such data structures can be performed very efficiently
(for example, computing the union/intersection, or connected component labeling
[DST], [S2]).

Despite their usefulness, however, regular data structures for geometric problems
have not been investigated much from the theoretical point of view. One of the main
reasons is that in the widely adopted input model where the points are allowed to have
arbitrary real coordinates, the depth and size of (say) a quadtree can be unbounded,
thus making worst-case analysis of algorithms impossible. On the other hand, such a
situation is rarely observed in practice. One reason is that in many practical applications
the coordinates are represented with fixed precision, thus making the unbounded size
scenario impossible. Another reason is that the regions encountered in practice are not
worst-case shapes; for example, they are often composed of fat objects.6 Therefore, for
both practical and theoretical purposes, it is important to study such cases.

In this paper we give a solid theoretical background for these cases. First, we prove
that if the input precision is limited to sayb bits (or, alternatively, the input coordinates
are integers from the interval [u] = {0 · · ·u− 1} whereu = 2b), then by using regular
data structures, several location and proximity problems can be solved very efficiently.
We also show that if the input shapes are unions of fat objects, then the space used by
these data structures, as well as their construction time, is small.

Our first sequence of results applies to problems about sets ofpoints. In this con-
nection, we propose two multidimensional generalizations of the stratified tree. The
one-dimensional version, by van Emde Boas [vEB], yields a dynamic data structure for
nearest-neighbor queries. The running time which it guarantees,O(log logu), has been
recently improved toO(log logu/log log logu) (see [BF]). We are not aware, however,
of any prior work in which its multidimensional version has been used.

The first multidimensional stratified tree allowsO(log logu) time per operation for
dynamic approximate nearest neighbor (when insertions and deletions of points are
allowed) and maintains the (exact) on-line closest pair when insertions are allowed.
The result holds for any fixed number of dimensions (the dependence on number of
dimensions, however, is exponential). The data structure is randomized and the bounds
hold in the expected sense.

The second multidimensional data structure is deterministic and static. It enables
answering an approximate nearest neighbor query ind-dimensions inO(d + log logu)
time anddlog log loguO(1/ε)dn logO(1) u space. Recently, Beame and Fich [BF] showed
a lower bound ofÄ(log logu/log log logu) time for the cased = 1, assumingnO(1)

storage.7 Thus our algorithm is within a factor log log logu of optimal as long asd =
O(logn) (note thatO(d) is a trivial lower bound).

The remaining results apply to the case where the input shape is a union of objects
which are more complex than points. In this case, the stratified tree structure does not
seem to suffice and therefore we resort to quadtrees. We consider two operations on
shapes: expansion (dilation with a circle) and point location. Dilation and point location

6 Later in this paper we provide mathematical definitions for all of these terms.
7 Although their proof works for theexactnearest neighbor, we show it generalizes to theapproximateproblem
as well.
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are fundamental operations in various fields such as robotics, assembly, geographic in-
formation systems (GIS), computer vision, and computer graphics. Thus having efficient
algorithms for these problems is of major practical importance. Before describing these
results in more detail, we need the following definitions: Among the many variants of
quadtrees that exist in the literature, we consider the following types of quadtrees:

Region quadtree(or just quadtree): obtained by recursive subdivision of squares un-
til each leaf is black/white (i.e., is inside/outside the shape).

Segment quadtree(or mixed quadtree): we allow the leaves to contain shapes of con-
stant complexity≤ κ (e.g., at mostκ points).8

Compressed quadtree: a variant of either the region quadtree or the mixed quadtree,
in which all sequences of adjacent nodes along a path of the tree having only one
nonempty child (i.e., only one child that contains a part of the shape) are compressed
into one edge. An important property of compressed quadtrees is that the number
of nodes in the resulting tree, called thesizeof the tree, is at most twice the number
of its (nonempty) leaves.

Let Sbe a planar shape, and letr be a fixed radius. Thedilated shapeof S, denoted by
D(S), is the Minkowski sum ofSand the diskDr of radiusr . That is,D(S) = {d+ s |
d ∈ Dr , s ∈ S}. In Section 4 we provide an algorithm that takes a region quadtree ofN
nodes representingSand a radiusr and computesD(S) in optimal timeO(N).

In Section 5 we first address the efficiency of a region quadtree as a planar shape
representation. It is well known that the size of a region quadtree can be much greater
than the complexity of the shapeS it represents. However, there are cases where a
segment quadtree can be much more efficient. We show in Section 5.1 that ifS can be
expressed as a collection ofn fat convex objects in [u]2, thenScan be represented as a
segment quadtree withN = O(|∂S| logu) leaves, where|∂S| is the complexity of the
boundary ofS, which in turn is known to be close to linear inn [E].

After we show that a segment quadtree can be an efficient shape representation, in
Section 5.2 we give an efficient algorithm to construct it. Given a decomposition ofS
into n (not necessarily fat)disjoint objects, the segment quadtree representingScan be
constructed in timeO(N logu), whereN is the size of the output quadtree. It follows
that D(S) can be computed and stored in a segment quadtree in timeO(N log2 u), and
as a compressed segment quadtree in time and spaceO(N log logu).

In Section 5.3 we provide an efficient point location algorithm for a shapeS rep-
resented by a region quadtree. Since the tree has depthO(logu), point location inS
can easily be performed inO(logu) time. However, by performing a binary search on
levels of the tree, one can reduce this time toO(log logu), with preprocessing time and
spaceO(N) = O(n logu), whereN andn are the number of nodes and leaves in the
tree, respectively [W]. We show that for a compressed quadtree, the query time is also
O(log logu) with preprocessing time/spaceO(N log logu) = O(n log logu). Thus for
the same shapeS we reduce the preprocessing time and storage fromO(n logu) to
O(n log logu).

8 We assume that the boundary of an object can be expressed as a collection of algebraic arcs, connected at
vertices. The number of these vertices is thecomplexityof the object.
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Most of the algorithmic problems above haveÄ(logn) orÄ(n logn) lower bounds in
a standard algebraic data model (assuming arbitrary-precision input). Thus by resorting
to a fixed-precision model we are able to replace logn by log logu in several run time
bounds. Notice that in most situations this change yields a significant improvement. For
example, when the numbers are represented using 32 bits, log logu = 5 while logn > 5
already forn > 32. Moreover, the regular data structures are usually much simpler than
the corresponding solutions for the real data model, and thus the “big-O” constants are
likely to be smaller. Therefore, we expect our algorithms to yield better running times
in practice, especially for scenarios where the input size is large.

There have been a number of papers discussing computational geometry problems
on a grid. Examples include nearest neighbor searching using theL1 norm [RGK], the
point location problem [M], and orthogonal range searching [O]. The solutions given
in these papers provide static data structures for two-dimensional data with query time
O(log logu). A number of off-line problems have been also considered (see [O] for
more details). However, to our knowledge, nodynamicdata structures are known for a
grid with query/update times better than those for arbitrary input. In fact, this is one of
the open problems posed on page 273 of [O].

2. Dynamic Multidimensional Stratified Trees. In this section we present the mul-
tidimensional stratified tree (MDST), a multidimensional extension of the stratified tree.
It addresses the dynamic approximate nearest neighbor problem in [u]d. Let P ⊆ [u]d

be a set of points, and letε > 0 be a prespecified parameter. Letq ∈ [u]d denote a query
point, and letpnn ∈ P denote the (exact) closest neighbor toq. We say thatpapp∈ P is ε
approximate nearest neighbor ofq if d(q, papp) ≤ (1+ε)d(q, pnn) (see, e.g., [AMN+]).
The dynamic data structure supports update operations (inserting or deleting a point) and
approximate nearest neighbor queries in timeO(1/εO(d) log logu) in [u]d (for d ≥ 2).
In addition, a simple reduction provides an algorithm to maintainexactclosest pairs
(under insertions of new points) in the same time. For clarity, we describe the algorithm
for the two-dimensional case. The extension to higher dimensions is straightforward.

The one-dimensional space subdivision technique called astratified treewas proposed
by van Emde Boas [vEB]. It supports the performance of a nearest neighbor query in
the integer interval [u] in O(log logu) time. The data structure can be made dynamic
(see [J]). Each addition or deletion of a point takesO(log logu) time. The tree requires
O(n) space, wheren denotes the maximum number of points present in the tree at any
time.9 It is assumed that standard Boolean and arithmetic operations on words of size
logu can be performed in constant time. Some of our results require this assumption.

The MDST, like the stratified tree, supports the following four procedures:con-
struct (which constructs a tree for a given set of points),add anddelete(which enable
addition/deletion of a point to/from the set), andsearch(which finds an approximate
nearest neighbor of a given query point). Below, we give the description of theconstruct
(together with the description of the data structure) andsearchprocedures. Theadd
anddelete(nontrivial) procedures are essentially the same as in the one-dimensional

9 The original paper by van Emde Boas provides anO(u) space bound, but this can be reduced toO(n) by
using randomized dynamic hashing [W]. In such a case, the time bounds are expected values.
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Fig. 1.Theconstructprocedure builds the MDST data structure for approximate nearest neighbor queries.

case, and the reader is therefore referred to [J] for details. In the rest of this section
we first define the data structure and discuss the algorithm in general, including the
intuition behind this construction. Then we proceed with its correctness and complexity
analysis.

The MDST data structure consists of three recursively coupled components, denoted
by D, E, andH . Let B ⊂ [2u]2 denote ablock, the region corresponding to a node of the
recursive construction. At the root, the MDST starts withB = [2u]2. A block B of size
v×v is divided at the next level intov blocks, denotedBi j , of size

√
v×√v. Let P ⊂ B

denote a given set of points. The recursive procedure CONSTRUCT(B, P), shown in
Figure 1, builds the MDST for the set of pointsP in the blockB. Each node can be
either a single-point leaf (case 0), an internal node (case 1), or a bitmap leaf (case 2).
We focus first on internal nodes. An internal node, illustrated in Figure 2, contains three
components: an arrayDi j of its v children, an arrayEi j of v coarse (sizeλ× λ) binary
maps, one for each of the children, and a bitmapHi j of v bits that map the nonempty
children. Note that by moving one level down along a path in the tree we determine
half of the remaining bits of a point (e.g., compared with one bit in the case of a binary
tree). Hence the maximal depth of the tree isO(log logu). For anyp ∈ P ⊂ [v]2 we
can quickly retrieve (after some preprocessing)someactual data set point belonging
to the same sub-block containingp. We refer to such a point as anactual point of p.
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Fig. 2. Illustration of the MDST data structure components at the internal node corresponding to a blockB of
sizev × v.

We use the MDST data structure for the construction of each of the three components
of the node’s data structure. Hence, all three components are recursively coupled
together.

The bitmap leaf is a leaf small enough to be processed directly by bitmap techniques
that are described later. Letv0 = λ1/8 denote the minimal size of a block in the tree, where
λ = 1/ε · log2 u. Rather than pursuing the recursive process until it ends with leaves of
single points, we also stop the recursive process whenv ≤ v0 and use a bitmap leaf to
store that region. As shown later, this reduces the query complexity byO(log log logu).
In practice, however, it may be omitted for code simplification.

During the preprocessing we first randomly translate the data; this is why the root
block is of size [2u]2 instead of [u]2. We also precompute certain lookup information
used during thesearchprocedure. The information consists of roughlyO(log5/4 u) bits
and can be computed in the same time. The precomputation procedure is as follows.
Consider any pointq ∈ [−1/ε ·v0,1/ε ·v0]2 and any integerr such thatBr (q) (a disk of
radiusr centered atq) intersects but does not contain [v0]2. For each such a pairq, r we
compute a binary matrixMr (q) of sizev0× v0. The matrix has 1’s at pointsp such that
d(p,q) ∈ [r, r +1) and 0’s otherwise. Next, we concatenate the rows ofMr (q) forming
a bit vectorAr (q). Finally, we concatenateAr (q) for all r ’s into A(q) and create a table
mappingq to A(q).

The procedure for finding an approximate nearest neighbor is described in Figures 3
and 4. To avoid rounding details and to simplify the description we assume that both
the input and output points are members of [u]2 rather than [v]2. Each type of node is
handled separately. Again, we focus first on the process in an internal node (case 1).
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Fig. 3.The search procedure for approximate nearest neighbor.

In, general there are three possible situations, illustrated in Figure 5. The algorithm first
applies a (large) circle test, of radius

√
v/ε, which in a sense divides the (unknown)

bits of the result into two parts: the upper bits (most significant bits) and the lower bits
(least significant bits). If there is no data point within the circle (Figure 5(a)), then it
is a lower bound on the distance to the nearest point which, within the approximation

Fig. 4.The Bitmap procedure (case 2, Figure 3).
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Fig. 5.The three possible search situations in an MDST internal node.

parameterε, allows us to ignore the lower bits and continue the search for the upper
bits only. That is, it is accurate enough to search for an actual point inH . Otherwise,
we consider all the relevant blocksBi j and use theirEi j coarse mapping to get a finer
estimation of the distance to the closest point. If this is outside a (small) circle of radius
1/ε(
√
v/λ) (Figure 5(b)), then the actual point of the closestEi j sub-block is the query

result. Otherwise, there is a point in the small circle (Figure 5(c)) and the algorithm
proceeds recursively to the corresponding childDi j . In such a case we have already
found the upper bits of the result. In the rare event where the small circle intersects two
or more nonempty sub-blocks of differentBi j blocks, the algorithm has to process all
nonempty intersectedDi j (up to four) recursively. This case is further explored in the
complexity analysis.

This completes the description of the data structure and the algorithm. Now we proceed
with the proofs. We first provide a proof of correctness and then a complexity analysis.

2.1. Correctness. The correctness of the MDST search procedure will be proved in two
steps. First, we prove that the data structuresEi j return approximate nearest neighbors,
i.e., there is a constantc such that the returned pointq is within a distance(1+cε) times
the nearest neighbor distance. In the second step (using a similar technique) we prove
the correctness of the whole procedure.

The correctness of the data structuresEi j is shown as follows. First, observe that none
of the Ei j ’s sub-blocks may contain any otherEi j structure (asv = λ and therefore in
the next levelλ >

√
v). Therefore, each recursive call invokes either data structuresDi j ,

step 3(d), orH , case 2. For simplicity, we can assume that in step 3(d) the algorithm
invokes only thatDi j which contains the closest point topamong all other data structures.
Since the actual algorithm invokes all theDi j ’s, the above assumption does not influence
the output. Due to this assumption we can represent the search procedure as a sequence
of recursive calls of length 3; each call invokes eitherH or Di j . Invoking H might
clearly result in an additive error of size bounded by the diameter of the blocksBi j (in
the units of the universe [u]2); however, the distance to the nearest neighbor is at least
1/ε times this quantity. On the other hand, invokingDi j involvesno error at all. Let
e1 · · ·ek denote the additive errors incurred as above. As after each call toH the size of
the region corresponding to aBi j grows by a factor of at least 2, we can assume that the
sum of theei ’s is smaller than 2ek. On the other hand, we know that the distance to the
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actual nearest neighbor is at least 1/ε · ek. Therefore, the multiplicative error incurred is
at most(1+ 2ε).

We can now proceed with the whole data structure. The recursive calls to the algorithm
can be modeled in a similar way to that described above; however, the algorithm has
an additional option of stopping at step 3(c)iii. The latter case can incur an additive
error bounded by the diameter of the blocksCkl , whereCkl is as defined in Figure 1. As
the distance to the nearest neighbor is lower-bounded by 1/ε times the side ofCkl , the
multiplicative error is at most(1+√2ε). It is easy to verify that the remaining cases are
exactly as in the case ofEi j .

In this way we proved the following lemma.

LEMMA 2.1. The distance from p to the point q returned by the algorithm is at most
(1+ O(ε)) times the distance from p to its nearest neighbor.

2.2. Complexity. The complexity bounds for the proceduresconstruct, add, anddelete
are essentially as in [vEB]. Therefore, below we focus on the complexity of procedure
SEARCH, which follows from the following sequence of claims.

CLAIM 2.2. Case2 of procedureSEARCHtakes time C(ε,u) = d(1/ε)3/8/log1/4 ue.

PROOF. We show that when the whole wordW′ fits within one word, then the procedure
can be implemented in constant time. Otherwise (i.e., whenC(ε,u) = ω(1)), we perform
the same procedure sequentially on all words ofW′.

The steps are implemented as follows. Step (a) is performed by multiplyingW by
a concatenation ofv bit sequences, each consisting of a 1 followed byv2 − 1 zeros.
Step (b) uses just one Boolean operation. The last step can be implemented using a
constant number of Boolean and arithmetic operations as in [FW].

CLAIM 2.3. For any i, j searching in Ei j takes time O((C(ε,u)+ 1/ε) · 1/ε3).

PROOF. Recall that the data structureEi j does not contain otherE-type structures.
Therefore, it contains onlyH -type andD-type structures. The recursive structure ofEi j

can be represented as a tree. We observe that the depth of this tree is 3, because by using
three recursive calls we reduce the block size fromv = λ (the size ofEi j ) to λ1/8 = v0.
Searching in any “leaf” data structure (i.e., withv = λ1/8) can be solved in timeC(ε,u).
The number of such problems is at most 1/ε3, as the setS′ of data structures invoked
recursively is of size at most 1/ε and the level of recursion is 3. This contributes the first
term of the cost function, i.e.,C(ε,u)/ε3. The second term follows from the fact that
the complexity of step 1 is 1/ε2 and this step is invoked at most 1/ε · 1/ε times.

CLAIM 2.4. Consider step3(d) of thesearchalgorithm. If the input P is translated by
a random vector, then:

1. The probability that|R| > 1 is at most O((1/ε)/λ).
2. The probability that|R| > 2 is most O(((1/ε)/λ)2).
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PROOF. We might have|R| > 1 if p lies within distancer ′ of a boundary of some block
Bi j (the probability of this event is even smaller as it also requires that the intersected
Ei j is not empty). As the side ofBi j is

√
v, this event can happen with probability

O(r ′/
√
v) = O((1/ε)/λ). The other case involvesp lying within distanceO(r ′) from

a vertex of someBi j . The probability of such an event can be estimated in the same
way.

CLAIM 2.5. If for all executions of step3(d), the set R has cardinality at most1,
procedureSEARCHruns in O((C(ε,u)+ 1/ε) · log logu · 1/ε4).

PROOF. As each setR has cardinality 1, the recursion path is a path of depth log logu.
The cost of each step is dominated by the cost of invokingEi j |S′| = 1/ε times. The
cost estimate follows.

CLAIM 2.6. If for all executions of step3(d), the set R has cardinality at most2,
procedureSEARCHruns in time O((C(ε,u)+ 1/ε) · 2log logu · 1/ε4).

PROOF. The argument is similar to the above, but now two recursive calls are allowed.
Thus the size of the recursion tree is 2log logu.

CLAIM 2.7. The worst case running time of the search procedure is O((C(ε,u)+1/ε) ·
4log logu · 1/ε4).

PROOF. The argument is again similar to the above. In this case, up to four recursive
calls are allowed. This is the (very rare) case in whichp lies within a distancer ′ from a
vertex of up to four nonemptyBi j blocks.

LEMMA 2.8. The expected running time of thesearchprocedure is O((C(ε,u)+1/ε) ·
log logu · 1/ε4).

PROOF. Note that:

• If |R| = 1 for all executions of step 3(d), then the number of times this step is executed
is at mostO(log logu).
• If |R| ≤ 2 for all executions of step 3(d), then the number of times this step is executed

is at mostO(2log logu) = O(logu).

The expected cost is then on the order of[
1 · log logu+

(
logu · 1/ε

λ

)
logu+

(
log2 u ·

(
1/ε

λ

)2
)

log2 u

]
(C(ε,u)+1/ε)·1/ε4

which can be verified to be bounded byO((C(ε,u)+ 1/ε) · log logu · 1/ε4).
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2.3. Closest Pair Under Insertions. Maintaining the closest pair under insertions can
be reduced to dynamic approximate nearest neighbor (say withε = 1) as follows.
First, observe that for anyk, we can retrievek approximate nearest neighbors in time
O(k log logu). To this end, we retrieve one neighbor, temporarily delete it, retrieve the
second one and so on, untilk points are retrieved. At the end, we add all deleted points
back to the point set. Next, observe that if we allow point insertions only, then the closest
pair distance (call itD) can only decrease with time. The latter happens only if the distance
of the new pointp to its nearest neighbor is smaller thanD. To check if this event has
indeed happened, we retrievek = O(1) approximate nearest neighbors ofp and check
their distance top. If any of the point’s distances are smaller thanD, we updateD.

To prove the correctness of this procedure, it is sufficient to assume that the distance
from p to its closest neighbor (sayq) is less thanD. Note that in this case there is
at most a constant number of 1-nearest neighbors ofq (as all such points have to lie
within distance 2D of p but have a pairwise distance of at leastD). Therefore, one of
the retrieved points will be the exact nearest neighbor ofp, and thusD will be updated
correctly.

3. Stratified Trees for Higher Dimensions. In this section we present a multidimen-
sional variant of stratified trees that solves the approximate nearest neighbor problem in
time O(d + log logu + log 1/ε) under the assumption thatd ≤ logn. The data struc-
ture is deterministic and static. We first describe a simple variant of the data structure
which usesdlog loguO(1/ε)dn2 logu storage. We then comment on how to reduce it to
dlog log loguO(1/ε)dn logu.

The main component of the algorithm is a data structure which finds ad2-approximate
nearest neighbor in thel∞ norm. Having a rough approximation of the nearest neighbor
distance (call itR), we refine it by using the techniques of [IM] to obtain a(1+ ε)-
approximation in the following manner. During the preprocessing, for anyr = 1, (1+
ε), (1+ ε)2, . . . (i.e., for O((logu)/ε) different values ofr ) and for each database point
p we build the following data structure, which enables checking (approximately) for a
query pointq if q is within distancer from any database point that lies withinl∞ distance
of O(dr) from p (denote the set of such points byNr (p)). The rough idea of the data
structure is to impose a regular grid of side lengthr/

√
d on the space surroundingq

and store each grid cell within distance (approximately)r from Nr (p) in the hash table
(see [IM] for details). The data structure usesnO(1/ε)d storage for eachr and p. The
time needed to perform the query is essentially equal to the time needed to find the grid
cell containing the query pointq and compute the value of the hash function applied
to the sequence of all coordinates of that cell. In order to bound this time, notice that
after finding thed2-approximate nearest neighbor ofq we can (in timed) represent
q’s coordinates using logd/ε bits per coordinate. Therefore, all coordinates ofq can
be represented usingO(d logd/ε) bits. Since we are allowed to perform arithmetic
operations on words consisting ofd ≤ logu bits in constant time, it is easy to implement
the hashing procedure usingO(logd/ε) operations.

In order to find a(1+ε)-approximate nearest neighbor ofq, we perform a binary search
on log1+ε d values ofr as described in [IM]. This takesO(log(logd)/ε) · O(logd/ε)
operations, which is negligible compared withO(d).
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Therefore, it is sufficient to find ad2-approximate neighbor ofq quickly. In order
to do this, we apply a variant of the multidimensional stratified trees described in the
previous section. Since the techniques are similar, we only give a sketch. The idea is
to split the universe into squares of sided

√
u (instead of

√
u), as long asd2 <

√
u.

Moreover, instead of using only one square grid as before, we used of them, such that
the i th grid is obtained from the first one by translating it by vector(i

√
u, . . . , i

√
u).

The reason for this is that for any pointq there is at least onei such that the distance
from q to the boundary of the cell it belongs to is at least

√
u/2. Thus the correctness

argument of the previous section follows. Also, notice that the depth of the data structure
does not change, as in each step the universe size goes down by a factor of

√
u/d > u1/4.

However, the storage requirements are now multiplied bydlog logu, since at each level we
multiply the storage byO(d).

In order to bound the running time, we observe that during each recursive step the
value of logu is reduced by a constant factor. Therefore, the description size ofq (which
is initially d logu bits long) is reduced by a constant factor (sayc) as well, which means
(by the above arguments) that thei th step takes roughlyO(d/ci ) operations, as long as
d > ci . Thus, the total time isO(d + log logu).

In order to reduce the storage overhead fromdlog logu to dlog log logu, notice that the
above analysis contains some slack; the time needed for the rough approximation is
much greater than the time needed for the refinement. One can observe, however, that if
during the refinement step each coordinate can be represented using logu/log logu bits,
its running time is stillO(d). Therefore, we can stop the first phase as soon as the log of
the universe size drops below logu/log logu, i.e., after the first log log logu steps.

The dependence of the storage size onn can be reduced to linear by using the covering
technique of [IM]. More specifically, we can merge those neighborhoodsNr (p) which
have very large overlap in such a way that the total size of all neighborhoods is only linear
and the diameter of the merged neighborhoods gets multiplied by at mostO(logn).

4. Quadtree Dilation in Linear Time. Given a shapeS stored as a region quadtree,
T = T(S) as in Section 5.1, we present an algorithm for computing the dilated region
D(S) in O(n) time. The algorithm consists of two major parts. First, it dilates blocks of
a certain size, calledatom blocks, and then it merges the results in a depth-first search
(DFS), bottom-up fashion. During the merging process, the algorithm computes and
reports the vertices of∂D(S). Each of these parts consists of several steps which are
briefly described below.

We use the following notation: LetR(T) denote the axis-parallel bounding square of
the region occupied byT . For a nodev of T , let Tv denote the subtree rooted atv, and
let Rv = R(Tv). Sometimes we refer tov (and its regionRv) as theblockv. We say that
v is a gray blockif Rv contains both white (i.e., empty) and black (i.e., full) regions.
Let d denote a direction,d ∈ {up,down, left, right}, let edown denote the lower edge10

of R, and letx0 be a point onedown. Let `x0 denote the vertical line passing through
x0. We define theenvelope pointof S with respect toR at x0 in the down direction,

10 The same applies to all other three directions.
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Fig. 6. Left: the envelopeenv(Rv,down) of the shapeSv is marked by the dashed line, and its dilation under
the down-edge (hence its outer-path,op(Rv,down)) is filled with black. Right: the selection ofr0, given the
dilation radiusr .

denotedenv(R,down)(x0), as the lowest point of̀ x0 ∩ R ∩ S, if `x0 ∩ R ∩ S 6= ∅
and the distance of this point fromedown is at mostr (otherwiseenv(R,down)(x0) is
not defined). We define the (partially defined) functionenv(R,down)(x), which is a
polygonal x-monotone path(s) (see Figure 6). We define theouter pathof S in the
down direction, denoted byop(R,down), as the collection of vertically lowest points in
edown∪ D(S∩ R) that lie below the line containingedown (see Figure 6). Observe that
op(R,down) is also anx-monotone path(s) consisting of circular arcs of radiusr and of
straight horizontal segments.

The next lemma, whose proof is easy and is thus omitted, shows the importance of
the envelope of a shape term.

LEMMA 4.1. Let v and u be vertices of T, such that Rv and Ru are interior disjoint;
then

D(Sv) ∩ Ru = D(env(Rv,d)) ∩ Ru,

where d is the direction at which Ru refers to Rv. That is, only env(Rv,d) counts in terms
of influencing Ru by the dilation of Sv.

Let r0 = 2k, for an integerk such that
√

2r0 ≤ r < 2
√

2r0.We say that a blockv ∈ T
is anatom blockif the side ofRv is exactlyr0. Clearly, for a gray atom blockv (which
may contain as many asr 2

0 black and white blocks)D(Sv) is a simply connected region
that includesRv. One can observe thatr0 is the side of the largest tree block having this
property (see Figure 6 right). Alarge block(respectively large leaf) is any tree block
(respectively leaf) larger in size than an atom block.

A crucial observation is that ifq is a point in the plane, then there is only a constant
number of atom blocks and large (black) leaves in the vicinity ofq, the dilations of which
intersectq (no more than three atom blocks away in any given direction, or 32 blocks all
around). We call the set of these blocks theeffective neighborhoodof v. Also, observe
that all atom blocks and large leaves are interior disjoint, and their union covers [u]2. The
dilation algorithm first dilates each of these elementary regions by directly computing
their outer paths, and then it computes the union of these dilated shapes in a bottom-up
fashion. We will show how to computeD(Sv) for an atom blockv in linear time, and
then use these observations to compute the union in linear time. These observations are
the basis for the efficiency of our dilation algorithm.
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Computing the Dilation of an Atom Block. The dilation of a gray atom block (of
size r0 × r0) is a simply connected region, and it can be represented by one list of
the arcs and straight lines along its boundary, which is a concatenation of the four
outer paths ofv in the four directions. By Lemma 4.1, the outer path in directiond ∈
{up,down, left, right} can be computed from the envelopeenv(Rv,d). Hence the dilation
of the atom block requires the computation of its four envelopes and then its four outer
paths.

To computeenv(Rv,down) we need to find the partition ofIv = edown(Rv) into
intervals, to compute they-location associated with each interval and to construct the
envelope as a list. This is done in two steps. First, we projectTv, the sub-quadtree rooted
at v, into a binary tree,T ′v . Then we traverse the binary tree and compute the segments
and they-location of each segment. Let the nodew′ ∈ T ′v denote the projection of a
nodew ∈ Tv. The path fromv′ tow′ in T ′v is derived from the path fromv tow in Tv by
following the horizontal branches (and ignoring the vertical ones) along the path intv.
An example for a region quadtree and its projected binary tree in the down direction is
shown on the left of Figure 7.

The procedure PROJECT(Tv) traversesTv in a DFS order, and simultaneously con-
structs and traversesT ′v . This is called aprojection, as all the nodesvi ∈ Tv having
(1) the same depth (in the quadtree), and (2) the same supportingx-interval, Ivi = Iw′ ,
are projected to a single nodew′ ∈ T ′v , associated with this interval (e.g., the three small
blocks which lie along one column in Figure 7 are projected to a single node which is
a leaf in this example). During the projection process, each nodew′ ∈ T ′v maintains its
ymin(w

′)—the smallesty value of the down-edge of all the black leaves projected to it,
if any; otherwise,ymin(w

′) = ∞.

Fig. 7.Left: An atom block and its down-projection binary tree. Right: The projection algorithm.
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The envelope is found in the second step by traversingT ′v in a DFS order. The partition
of Iv into envelope segments is just the list ofx-intervals associated with the leaves. The
y location for an intervalIw′ , however, is not necessarily equal toymin(w

′). It is computed
recursively during this DFS traversal ofT ′v as the smallestymin among all the nodes along
the path from the rootv′ down to the leafw′. For example, refer to the envelope segment
(the thick line) aty = 4, and notice that its leftmost part corresponds to a leaf that carries
ymin = 12. The time and space required for the construction ofT ′v and its traversal is
linear,O(nv), wherenv is the size ofTv.

The next lemma shows that the result of this process is indeed the envelope. Let
path(T ′v, w

′) = {v1 = v′, v2, . . . , vk = w′} denote the path inT ′v from the rootv′ to a
nodew′ ∈ T ′v . Let ymin(path(T ′v, w

′)) = min{ymin(v
′
i ): i = 1, . . . , k} denote the minimal

value ofymin(v
′
i ) that is encountered alongpath(T ′v, w

′).

LEMMA 4.2. Let x0 ∈ u, and assume x0 ∈ Iw′ wherew′ is a leaf of T′v . Then

env(Rv,down)(x0) = ymin(path(T ′v, w
′)).

PROOF. Letw1 ∈ Tv be the black leaf (if any) inTv which intersects the vertical line
x = x0 at the lowesty value, y0 = ymin(w1). That is,x0 ∈ Iw1 and, by definition,
y0 = env(Rv,down)(x0). Let w′1 ∈ T ′v denote the projection ofw1. It follows that
Iw′ ⊆ Iw′1 (w′ is a leaf inT ′v) andw′1 ∈ path(T ′v, w

′). Henceymin(path(T ′v, w
′)) ≤

ymin(w
′
1) ≤ ymin(w1) = y0. The selection ofw1 ensures that there is no lower black leaf

on the path, that is,ymin(path(T ′v, w
′)) ≥ ymin(w1) = y0. If there is no such black leaf

w1 ∈ Tv, thenymin(v
′
i ) = ∞,∀v′i ∈ path(T ′v, w

′).

Computing the Outer Path of an x-Monotone Path. We describe the algorithm for one
direction,d = down. Let ` be a horizontal line, and letC be anx-monotone piecewise-
linear path, lying completely abovè. (In our application,l is the down edge of a block
andC is the down envelope). We need to computeop(C,down), the region ofD(C)
which is below` (see Figure 8). To perform this task, we need the following lemma,
taken from [EI];

LEMMA 4.3. Assume C consists of Cl , a left part, and Cr, its right part, where Cl is
completely to the left of Cr. Then op(Cl,down) and op(Cr,down) intersect at most once.

Fig. 8.Computing the outer path.
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We scanC from right to left, and process one segmente of C at a time. Each such
segment is a constant-y piece. Letα, α′ denote the right and left points of the current
segmente, respectively. LetCα denote the part ofC which is to the right ofα. Letopd(α)
denoteop(env(Cα,down)). Assume that we have already computedopd(α), and letβ be
the leftmost point ofopd(α). We seekopd(α′). For this, we only need to find the inter-
section pointq (if it exists) ofopd(α) and the region ofD(e) below`. Next, we remove
the part ofopd(α) lying betweenq andβ, and concatenate the “new” region ofopd(α′)
which lies betweenq and the leftmost point ofop(e, R,down) (the outer path ofe).

Finding and deleting the partqβ from opd(α) is achieved as follows: We traverse
opd(α) right, starting fromβ, as long as we are inD(e). q is the point at which we leave
D(e). Lemma 4.3 ensures that no other intersection point exists. The time needed for
computingopd(α′) (afteropd(α) has been determined) is proportional to the complexity
of the deleted portionqβ. Since each part in the region is created only once, and can
be removed only once, and since the number of elements inopd(α) is proportional to
the complexity ofC (by [KLPS] cited above) the execution time over the course of the
procedure is linear in the complexity ofC.

The Merging(Zipping) Process. To explain the dilation merging procedure, we need
the following definition: For any large blockv, let s(i )v,d denote thei th corridor of Rv in
directiond, for i = 0,1,2. This is a maximal length,r0-wide rectangle contained inRv,
that lies along thed-edge ofRv at a distanceir 0 from that edge (see Figure 9). A corridor
is represented by a double-linked list of all the atom blocks it contains and the large
leaves it intersects, in the order of their appearance along the corridor. These corridors
play a central part in our algorithms, and are calledthe corridors associated withv. Each
blockv which is an atom block or larger maintains its corridors and their envelopes.

The dilation merging process (zipping) takes place in large gray blocks. First, we
construct the data structure associated with each blockv, using the data structures of its
children. Next, we process theactive zipper area—those parts of its child’s corridors
which are not included in its own corridors. These corridor parts are found near the edges
shared by two children (see Figure 9). It is easy to see that this region, called theactive

Fig. 9.Two large blocks are shown, during their merging (zipping) process.
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(or the zipper) region in the figure, is disjoint from the dilated area of any part ofSwhich
is outsideRv. Moreover, all the effective neighborhood of this area is either in corridors
or in interior regions (for whichD(S) has already been computed).

The main invariant of the algorithm is the following: When the algorithm exits a
vertexv toward its parent, all vertices ofD(Sv) whose distance to the boundary ofRv
is at least 3r0 have already been reported (see Figure 9). More precisely, before leaving
v we compute the vertices ofD(Sv) which lie in those parts of the corridors of its four
children that do not intersect with its own corridors (note thatv’s corridors are a subset
of the union of its children’s corridors). It also updates relevant data structures required
for further steps of the algorithm. This process is calledmergingor zippingof blocks.

Next, we explain how to compute all the intersections between two outer pathsϕ and
ψ . We later extract from the results the vertices ofD(S).

If ϕ andψ are both outer paths in opposite directions (e.g.,ϕ is defined upward andψ
is defined downward), then the problem is solvable in linear time using a standard merge-
like procedure. Therefore, we assume that this is not the case. Assume for example that
ψ is defined on a horizontal direction, so letϕ = op(R1,up) andψ = op(R2, right).
See Figure 10.

Let Bψ (respectivelyBϕ) denote the union of disks and rectangles contributing parts
toψ . We traverseϕ from left to right, starting from the leftmost point to the right of the
right edge ofψ (the horizon ofψ). Let p(t) (for t > 0) denote the location at timet .
Let pψ(t) (see Figure 10) denote the point which is the horizontal projection ofp(t) on
ψ , and letp̄ψ(t) denote the highest point in

{pψ(t ′) | t ′ ≤ t, and pψ(t
′) /∈ Bψ }.

The reason for this odd-looking definition is that it is possible (and sufficient) to maintain
p̄ψ(t), while we are not able to maintain the position ofpψ(t) efficiently. If a point
p(t) ∈ ϕ is outsideBψ(t), then so are all points ofϕ which are to the right ofp(t) and
not higher thanp(t). We maintainp̄ψ(t) as follows. Att = 0, p(0) is either insideBψ

Fig. 10. The merge process between an up outer path,ϕ (coming from the horizontal zigzag region) and a
right outer pathψ (coming from the vertical zigzag region). The pointp(t) “traverses” alongϕ from left to
right. At the timet of this snapshot all three intersection points between the two outer paths have already been
reported. Note the position of̄pψ , which keeps the highest projection point ofp onψ seen so far.
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or to the right ofψ . We distinguish between these two situations by scanning the arcs of
ψ from the bottom upward and seeking an arc whosey-span contains they-coordinates
of p(0). The algorithm now iterates between the following two modes:

First mode: p(t) /∈ Bψ . As long as the pointp(t) is outsideBψ , it traversesϕ to the
right, while maintaining the position of̄pψ(t) onψ . This is doable using a merge-like
process, in amortized timeO(1) per arc ofϕ. Oncep(t) and p̄ψ(t) coincide, we are at a
new intersection pointv1 ofψ andϕ. We record this point, and switch to the second mode.

Second mode: p(t) ∈ Bψ . Assume thatp(t) is at the pointv1 that lies on the arcγϕ
of ϕ and the arcγψ of ψ , which in turn lies on a disk or rectanglebψ of ψ . We check
whether the endpointu of γϕ to the right ofv1 is insidebψ . If yes, we setγψ to be its
successive upper arc ofψ , and repeat the checking (that is, traversing upward alongψ),
until u is outsidebψ . Thenγϕ has intersection pointv2 with the boundary ofbψ , but not
necessarily withγψ . If v2 also lies onγψ (and hence onψ), thenv2 is another intersection
point ofψ andϕ by which we “leave”Bψ . We setp̄ψ(t) to v2, and switch to the first
mode. In the second case (i.e.,v2 does not lie onψ), we conclude thatv2 is inside another
disk or rectangleb′ of Bψ that contributes an arcγ ′ψ toψ . A key observation is thatγ ′ψ
is aboveγψ since all centers of disks ofBψ are above all centers of disks ofϕ. Thus we
proceed advancing onψ until we find the first disk or rectangleb′ψ(t) that containsv2

(b′ must exist, as otherwisev2 would be a point ofψ). We repeat the whole process of
the second mode at this stage. Since at each stage we proceed either inϕ or onψ , the
time needed for the whole process is linear in the complexity ofϕ andψ .

5. Quadtree Complexity, Construction and Point-Location

5.1. Complexity of a Segment Quadtree

Fat Objects. A planar convex objectc isα-fat if the ratio between the radii of the disks
s− ands+ is at leastα, wheres+ is the smallest disk containingc ands− is a largest disk
that is contained inc. (For fat, nonconvex objects, the definition is more involved.) Here,
we consider only convex fat objects. LetC be a collection ofn convexα-fat objects in
the plane, for a constantα, such that the combinatorial complexity of each of them is a
constant, and the boundaries of each pair of objects intersect≤ s times for a constants.
Let λs(n) denote the maximal length of the(n, s)-Davenport–Schinzel sequences (see
[SA]). It is known thatλs(n) is almost linear inn for any constants. It is shown in [E]
(see also [ES]) that the numberN of vertices of∂∪C is only O(λs+2(n) log2 n log logn).

THEOREM5.1. Let T be a segment quadtree, constructed for the union ofC. Then the
number of leaves in T is O(N logu), provided thatκ, the maximal number of arcs and
vertices of∂(

⋃
C) stored at each leaf of T is a large enough constant, which depends

onα.

PROOF. SetL to be a level ofT (that is, a collection of all nodes ofT whose distance
from the root is the same). We will show that the number of leaves ofT in L is O(N).
The proof of the theorem is obtained by summing this bound over all log2 u levels ofT .
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Let v be a leaf node ofL. The complexity ofRparent(v) ∩ ∂
⋃
C is larger thanκ

(otherwiseparent(v) would have been a leaf). Let̄R be a square whose center coincides
with the center ofRv, and whose edge-length is larger by some factorκ ′ > 1 than the
edge-length ofR, whereκ ′ > 1 depends onα. Using arguments similar to the ones used
in [EKNS], we can show that at least one of the following cases must occur:

• There is an objectc ∈ C such thatR̄ containsz, a rightmost, a leftmost, a highest or a
lowest point of∂c.
• R̄ contains a vertexz of ∂

⋃
C.

• There is an objectc ∈ C such that the area of̄R∩ c is at least a constant fraction of
the area ofc.

In the first two cases, the pointz can be charged for at mostκ ′ blocksv. Similarly, in the
third case, we charge the region ofc. Since the number of verticesz of ∂

⋃
C is O(N)

and the number of elements that we charge in the first and third cases isO(n) = O(N),
we conclude that the number of leaf-nodesv in L is O(N), as asserted.

Let T = T(S) denote a (region) quadtree representing a shapeS, and letNl denote
the number of leaves inT . It is known that sinceS consists of≤ Nl disjoint convex
objects, namely the black blocks, then∂D(S) containsO(Nl ) vertices (see [KLPS]).
Combining this bound with the fact that the dilation of a black block ofT is always a fat
region, we can prove the following lemma, using exactly the same argument as in the
proof of Theorem 5.1.

LEMMA 5.2. Let T̃ be a segment quadtree constructed for∂D(S). Then the number of
leaves inT̃ is O(Nl logu).

REMARK. Recall that the number of nodes in a compressed (respectively uncom-
pressed) quadtree is at most two (respectively logu) times the number of leaves.

5.2. Constructing Quadtrees

Storing D(S). The above discussion shows thatD(S) can be efficiently stored in a
quadtree. In Section 4 we showed howD(S) can be computed in (optimal) linear time.
We later employ this algorithm in order to store the result in a convenient form, e.g., a
segment quadtree (this requires only a slightly higher complexity).

In this section we show that it is convenient to store the output of the dilation algorithm
of Section 4 as a segment quadtree.

THEOREM5.3. Let S be a planar shape given as a region quadtree T, consisting of n
nodes, and let r be a given radius. We can construct a segment quadtreeT̃ that stores
D(S) in time and space O(n log2 u).

PROOF. The constructive proof requires the following definitions (see [dBvKOS]): A
balancedquadtree is a quadtree with the additional property that ifv1 andv2 are nodes in
the tree such thatRv1 andRv2 share an edge or a portion of an edge, then the depth ofv1

differs by at most 1 from the depth ofv2. A quadtree of sizen can be balanced by adding
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O(n) additional nodes [dBvKOS, Theorem 14.4]. Anettedquadtree is a quadtree where
if Rv1 andRv2 are neighboring squares, then there exists a pointer, called anet pointer,
from v1 to v2 and fromv2 to v1 [S1]. The combination of both attributes guarantees that
only a constant number of net pointers are attached to each node.

We can now describe the algorithm. We start with an empty output treeT̃ . We maintain
T̃ as both netted and balanced, and all its nodes are stored in a hash tableH . We run the
dilation algorithm of Section 4, whose output can be arranged (that is, directly reported)
as a collection of closed curves of∂D(S). The output quadtree is built in two phases.

First, we perform the following procedure for each of the closed curves. LetC be
such a curve. We pick an arbitrary pointq of C, and find the leaf cellv of T̃ containing
q, usingH , by the point-location data structure of Section 5.3. We insert the arcs ofC
into v, in the order they appear alongC. If at some point the number of arcs inv exceeds
the thresholdκ of T̃ , we splitv, and accordingly update the hash table, the net pointers,
and perhaps split node(s) in order to keep the tree balanced (which may require further
splits, but, as stated above, it requires only a linear number of additional nodes). If, on
the other hand, the arcγ of C we follow intersects the boundary ofRv and “leaves” this
block, then we use the net pointers to find the neighbor leaf into whichγ “enters,” and
continue the process in that block. As noted, each node has only a constant number of
neighbors to keep track of.

Next, we have to scan the empty block (that does not intersect∂D(S)) and label
each such block as to whether it is fully inside or outsideD(S). This is done using an
algorithm similar to the connected component labeling algorithm [S1]. We traverse the
tree, while adding all the nonempty leaves to a queue. Next, we pop one leaf at a time,
use it to label its (yet unlabeled) empty neighbors, and add only those newly labeled
nodes to the queue.

When bounding the running time of this algorithm, it is clear that phase two takes only
linear time. For phase one, we first have to calculate the time needed to perform all the
single point-location operations, one per boundary path ofD(S). Their number cannot
exceedO(n) (and is assuredly much smaller). Using the technique from Theorem 5.5,
each one takesO(log logu) time, or a total ofO(n log logu). The remaining running
time is proportional (since no vertex is ever deleted) to the number of nodes created in
T̃ , which we denote bym. By Lemma 5.2 we know thatm = O(n log2 u) and thus we
have proved Theorem 5.3.

The size of the resulting quadtree can be improved by a factor of logu/log logn by
using the compressed quadtree (as in this case the tree size is proportional to the number
of leaves). The following lemma shows that in this case the running time is improved by
almost the same factor.

LEMMA 5.4. Given ninterior disjointobjects, a compressed quadtree representatation
of their union can be computed in time O(N log logu),where N is the size of the resulting
quadtree.

PROOF. The idea is similar to the algorithm described above. The difference is that now
we need to perform the point location inO(log logu) time in a compressed tree, instead
of O(logu) time as before. Also, the time needed to jump between neighboring leaves is
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no longer constant, as we cannot afford to maintain a balanced tree. Thus, we will have
to make sure that this operation can be done inO(log logu) time as well. We use the
corresponding technique from Theorem 5.5, i.e., hashO(log logu) paths per tree edge
to achieveO(log logu) query time. The total time spent on updating the hash tables is
O(N log logu), which is within the bounds.

The last point we have to verify is that while constructing the output quadtree we
do not generate long paths which should be replaced by single edges in the compressed
quadtree. This can be easily done by applying unbounded binary search.

By applying the technique from the above lemma to Theorem 5.3, we obtain an
algorithm for computing a compressed quadtree of the dilated shape inO(N ′ log logu)
time, whereN ′ is the size of the quadtree.

Finally, we address the problem of point location in quadtrees. First we consider
queries in arbitrary quadtrees and compressed quadtrees. Then we consider queries in
quadtrees of dilated shapes. In the latter we show that in order to answer such queries
efficiently we do not even need to calculate the dilated shape.

5.3. A Point-Location Data Structure

THEOREM5.5. Let S be a planar shape consisting of a union of cells of the integer grid
[u]2, and given as an uncompressed quadtree T, consisting of n nodes. Then in time
O(n) we can construct a data structure of size O(n), such that given an integer query
point q, we can determine whether q lies inside S in(expected) time O(log logu). If T
is a compressed quadtree, then we can construct the data structure in time and space
O(n log logu) and expected query time O(log logu).

PROOF. Consider first the case in whichT is an uncompressed quadtree. We store the
nodes ofT in a hash table. The key of each nodev is the binary representation of the
path from the root ofT to v, which is merely the position in [u]2 of the blockv. Given a
query point, we perform binary search on the height of the tree to find the leaf level. At
each level probed we check if there is a node ofT at that level (which lies on the path
leading to the leaf includingq). We can find the leaf containingq, or determine that no
such block exists, in expected timeO(log logu). This idea has appeared in the literature
[W].

When T is a compressed tree, the analysis is a bit more complicated. This is due
to the fact that simple replication of the previous approach would seemingly require
hashing all the paths in the tree, which would imply anO(nt) storage requirement,
wheret = O(logu) is the depth of the tree. However, the following observation allows
us to reduce the storage toO(n log logu). Call an interval{i · · · j } ⊂ [t ] a primitive
interval if i = k2p and j = (k+ 1)2p for somek andp. Each such interval corresponds
to a subtree of a binary tree decomposition of [t ]. Thus [t ] can be decomposed into
primitive intervals in a tree-like fashion, by finding the largest primitive intervalJ in [t ],
removingJ from [t ], and recursing on [t ]\J. One can observe that such a decomposition
is unique, and [t ] is decomposed intoO(log2 t) primitive intervals, since for everyp, at
most one primitive interval of length 2p can appear in the decomposition.
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The algorithm proceeds as follows. Each compressed edge is split intoO(log t)
primitive intervals. Instead of hashing all paths, the algorithm hashes only the paths with
endpoints at primitive intervals. The following claim, whose proof is straightforward and
omitted, shows that this restriction does not influence the behavior of the binary search
procedure, and thus concludes the proof of Theorem 5.5.

CLAIM 5.6. Let e be a compressed edge in the quadtree from level i to level j> i and
let l be any level probed during the binary search for any point q. Then l has to be an
endpoint of one of O(log( j − i + 1)) primitive intervals from the decomposition of the
interval [i · · · j ].

5.4. Point Location in Dilated Shape. We address the problem of point location in the
dilation of a given shape. We show that in order to answer such queries efficiently we
do not even need to calculate the dilated shape.

THEOREM5.7. Let S be a planar shape given as a region quadtree T consisting of n
nodes defined on the integer grid[u]2, and let r be a given radius. Then in time O(n)
we can construct a data structure of size O(n), such that given an integer query point
q, we can determine whether q lies inside D(S) in expected time O(log logu).

PROOF. The data structure consists of two parts. The first part enables us to find whether
q lies in S itself, for which we use the data structure of Theorem 5.5. If the query point
is not in S, then we need to check if it falls in the dilated region, which is the goal of
the second part of the data structure. The construction of the second part takes place
during the execution of the dilation algorithm of Section 4. Let0 be a grid imposed
on [u]2 such that each point of0 corresponds to an atom block of sider0. Thus every
atom block has a unique identifier—a pair of integers representing its location in0.
Similarly, we give a unique identifier to each corridor we encounter during the dilation
algorithm. All these identifiers are stored in a hash table. Thus for any query pointq,
we can find each atom block which containsq (and at most three blocks in its vicinity
vertically above and belowq) and accordingly access the data structure associated with
this corridor.

The additional data structure associated with a corridors is as follows. Assumes is
vertical. We describe a data structure foropleft, the outer path coming intos from the
region ofS that lies to the right ofs. The structure for the outer paths emerging from
other three directions is analogous. To conclude the construction of the data structure, we
sweep the vertices ofopleft, and truncate the coordinates of their vertices to integers, thus
unifying sequences of vertices whose integer truncated value is the same into a single
vertex. Next, we assign to each vertexu the arcs ofopleft adjacent tou, and construct
a van Emde Boas tree for they-coordinate of the vertices ofopleft. The construction
time is O(k), wherek is the number of vertices onopleft. By performing a query to that
data structure (in timeO(log logu)) we find the objects (disks and rectangles) whose
boundaries form the arcs associated withw, and thus determine if one of them contains
q. Similar data structures are constructed for the upper and lower outer paths of each
of the atom blocks, which allows us to perform similar queries on the blocks above and
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belowq. Clearly if a disk or a rectangle of the dilated area containsq, we will find it in
this way.

6. Discussion. This paper provides optimal and near-optimal algorithms for several
problems in computational geometry on the integer grid. We show that under the as-
sumption that the input points have limited precision (i.e., are drawn from the integer
grid of sizeu) these data structures yield efficient solutions to many important prob-
lems. In many cases we are able to replaceO(logn) with O(log logu). This requires an
efficient evaluation of the logu bits required to write the result. We solve this problem
using regular data structures. Some of these regular data structures, like the quadtree,
can be stored in hash tables, which allow us to process, for example, a point location
query without having to traverse the whole path from the root to the leaf (which would
takeO(logu)). In other cases, as with the MDST, the regular data structure divides the
location bits at each recursive level into two significantly large parts, and therefore the
height of the tree becomes log logu. Most of these algorithmic problems otherwise have
Ä(logn) lower bounds in a standard algebraic tree model, assuming arbitrary precision
input. These basic ideas can be used to improve the efficiency of many other algorithms.

In several of the algorithms we stop the recursion process before it reaches the trivial
type of leaf, and handle the rather complex “leaf” using a separate, nonrecursive algo-
rithm. For example, in the quadtree dilation algorithm, if we try to eliminate the notion of
an atom block, and just apply the dilation and merge starting directly from the quadtree
leaves, the complexity will no longer be linear and independent ofR. In order to achieve
the desired efficiency we must identify the level at which the recursion process must be
stopped and replaced with a nonrecursive algorithm.

In some situations, the random translation in the MDST algorithm and the correspond-
ing expected complexity bounds are undesired. In such a case, the problem that occurs
near the borders betweenBi j blocks can be transferred from the query time to the update
time. If one extends the borders of theBi j blocks to have them overlap in a 2r ′-wide
region, then there will always be a block that contains the entire small circle around the
query pointq (see Figure 5(c)). Therefore, there is no need to recurse into more than
one child (i.e.,|R| = 1 at all times). This requires, however, some modification of the
insert and delete procedures, which in turn should allow insertion/deletion of a point
into/from all the blocks it intersects with.
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