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Abstract

In a spatial database, an object may extend arbitrarily in
space. As a result, many spatial data structures (e.g., the
quadtree, the cell tree, the R+—tree) represent an object by
partitioning it into multiple, yet simple, pieces, each of which
is stored separately inside the data structure. Many opera-
tions on these data structures are likely to produce duplicate
results because of the multiplicity of object pieces. A novel
approach for duplicate processing based on proximity of spa-
tial objects is presented. This is different from conventional
duplicate elimination in database systems because, with spa-
tial databases, different pieces of the same object can span
multiple buckets of the underlying data structure. Example
algorithms are presented to perform duplicate processing us-
ing proximity for a quadtree representation of line segments
and arbitrary rectangles. The complexity of the algorithms
is seen to depend on a geometric classification of different
instances of the spatial objects. By using proximity and the
spatial properties of the objects, the number of disk-1/O
requests as well as the run-time storage during duplicate
processing can be reduced.

1 Introduction

Spatial databases are usually organized in data structures
that provide efficient access and flexible manipulation of
data. There are several ways of representing a spatial ob-
ject inside a data structure. Some data structures (e.g., the
R-tree [9] and the Grid File [12]) represent a spatial object
by just one entity inside the data structure (e.g., by the
object’s bounding rectangle in the case of the R-tree and
by a point in a higher dimensional space in the case of the
Grid File). On the other hand, another family of data struc-
tures (e.g., the quadtree [10], cell tree [8], and RT-tree [6])
represent a spatial object by partitioning it into more than
one piece, each of which is stored separately inside the data
structure. In this paper, we focus on the latter family of
data structures. We attempt to take advantage of the spatial
characteristics of objects as a guide to duplicate processing
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(see [5] for an overview of techniques for duplicate processing
in database systems) that result from spatial database oper-
ations. It is worth mentioning that duplicate processing in
spatial databases is slightly different from conventional du-
plicate elimination in database systems because with spatial
databases, different pieces of the same object can span mul-
tiple buckets of the underlying data structure. For example,
in the case of the RT-tree and the quadtree, duplicates arise
because the object is partitioned into pieces. We can ben-
efit from knowing that these pieces are contiguous in space
(if this is really the case). In particular, we define an op-
eration, termed Report_Unique, which manages to process
duplicates and report each object in the data structure just
once, regardless of the multiplicity of the partitions of the
object inside the spatial data structure.

Report_Unique can be viewed as an alternative approach
to hashing (see [7] for a good coverage of hashing techniques)
when dealing with spatial data. Report_Unique maintains a
dynamic data structure, termed the active border [15], that
serves as a repository for the objects currently being pro-
cessed, termed active objects. The active border data struc-
ture resembles a dynamic hash table. When conventional
hashing techniques are used there is no way of predicting
when an object will not be referenced again and hence can
be safely deleted from the hash table. Using spatial prop-
erties of the underlying objects, the active border can grow
and shrink in constant time. By knowing the extent and
proximity of the objects, we can detect when all the pieces
comprising the object have been processed and hence can
delete the object entry from the active border. This way
we can avoid the situation that the hash table grows until
it reaches its maximum limit, i.e., O(number of objects in
the database). In fact, by using the active border technique
we can limit the storage complexity to be in the order of
the active objects only. A look-up function, also based on
spatial proximity, can be used to access entries in the active
border. The look-up function is the spatial analog of a hash
function. As we demonstrate in the paper, an important
advantage of proximity-based look-up functions is that as a
result of their use, buckets in the active border are guaran-
teed not to overflow. In addition, we also show how we can
utilize the proximity information to reduce the number of
disk-1/O requests during duplicate processing.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the data structures that we use for stor-
ing the underlying spatial database. The remaining sec-
tions describe techniques to process duplicates using spatial



characteristics of the underlying spatial objects. Section 3
describes an algorithm that uses spatial proximity to elim-
inate the space requirements that result from using other
duplicate elimination techniques (e.g., hash tables). Sec-
tion 4 demonstrates that supporting the Report_Unique op-
eration for a realistic variety of objects requires classifying
spatial objects into categories of different complexity. Sec-
tion 5 shows how these classes affect the performance and
correctness of the alternative approaches to Report_Unique.
Section 6 contains some concluding remarks.

2 The Underlying Spatial Data Structures

We assume that the spatial objects are stored in data struc-
tures that partition the objects into multiple pieces. We use
the quadtree as an example to demonstrate our algorithms
for duplicate processing. The quadtree partitions each ob-
ject into multiple non-overlapping pieces. Here, we show
how we organize databases of line segments and rectangles
using variants of the quadtree. For line segments we use the
PMR quadtree [11], while for rectangles we use a variant of
the region quadtree [10], termed the rectangle quadtree.

In the PMR quadtree, a line segment is divided into sev-
eral pieces, where each piece is associated with the quadtree
block that it intersects. Figure 1 shows one example of the
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Figure 1: An example of a PMR quadtree.

to contain a variable number of line segments. It is con-
structed by inserting the line segments one-by-one into an
initially empty structure consisting of one block. Each line
segment is inserted into all of the blocks that it intersects or
occupies 1n its entirety. During this process, the occupancy
of each affected block is checked to see if the insertion caused
it to exceed a predetermined splitting threshold. If the split-
ting threshold is exceeded, then the block is split once, and
only once, into four blocks of equal size.

Each block in the PMR quadtree stores the object iden-
tifiers of the lines passing through it. The full description
of the line segments (e.g., the start and end coordinate val-
ues of the end-points) is stored in what is called the feature
table. The index of line ! in the feature table is I’s object
identifier. Notice that we cannot simply traverse the feature
table and report the lines that we find since not all the lines
in the feature table have to belong to the data structure in
question, 1.e., that the feature table may be shared by more
than one PMR quadtree.

Rectangles are stored in a variant of the region quadtree
[10] which we term a rectangle quadiree. Each rectangle is
decomposed into the quadtree blocks that lie inside the rect-
angle. For example, Figure 2a shows the decomposition of
rectangle r into its constituent quadtree blocks. We assume
that the rectangles need not be disjoint. We also adopt the
restriction that each quadtree block is completely inside all
of the rectangles that overlap it. In other words, the case
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Figure 2: (a) The decomposition of rectangle r into its con-
stituent quadtree blocks. (b) Block B is decomposed after
rectangle s is inserted.

that only part of a quadtree block lies in a rectangle is not
allowed. For example, this restriction means that block B of
Figure 2a must be decomposed when rectangle s is added to
yield the decomposition given in Figure 2b. The rectangle
quadtree representation assumes that all the blocks that are
internal to a rectangle store an object identifier which is an
offset in a feature table where the upper-left and bottom-
right coordinate values of the rectangle are stored.

A central operation in spatial databases is the window
operation. A window can be in the form of a rectangle or
a polygon. This operation serves as a building block for
a number of queries. Usually, spatial features span a wide
feature space. However, users are more interested in view-
ing or querying only portions of the feature space instead
of the whole space. Extracting parts of the space to work
with in subsequent operations is done by windowing. Given
a window w, some examples of window-based queries are:
report all features inside w, intersect feature f with feature
b only inside w, determine if feature f exists in w, etc. More
details about window queries and algorithms for answering
them can be found in [1].

When a rectangle is clipped (e.g., as a result of a win-
dow operation), the rectangle quadtree does not update the
coordinate values of the the clipped rectangle in the feature
table. Notice that we cannot simply traverse the feature ta-
ble and report the rectangles that we find since not all the
rectangles in the feature table necessarily belong to the data
structure in question.

3 Avoiding the Extra Space - A First Attempt

In this section we present a simple duplicate processing al-
gorithm that does not require additional space (e.g., in con-
trast to the O(n) space required for hashing in the case of
a database of n objects). We also discuss the limitations of
this algorithm. In the remaining sections of the paper, we
will address these limitations and try to tackle them. We
present the algorithm for the case of a database of line seg-
ment objects. A similar algorithm can be described for a
database of rectangular objects.

In order to exploit the proximity of object pieces we de-
fine a test function, say ¢, such that given a spatial object,
say o, with k pieces, p1, p2, ..., pk, t has a value of false
for only one of the pieces, say p; of 0. Application of ¢ to
the rest of the pieces yields the value of true. Any func-
tion ¢ that satisfies this criterion can be used as a means
of suppressing all pieces of o other than p; from reporting
o’s object identifier, and hence can be adopted by the Re-
port_Unique operation. For example, in the case of hashing,



a function ¢; is defined as follows (a is a bit array with all
its elements initialized to have a value of false, and oid(p;)
is the identifier of the object to which piece p; belongs):

ti(p:)) = retvalue — afoid(p;)];
i (not afoid(p:)]) then
a[Oid(Pi)] — true;

return (ret_value);

We can get rid of the O(n) space requirements of the func-
tion t; in the following way. This gives rise to algorithm
Report_Uniquel described below. We traverse the blocks of
the PMR quadtree, and for each block, say B, we perform
the following actions:

1. For each object identifier i stored in B (that corre-
sponds to piece p;), retrieve the line segment descrip-
tion, say I;, from the feature table, and

2. perform the following testing function .

t2(l;, B) = if(start_point(l;) in B)
then return (false)

else return (true)

3. If t2(l;, B) is false, then report line segment I;.

We use Figure 3 for illustration. Notice that for each line
segment 1, t2 is false only when the block containing the
start point of 1 i1s processed. Application of ¢z to all blocks
containing pieces of r other than the upper-left corner of
r yields true (¢2 is referred to as the point-in-block test).
Notice also that the algorithm works only in the case where
the pieces comprising the spatial object are contiguous. The
case where the pieces of an object are disjoint (e.g., due
to clipping parts of the object by a window operation, de-
scribed in Section 2) is handled in Section 5.
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Figure 3: Line 1 is stored in blocks By, By, and B3 where
only block By causes the point-in-block test to succeed since
the starting point p of 1 only lies inside By and not in By
nor in Bj.

The algorithm Report_Uniquel does not require any ad-
ditional space. However, its CPU and disk-1/O costs are
high. The algorithm applies a point-in-block test per object
piece, which requires four comparisons (each of cost Cepy).
In particular, the point (z,y) is inside block B((bls,bl,),
(ury,ury)), where bl and ur denote the bottom left and up-
per right corners of the block, respectively, iff bl, < z <
ury N bly <y < ury. tois performed nk times, where n is
the number of objects in the database, and k& is the average
number of pieces per object in the database.

Notice that in order to perform the point-in-block test
(t2) we must access the feature table (via the object identi-
fier) each time we encounter a piece of a line segment. This
is necessary in order to retrieve the start point of the line
segment. Assuming that the cost of retrieving a segment

from the feature table is C;,, then the execution time of the
algorithm is 4knCepy + knCio.

The cost term knC;, involves redundant disk-1/O re-
quests. Basically, it represents the cost of retrieving line
segments from the feature table (once for every line parti-
tion, amounting to k disk requests per line segment). A
better algorithm would perform only n such requests, i.e.,
one request per line segment in the database instead of one
request for each piece of each line segment. Thus, we would
like to develop an algorithm that does not need the O(n)
extra storage (or at least having an asymptotic storage cost
less than O(n)), yet one that still performs only n disk re-
quests (e.g., n accesses to the feature table). In the following
sections, we show how we can achieve this goal. However,
this depends on a closer scrutiny of the nature of the spatial
objects which is the subject of the next section.

4 Object Classification

An important factor affecting the performance of the Re-
port_Unique operation is the nature of the objects stored in
the database. For example, what is the effect of restricting
the lines to be rectilinear, in contrast to lines with arbitrary
slopes? As another example, suppose that objects are par-
tially clipped as is the situation after a window operation
(described in Section 2). Is it more difficult to report these
clipped objects than reporting non-clipped objects?

As an illustration of the second example, note that due to
the way the PMR quadtree is defined, Report_Uniquel does
not work properly if the line segments are partially clipped.
This 1s shown in in Figure 4. In particular, when a line is
clipped (e.g., as a result of a window operation), the PMR
quadtree does not update the starting and ending points
of the clipped line in the feature table. This is done since
the line may be shared by other indexes in the database.
In addition, this ensures consistency when portions of line
segments are removed and then are added back later in the
processing as a result of set operations [16]. Thus the feature
table is not updated and the clipped line segment is stored
implicitly. As a result, if a line, say 1, in Figure 4 is clipped
so that only s remains and if s does not contain 1’s starting
point, then g will not be reported by Report_Uniquel. This
case suggests that we have to consider the alternative classes
of objects (e.g., clipped objects) when developing algorithms
for Report_Unique since it affects the correctness of the al-
gorithm. Due to space limitations, we restrict our discussion
to rectangular objects only. More details about the classifi-
cation and duplicate processing algorithms for line segment
objects can be found in [2].

Spatial objects of type rectangle can be classified in the
following way (the different classes are given in Figure 5):

o Class-1 rectangles: a rectangle having no clipped or
missing portions as illustrated in Figure 5a, and termed
a regular rectangle.

o Class-2 rectangles: a rectangle where only a rectangu-
lar portion of it is included and the rest of the rectan-
gle is clipped as illustrated in Figure 5b, and termed a
clipped rectangle.

o Class-3 rectangles: a rectangle where several portions
(holes) may be missing, but still the rest of the rectan-
gle is connected, as illustrated in Figure 5c, and termed
a clipped-out rectangle.

o Class-4 rectangles: a rectangle where several portions
(holes) of arbitrary shape may be missing that result
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Figure 4: (a) Line 1 as stored in a PMR quadtree. (b) The result of clipping 1 by a window operation in a PMR quadtree.
The original starting point of 1 in the feature table is neither in blocks By nor in B3. Notice that the feature table still stores

point p as part of the description of the clipped line.

in the rectangle being decomposed into several disjoint
pieces, as illustrated in Figure 5d, and termed a dis-
joint rectangle. Although disjoint, all the portions of
the rectangle refer to, and represent, just one object

of type rectangle.
NS
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Figure 5: Classification of rectangles (a) Class-1, (b) Class-
2, (c) Class-3, (d) Class-4.

This classification of rectangles is of practical use. Class-
1 represents regular rectangles (e.g., bounding boxes of some
spatial objects in a map). Class-2 represents the parts of a
rectangle that remain after a rectangular window operation
(Figure 6a).  Class-3 represents the parts of a rectangle
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Figure 6: Example illustrating how some of the rectangle
classes are created: (a) Class-2, (b) Class-3, (c¢) Class-4.

that lie outside one or more rectangular query windows (Fig-
ure 6b). These rectangles result from clipping-out regular
rectangles against the query rectangles. Notice that each
of the resulting rectangles is still representable as a four-
connected region. Class-4 represents the parts of a rectan-
gle that lie inside (or outside) one or more query windows of
arbitrary shape. For example, Figure 6¢ is the result of in-
tersecting and clipping a rectangle with a number of simple
polygons. We further classify rectangles of each class into
the following types according to their orientation:

clipping polygon

e Type-1 rectangles: rectilinear rectangles, i.e., whose
sides are parallel to the axes (Figure Ta).

o Type-2 rectangles: arbitrary rectangles - i.e., rectan-
gles whose orthogonal sides have arbitrary orientations

(slopes) (Figure 7b).

() (b)

Figure 7: Two types of rectangles: (a) Type-1, (b) Type-2.

5 Duplicate Processing for Rectangular Objects

Below, we present algorithms for the Report_Unique prob-
lem that can handle several class/type combinations of rect-
angular objects given in Section 4, and see how these combi-
nations affect the complexity of the algorithms. It is impor-
tant to observe that rectangles of the underlying database
are allowed to overlap in space. Let ¢ be the maximum num-
ber of overlapping rectangles at any point in space, i.e., for
any block, there are at most ¢ overlapping rectangles.

5.1 Class-1 Type-1 and Class-2 Type-1 Rectangles

The rectangles that correspond to these class/type combi-
nations are ones whose sides are parallel to the z and y axes
where some of the rectangles may be clipped (Class-2) but
are still of rectangular form. Our goal for this Class/Type
combination is not to perform any disk I/O to the feature
table. In this case, the only information at hand are the
rectangle identifiers in the quadtree blocks.

The algorithm traverses the rectangle quadtree block-
by-block and maintains the active set of rectangle identi-
fiers. These correspond to the rectangles that intersect the
block. A rectangle identifier, say rid, which corresponds to
a rectangle, say r, is added to the active set when rid is
first encountered during the traversal. rid is deleted from
the active set once all the quadtree blocks that r intersects
have been visited. The necessary storage is bounded by the
maximum size of the active set during the execution of the
algorithm. The size of the active set is considerably smaller
than n, the number of rectangles in the spatial database.



In order to execute the algorithm efficiently, we need to
organize the active set of rectangles. The organization of
the active set depends on the operations that are to be per-
formed on the set. The algorithm performs the following
three primitive operations on an active set, say A: (1) test
if a rectangle identifier exists in A (notice that this is needed
in order to decide whether a rectangle has already been en-
countered or if it is encountered for the first time in the
traversal), (2) insert a rectangle identifier into A, and (3)
delete a rectangle identifier from A.

Before providing more details about the algorithm, ob-
serve that if we are able to perform each of the above three
operations in O(1) time and maintain the underlying data
structure that stores the active set in O(1) time, then the
overall complexity of the algorithm would be O(nk) time
with O(active set size) space.

The algorithm visits the blocks of the quadtree in NW|
NE, SW, SE scanning order. It maintains one basic data
structure: an active border [15]. In the context of dupli-
cate processing and hashing, the active border is the spatial
analog of a hash table. The active border represents the bor-
der between those quadtree blocks that have been processed
and those that have not. The elements of the active border
form a “staircase” of vertical and horizontal edges, moving
from southwest to northeast, as shown by the heavy line in
Figure 8. Each element of the active border corresponds to
an edge (border) in the active border. Initially, the ac-
tive border consists of two elements that correspond to the
north and west borders of the image. When the algorithm
terminates, the active border consists of elements that cor-
respond to the south and east borders of the entire image.
In other words, whenever a node is visited by the algorithm,
the elements of the active border are updated accordingly
to include the border of this new block.

We define an active rectangle as a rectangle that is par-
tially processed, i.e., at least one of the quadtree blocks over-
lapping with this rectangle has not been processed yet. A
rectangle is inactive if either all or none of the blocks through
which it passes have been processed by the traversal algo-
rithm. There is a data bucket associated with each element
of the active border. Each bucket is of capacity ¢, which is
the same as the bucket capacity of the underlying quadtree
block. Every element of the active border stores in its bucket
the set of rectangle identifiers which correspond to the ac-
tive rectangles that intersect the portion of the active border
corresponding to this element.

Rectangle identifiers are added to the active border when
they are encountered during the traversal, and are propa-
gated into the active border until all the pieces of a rectangle
have been visited. A rectangle is reported when it is being
deleted from the active border. The problem is how to de-
tect that a rectangle has been processed in its entirety when
there is no means for the algorithm to know the coordinate
values of the end-points of the rectangle. In order to achieve
this, the algorithm maintains some temporary information
in the active border to help it determine that the lower-right
corner of the rectangle has been reached and that the rect-
angle identifier can be reported. For example, consider the
rectangle r given in Figure 2a. We use Figure 8 to illustrate
the process of reporting its presence. Heavy shading is used
to indicate that the block has already been traversed. When
block 4 is encountered during the traversal (Figure 8a), r’s
identifier (associated with A) is inserted into the active bor-
der. When block B is visited (Figure 8b), r’s identifier is
propagated into the active border. Upon encountering a
western or southern boundary of a rectangle for the first

time (e.g., when processing block € in Figure 8¢) a special
marker symbol, say er, 1s associated with the active border
element that led to the detection of this fact (e.g., the active
border element that is adjacent to block C). Notice that er
is propagated into the active border when block D is pro-
cessed (Figure 8d). As another example, we observe that a
special marker symbol, say sr is added to the active border
element contiguous to block E (Figure 8e) and is propagated
into the active border elements to the east of E, when their
adjacent blocks in the database are processed. At the time
block F is processed (Figure 8f), the active border elements
to the north and west of F will contain the special markers
er and sr, respectively. This situation serves to indicate
that we are through. At this point, both er and sr are
deleted from the active border and r’s identifier is reported.
Notice that r is reported once all the blocks comprising r
have been visited by the traversal procedure. For example,
in Figure 8f, at the time block F is visited, we are sure that
all the blocks inside r are already processed by the algo-
rithm. This is because a NW, NE, SW, SE traversal order
is admissible [4].

The complexity of the algorithm can be evaluated as fol-
lows. When a block in the quadtree that corresponds to a
leaf node is processed, the portion of the active border that is
adjacent to the block must be located. In [3], a technique is
described that enables the blocks to be located in the active
border in constant time. This is achieved by traversing (and
updating) the active border along with the quadtree traver-
sal while passing and stacking pointers to guarantee that the
exact location in the active border is available (O(1) time)
whenever needed, so that searching in the active border is
entirely avoided. The reader is referred to [3] for further
details. Once the appropriate active border element is lo-
cated, testing this element for the existence of a rectangle
as well as insertion and deletion of a rectangle can each be
done in O(q) time which is really a constant or O(1). As
demonstrated in this section, our algorithm does not need
to perform any disk I/O requests to access the feature table.
As a result, the time complexity of this algorithm is O(nkq)
which is proportional to the number of object pieces in the
database that are encountered during the traversal. Notice
that the factor ¢ is included because all the procedures that
access the active border perform in O(q) time, as described
in the introduction of Section 5.

The space complexity is O(active rectangles), where the
active rectangles are the ones that intersect the active bor-
der at any given point. The size of the active set in the worst
case is O(¢T") where ¢ is the maximum number of objects
that can be stored in a quadtree block before it overflows
(i.e., the bucket size) and T' is the width (e.g., pixels) of
the space comprising the underlying spatial database. In
practice, it is expected that the size of the active set is con-
siderably smaller than O(¢7"). Observe that it is guaranteed
that the active border buckets will never overflow since there
is one-to-one correspondence between elements of the active
border and blocks of the underlying quadtree. Since each
block can hold up to ¢ rectangles, then at worst each bucket
will hold the same number of rectangles and hence cannot
overflow. Notice that the algorithm does not depend on the
actual coordinate values of the rectangle since it does not
access the entries in the feature table and hence it works
correctly even if rectangles are clipped due to some intersec-
tion with a rectangular window (Class-2 rectangles).
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Figure 8: (a) When block A is processed r is inserted into the active border. (b) r is propagated into the active border when
block B is processed. (c) When block C is processed a special marker symbol er is inserted into the active border. (d) er is
propagated into the active border when block D is processed. (e) When block E is processed a special marker symbol sr is
inserted into the active border. (f) r is reported at the time block F is processed and both er and sr are deleted from the

active border.

5.2 Class-3 Type-1 and Class-4 Type-1 Rectangles

Class-3 and Class-4 imply that the rectangles may have
notches on them or may even consist of disjoint pieces. For
these classes, we cannot avoid accessing their entries in the
feature table in order to know the real extent of the rectan-
gles while traversing them. Rectangle identifiers are prop-
agated in the active border (regardless of whether we are
traversing a part of the rectangle or a clipped out portion
of the rectangle) until the lower-right corner of the rectan-
gle is visited by the traversal. In this case, the rectangle is
reported and deleted from the active border. This implies
that the algorithm has to issue some disk I/O requests to
the feature table. The algorithm proceeds as follows:

1. Traverse the spatial database as well as the active bor-

der simultaneously in the NW, NE, SW, SE order.
2. Maintain in the active border:

(a) the identifiers of the rectangles that intersect the
active border or whose pieces have not yet been
processed in their entirety by the algorithm, and

(b) the coordinate values of the end-points of the rect-
angles in (a).

3. When the block containing the lower-right corner of
rectangle r is reached, report the identifier of r, and
delete r’s information from the active border.

Figure 9 illustrates the locations at which a disk I/O request
is issued and when a rectangle is reported for several possible
rectangles in Class-3 and Class-4. Notice that for Class-

3 rectangles one, or more disk I/O requests can be issued.
For example Figures 9a-c and e have only one disk 1/O re-
quest, Figure 9d has two disk I/O requests as the upper-left
corner of the rectangle is clipped-out, while Figure 9f has
many disk I/O requests. For Class-4 rectangles, more than
one disk I/O request is possible (e.g., Figure 9g) depending
on the number of blocks in one of the four line segments of
the window boundary that has a NE-SW orientation and is
closest to the origin of the underlying space. Notice that for
Class-4 rectangles, if the upper-left corner of the rectangle
is not clipped out, then only one disk I/O request is issued
regardless of the number of disjoint pieces of the rectangle
(e.g., Figure 9h). Since the upper-left corner of the rect-
angle is processed first, a disk I/O request is issued to the
feature table and the coordinate values of the end-points of
the rectangle are made known to the active border. This
helps avoid any further disk I/O requests. Observe that this
is not the case when the upper-left corner of the rectangle
is clipped out (e.g., Figure 9f).

Figures 9f and 9g illustrate the cases where the maxi-
mum number of disk I/O requests for Class-3 and Class-4
rectangles can be generated, respectively. Let k., be the
number of blocks in the edge of the window with a NE-SW
orientation that is closest to the origin of the underlying
space. Figure 10 illustrates the worst case number of disk
1/0 requests that are required with lines of this orientation.
Observe that a disk 1/O request occurs with every other
piece in the object. Therefore, [%ﬂ] disk I/O requests are
issued. Then, the maximum number of disk I/O requests to
the feature table for Class-3 and Class-4 is [kTw]
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Figure 9: (a)-(c) When the rectangle is first encountered a
disk T/O request is issued to retrieve the rectangle’s coor-
dinate values. (d) Two disk requests are issued whenever,
the upper-left corner of the rectangle is clipped out (Class-
3). (e) Only one disk request is issued since the upper-left
corner of the rectangle is not clipped out (Class-3). (f) The
worst-case for Class-3 rectangles occurs when many query
windows clip out parts of the rectangle such that the upper-
left piece of the remaining portion of the rectangle forms a
line segment of NE-SW orientation. (g) Redundant disk re-
quests are issued when the upper-left piece of the rectangle
is processed since the upper-left corner of the rectangle is
clipped out (Class-4). (h) Only one disk request is issued
although the rectangle is partitioned into more than one dis-
joint piece (Class-4). Notice that the upper-left corner of the
rectangle is not clipped out.

It is worth mentioning that the task of uniquely reporting
spatial objects is different from that of connected component
labeling [13, 14]. In the latter task we are interested in as-
signing a unique identifier to each four- (or eight-) connected
region in the underlying space. The principal difference is
that, generally speaking, the inputs of the two tasks are dif-
ferent. More specifically, in Report_Unique we can always
perform a disk I/O request to the feature table and retrieve
the object’s exact description. This information is not made
available to the connected component labeling algorithms.
In fact, the main purpose of the connected component la-
beling algorithms is to build the object’s exact description
from the local information given in the underlying space.

As a result of the difference in the nature of the type of
input and the goals of the two tasks, their complexities are

7
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Figure 10: The maximum number of disk requests that can
arise for a line with NE-SW orientation.

different. For example, Figure 11 demonstrates the worst-
case complexity for the connected component labeling al-
gorithm (measured in terms of the new labels that have to
be introduced). On the other hand, the shape of the re-
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Figure 11: An 8 x 8 image that results in generating a max-
imum number of equivalence pairs for the connected com-
ponent labeling algorithm.

gion in Figure 11 does not represent the worst case disk I/O
complexity for Report_Unique. In particular, only two disk
I/O requests will be issued (i.e., when blocks A and B are
visited). The worst case number of disk I/O requests for
Report_Unique for clipped-out rectangles (Class-3) is given
in Figure 9f. Notice that having a saw-tooth-like shape (e.g.,
asin Figure 11) does not change the worst case since at block
B of Figure 11, a disk I/O request is issued to retrieve the
exact description of the rectangle from the feature table, and
this description will be propagated in the active border in
the eastern and southern directions. This covers all the saw-
tooths to the east and south of block B, thereby obviating
the need for additional disk I/O requests (e.g., at block C).

5.3 Rectangles of Type-2

In order to ensure that rectangles of arbitrary orientations
are reported only once, we maintain their rectilinear bound-
ing box in the active border (Figure 12a) and report the rect-
angle identifier once the lower-right corner of the bounding
box is covered by the traversal. As described in Section 5.2

@ (b)

@ =disk I/O request

Figure 12: (a) A bounding box is stored in the active border
for rectangles of Type-2. (b) Several disk requests occur
when processing the line segment closest to the upper-left
corner.

(also in Figures 9f, 9g, and 10) the number of disk I/O

requests to the feature table is proportional to [kTw], where
k. 1s the number of blocks in the line segment of the win-
dow boundary with a NE-SW orientation that is closest to
the origin of the underlying space (Figure 12b). Notice that
once this set of disk I/O requests is issued, the algorithm

does not need to access the feature table again since the



propagation of the rectangle identifier and coordinate val-
ues in the active border will help avoid any further disk 1/O
requests to the feature table.

6 Conclusion and Future Research

Table 6 gives a summary of our results. It shows the differ-
ent complexities of the algorithms developed for the various
class/type object combinations. As we can see, duplicate

Type-1 Type-2

Class-1 O(kng) avg. cpu, no ifo O(kng) avg. cpu, [kTw]n i/o
O(¢T) space, O(¢T) space

O(active objects) avg. space | O(active objects) avg. space

Class-2 O(kng) avg. cpu, no ifo O(kng) avg. cpu, [kTw]n i/o
O(¢T) space, O(¢T) space

O(active objects) avg. space | O(active objects) avg. space

Class-3 | O(kng) avg. cpu, [kTw]n ifo | O(kng) avg. cpu, [kTw]n i/o
O(¢T) space O(¢T) space

O(active objects) avg. space | O(active objects) avg. space

Class-4 | O(kng) avg. cpu, [kTw]n ifo | O(kng) avg. cpu, [kTw]n i/o
O(¢T) space O(¢T) space

O(active objects) avg. space | O(active objects) avg. space

Table 1: Summary of time and space complexities of Re-

port_Unique for class/type combinations of rectangle objects.

processing using the spatial characteristics of objects is a
challenging problem. In particular, using the spatial char-
acteristics of the objects enables us to adapt techniques used
with hashing. For example, we were able to reduce the num-
ber of disk I/O requests (e.g., in comparison to O(nk) disk
I/O requests when using hashing), sometimes to 0 or O(n)
which is a significant improvement. In addition, by using
the extent and proximity of spatial objects we were able to
detect when an object is no longer needed in the active bor-
der (analogous to a hash table), and hence we were able to
bound the size of the table. This was achieved by delet-
ing the objects that are entirely processed by the algorithm.
Future work involves developing better algorithms for other
class/type combinations, classifying spatial objects besides
line segments and rectangles as well as developing algorithms
for them, and considering other spatial data structures that
partition objects besides the quadtree variants.

7 Acknowledgements

The first author conducted most of this research while at
The University of Maryland, College Park. The support of
the National Science Foundation under Grant IRI 9216970
is gratefully acknowledged.

References

[1] W. G. Aref and H. Samet. Efficient processing
of window queries in the pyramid data structure.
In Proceedings of the 9th. ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems
(PODS), pages 265-272, Nashville, TN, April 1990.
(also in Proceedings of the Fifth Brazilian Symposium
on Databases, Rio de Janeiro, Brazil, April 1990, 15—
26).

[2] W. G. Aref and H. Samet. Uniquely reporting spatial
objects: Yet another operation for comparing spatial
data structures. In Proceedings of the 5th International

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Symposium on Spatial Data Handling, pages 178-189,
Charleston, SC, August 1992.

M. B. Dillencourt and H. Samet. Using topological
sweep to extract the boundaries of regions in maps rep-
resented by region quadtrees. Submitted for publication,
1991.

M.B. Dillencourt, H. Samet, and M. Tamminen. A gen-
eral approach to connected-component labeling for ar-

bitrary image representations. Journal of the ACM,
39(2):253-280, April 1992.

R. Elmasri and S. B. Navathe.
Database Systems.
City, CA, 1989.

Fundamentals of
Benjamin/Cummings, Redwood

C. Faloutsos, T. Sellis, and N. Roussopoulos. Analysis
of object oriented spatial access methods. In Proceed-
ings of the 1987 ACM SIGMOD International Confer-
ence on Management of Data, pages 426-439, San Fran-
cisco, May 1987.

Michael J. Folk and Bill Zoellick. File Structures - Sec-
ond Edition. Addison-Wesley, Reading, MA, 1992.

O. Giunther. The design of the cell tree: an object-
oriented index structure for geometric databases. In
Proceedings of the Fifth IFEFE International Confer-
ence on Data Engineering, pages 598—605, Los Angeles,
February 1989.

A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of
Data, pages 47-57, Boston, June 1984.

A Klinger. Patterns and search statistics. In J. S.
Rustagi, editor, Optimizing Methods in Statistics, pages
303-337. Academic Press, New York, 1971.

R. C. Nelson and H. Samet. A consistent hierarchi-
cal representation for vector data. Computer Graphics,
20(4):197-206, August 1986. (also Proceedings of the
SIGGRAPH’86 Conference, Dallas, August 1986).

H. Nievergelt, H. Hinterberger, and K. C. Sevcik. The
grid file: an adaptable, symmetric multikey file struc-
ture. ACM Transactions on Database Systemns, 9(1):38—
71, March 1984.

A. Rosenfeld and A. C. Kak. Digital Picture Processing.
Academic Press, New York, second edition, 1982.

H. Samet. Connected component labeling using
quadtrees. Journal of the ACM, 28(3):487-501, July
1981.

H. Samet. Applications of Spatial Data Struc-

tures: Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.



