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Abstract

The application of standard query processing and op-
timization techniques in the context of an integrated
spatial database environment is discussed. In addi-
tion, some new processing and optimization strategies
are shown to emerge from the nature of the underly-
ing architecture used for the integration of spatial data.
Other strategies are presented that are application-
dependent. They are related to the different possihle im-
plementations of spatial operators where each one is pre-
ferrable under certain conditions. The underlying spa-
tial database architecture that is used is called SAND
(denoting Spatial And Non-spatial Data). SAND is a
dual spatial database architecture in which the objects’
spatial information is stored in separate spatial data
structures and their non-spatial information is stored in
database relations while maintainming appropriate links
between the spatial and non-spatial components of each
object. SAND provides an equal opportunity for both
the spatial and non-spatial components of the data to
participate in query processing and optimization. Aside
from the application-dependent optimization strategies
discussed in the paper, these techniques are not lim-
ited to spatial data. They can be extended to deal with
multi-media databases as well.

1 Introduction

Today, many non-standard datahbase applications rely
heavily on spatial data. This has resulted in consider-
able research eflorts towards supporting spatial ohjects
in database environments. Supporting spatial objects
and, more generally, complex objects, involves extend-
ing almost all levels of the database management sys-
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tem (DBMS). At the user interface level, the query lan-
guage is extended to enable the definition and manip-
ulation of complex objects while maintaining the non-
procedural flavor of the language. At the physical and
access method levels, alternative ways of storing, orga-
nizing, and accessing complex objects have to be added
to the DBMS for efficient handling of complex objects.
At the intermediate level, new ways for mapping the
extended user query into the extended physical and ac-
cess method level are necessary. Most of the extensions
at. this level are made to the query optimizer and to
the query processor. In this paper, we concentrate on
spatial query processing and optimization.

The query optimizer is an important component of
a modern DBMS. Usually, the user’s query, expressed
in a non-procedural language, describes only the con-
ditiens that the final response must satisfy. It is the
optimizer’s responsibility to generate a query evalua-
tion plan that computes the requested result efficiently.
Many different strategies have been proposed for find-
ing a query evaluation plan which evaluates a submitted
query in a traditional database environment (see {Jarke
and Koch, 1984] for a comprehensive overview of var-
ious query optimization techniques). However, when
it comes to non-standard applications, query optimiza-
tion techniques vary significantly from one application
domain to the other.

In the past, very little attention was devoted to spa-
tial query processing and optimization. Existing spatial
database systems have basically ignored the optimiza-
tion issues. Little is known about the different strate-
gies and alternatives for processing spatial queries (i.e.,
when interspersing spatial and non-spatial operations)
as well as about the cost of executing alternative query
evaluation plans containing spatial operations.

Tt is interesting to observe that, at a first
glance, query optimization techniques for heterogeneous
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database systems (e.g., [Dayal, 1984]) appears to be ap-
plicable to spatial query optimization. Unfortunately,
query optimization of spatial data is different from that
of heterogeneous databases because of the cost function.
In particular, the emphasis in heterogeneous databases
i1s on inter-database communication costs. Databases
in a heterogeneous system are usually distributed over
a long-haul network where the network communication
cost dominates. Thus the goal of a query optimizer is to
do as much processing as possible at each participating
site thereby reducing the inter-database communication
overhead [Dayal, 1984]. We assume that the spatial and
non-spatial data are stored in the same databhase which
1s located in one node of a network.

A number of recently suggested spatial database ar-
chitectures address the issue of spatial query optimiza-
tion (e.g., [Giiting, 1989; Orenstein, 1990; Sacks-Davis,
et. al., 1987; Wolf, 1989]). However, they differ in
the capabilities and degrees of freedom they provide to
the spatial query optimizer as a result of the manner
in which they integrate spatial data with non-spatial
data. In particular, the underlying architecture may
limit some feasible strategies for spatial query process-
ing. For example, according to one spatial database
architecture (e.g., GEO-Kernel [Wolf, 1989]), the query
processor may be forced to perform the non-spatial op-
erations first and then the spatial operations. A com-
mon feature of the aforementioned systems is that their
architectures are biased towards the non-spatial aspect
of the data. At best, they restrict the possible choices
for the spatial optimizer, thereby making only a limited
use of the spatial aspect of the data (i.e., its extent) in
the optimization of mixed queries.

GEOQL’s spatial query optimizer {Ooi, 1988; Sacks-
Davis, et. al., 1987] extends the well-known query de-
composition technique [Wong and Youssefi, 1976] to
handle spatial queries as well. However, GEOQL is
also biased towards the relational side. For example,
spatial operations cannot be composed directly with-
out building intermediate database relations. This lim-
-its the efficiency of spatial query processing. Moreover,
GEOQL’s extended optimizer only optimizes the cost of
non-spatial operations and does not take into account
the I/O cost of spatial operations.

Extensible database systems offer a different ap-
proach for query processing and optimization. One
of the main design goals of extensible systems is to
be as application-independent and as general as pos-
sible in order to support a wider range of non-standard
database applications. To meet these requirements, ex-
tensible systems mostly use rules for describing query
transformations as well as for choosing among different
implementations of primitive database and application-
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dependent operations for query processing and opti-
mization. Some examples of such systems are the EX-
ODUS optimizer generator [Graefe and DeWitt, 1987]
and Starburst’s query processor [Haas, et. al., 1989].

GEO-Kernel [Wolf, 1989] and Gral [Giiting, 1989]
are two spatial database systems that are based on
an extensible architecture. GEQO-Kernel implements
a geometric data model on top of the DASDBS ker-
nel system [Schek and Waterfeld, 1986; Wolf, 1989]
that supports Non-First-Normal-Form (N F?) relations
[Schek and Scholl, 1989]. Gral extends the relational
model by geometric operations. Gral also features a
rule-based optimizer and query processor [Becker and
Giiting, 1989; Giting, 1989]. In both GEO-Kernel and
Gral, spatial information is stored in textual form as
an attribute value in a relation. Nevertheless, during
query evaluation appropriate spatial data structures are
used to operate on spatial data. Thus there is a need
for conversion procedures to toggle between these data
structures and the textual or byte-string form for each
spatial data type, Notice that in order to perform the
operation intersects or closest, for example, the whole
set of spatial objects in the relevant relations have to
be down-loaded into the spatial data structures. This is
an expensive task and its cost has to be included when
considering different query evaluation plans.

The architecture of our underlying spatial database
system, SAND (denoting Spatial And Non-spatial Data)
[Aref and Samet, 1990; Aref and Samet, 1991], differs
from the above systems in the manner in which spa-
tial and non-spatial data are stored and linked to each
other. Also, SAND assumes that the spatial description
of objects is stored in disk-based spatial data structures
which are linked properly to the rest of the objects’ non-
spatial description. For more details about the SAND
architecture, as well as a more thorough comparison be-
tween different spatial database architectures, see [Aref
and Samet, 1991].

In this paper, we present a variety of feasible strate-
gies for answering spatial and mixed queries in the
SAND spatial database environment. SAND is unbi-
ased with respect to the spatial and non-spatial aspects
of the data so that the contribution of each aspect in
the optimization process is maximized. By providing a
variety of strategies for answering spatial queries, the
query optimizer will have more alternatives to choose
from thereby enabling more efficient execution of spa-
tial queries. Another motivation for this work is that the
spatial query processing strategies presented in this pa-
per. as well as the SAND spatial database architecture,
can be ported on top of existing extensible database sys-
tems as a validation step for both the SAND and the
extensible system architectures.
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The rest of the paper is organized as follows.
Section 2 summarizes SAND, the underlying spatial
database architecture that is used throughout the pa-
per. Alternative query processing strategies for use in
SAND are presented in Section 3. These include strate-
gies for processing relational and spatial selection and
join operations. Section 4 contains concluding remarks.

2 An Overview of SAND: A Spatial
Database Architecture

In [Aref and Samet, 1991] we present the SAND spa-
tial database architecture in much more detail. Below,
we give a brief overview of some of the features of the
SAND architecture that are used in our presentation.
For further details about the SAND system, see [Aref
and Samet, 1990; Aref and Samet, 1991].

Throughout the paper we will often refer to the
schema definitions given in Figures 1 and 2 which de-
fine the land-use and roads spatial databases. No-
tice that location is a spatial attribute of type
REGION while road_coords is a spatial attribute of type
LINE_SEGMENT. We use an SQL-like syntax.

(create table land-use
name CHAR[40],
address CHAR[100],
location REGION,
usage CHAR[40],
zip_code NUMBER,
importance NUMBER);

Figure 1: Land-use spatial database schema

(create table roads

road_id NUMBER,

road_name CHAR(30),
road_trafficability NUMBER,
road_lanes NUMBER,
road_coords LINE_SEGMENT);

Figure 2: Roads spatial database schema

In general, a spatial object is described by two sets
of attributes: spatial and non-spatial. Objects that are
spatially related to each other (i.e., are in proximity,
or belong to a given region) and that are of the same
data type such as line data, are logically clustered in the
database (e.g., stored together in database relations or
in suitable spatial data structures).

A spatial data structure is associated with each spa-
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tial attribute in the schema and is used to store all data
imstances of that spatial attribute over the set of homo-
geneous objects. The spatial data structure is used as
an index for spatial objects as well as a medium for per-
forming spatially-related operations (e.g., rotation and
scaling for images, editing, buffer-zoning, polygon inter-
section, area of a region, connected component retrieval,
proximity queries, etc.). Depending on the attribute’s
spatial data type (e.g., region, line, or point), a spatial
data structure suitable for handling this type is selected.

The data instances of the set of non-spatial at-
tributes are stored in database relations. Each tuple
in the relation corresponds to one object. Figure 3 il-
lustrates how we link spatial and non-spatial attribute
values of an object. In particular, we maintain two log-

nonspatial attributes spatial attribute
R Si spatial data structure
[regiont non_spatal info .. | f+——~‘\~%
fregion2 non_spatalinte ... [~ |
[voqioni’ non_spaNalinfo ... ] ._l,___——-—
[regiond non_spavalinfo ... | edm o]
®
nons;uatia‘lq atiributes spatial attribute

S spatial data structure

regiont

J region2
region2

regiond non_spatatinfo ... I I

non_spatial Info .,

11
non_spatalinto ... [ |
non_spatalinfo ... | }

®)

Figure 3: (a) Forward links and (b) backward links for
the land-use database

ical links between the spatial and non-spatial data in-
stances of an object: forward and backward links. For-
ward links are used to retrieve the spatial information
of an object given the object’s non-spatial information.
On the other hand, backward links are used to retrieve
the non-spatial information of an object given the ob-
ject’s spatial information. Since the non-spatial infor-
mation of an object is stored in a tuple, the backward
link can be the tuple-id. Since spatial data structures
hold the spatial information of an object and spatially
index the object space, the forward link can be a spatial
index value of this object inside the data structure that
uniquely selects the object. One example of a forward
link is a candidate point inside a region to uniquely se-
lect a regional object in an object space consisting of
non-overlapping regions.

Maintaining forward and backward links between
the spatial and non-spatial aspects of a set of objects
facilitates browsing in the two parts as well as permits
efficient query processing. Flexibility in the interaction
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between spatial and non-spatial attributes enable oper-
ations (whether spatial or non-spatial) to be performed
in their most natural environment. In [Aref and Samet,
1990] we showed how forward and backward links facil-
itate query processing and query optimization. This is
also demonstrated here in Section 3.

We assume that we have a collection of ohjects O
referred to by the pair < R, S >, where 2 is a relation
that stores the non-spatial attribute instances of O and
S is a spatial data structure that stores the spatial at-
tribute instances of O. We assume that the set O is
described by only one spatial attribute and hence has
one spatial data structure associated with it. Relaxing
this assumption is straightforward. We use the notation
op(U) where U is either R or S or the pair < R.5 >
(depending on the context) to indicate that operation
op is applied to U.

One important requirement of the SAND architec-
ture is that there needs to be a mechanism for keeping
the spatial component in sync with its non-spatial com-
ponent. Spatial, as well as relational, operators must
always keep the pair < R, 5 > consistent. For example,
consider a certain spatial operator op, that operates nn
the spatial data structure S to produce another spatial
data structure S; (e.g., a window operator generates a
subset of the input data structure). In order for the se-
lected objects, say Oy, in S; to be fully described, O;’s
non-spatial information has to be selected as well from
relation R to form a new relation 2 which is also a
subset of R and represents the objects vesulting from
applying the spatial operator op,. In summary, given
the pair < R, S >, op, returns the pair < Ry, 5] > in-
stead of just S;. This reasoning is also applicable to
relational operators, say op,, such as selection.

In addition to the above synchronization require-
ment, operating on multiple spatial attributes (and
hence multiple spatial data structures) and querying on
the various relationships between spatial objects intro-
duces the concept of spatial joins. Consider the follow-
ing query, which retrieves all the regions within 5 miles
from universities in the land-use database:

all

land-use 1, land-use k
within(l.location,k.location,5)
and 1.usage = "University"

select
from
where

There may exist more than one university in the
database, and hence more than one tuple could be se-
lected by the condition 1.usage = "University". Let
the set of selected tuples be L. Then the spatial within
condition generates the regions within 5 miles from each
member of .. The result of the within condition should
cousist of a join relation. In particular, two tuples are
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Table 1: Some Spatial Join Conditions

Spatial Join Description

adjacent 1o True if s; is an adjacent neighbor of 8y
contained True if s, is contained in s

within n True if s; is within n units of distance from 3,
intersect True if s; and s; overlap

merged if their corresponding spatial objects are within
5 miles of each other. The resulting relation contains
all the attributes of the two participating relations, in-
cluding the two spatial attributes (i.e., the location at-
tribute) and their corresponding spatial data structures.
There is one spatial data structure for the university re-
gions and another for the neighboring regions (i.e., the
ones within 5 miles) because the join is performed on
two spatial attributes. We refer to the within condi-
tion as a spatial join. This is because it has the same
effect as a regular join. Namely, a spatial join combines
related entities from two entity sets into single entities
whenever the combination satisfies the spatial join con-
dition (e.g., if they are within n miles from each other).
Table 1 lists some spatial join conditions. Notice the
use of 8; to specify instance values of spatial attributes.

We realize the requirements of the SAND database
architecture by defining what we call eztended operators.
In general, extended operators provide a proper inter-
face for integrating not only spatial data but also any
other multi-media data into a database environment.

There are two types of extended operators:
relational-based operators z_op, and spatial-based op-
erators r.op, (r denotes relational while s denotes
spatial). We define these extended operators in terms
of their un-extended counterparts and the operators
sp-extract and db_extract described below. As an il-
lustration. here we only discuss the extended select op-
eration (i.e., both the spatial and relational variants).
The reader is referred to [Aref and Samet, 1991) for the
definition of the extended join.

The extended relational select operation < T, U >=
z.op.(< R,S >) first performs the relational select
opr on R. This results in the relational component
T = op-(R). The spatial component U is built by ex-
ecuting the operator sp_extract to extract from S the
spatial objects corresponding to the tuples in the result-
ing relation T. The extended spatial select z_op, has an
analogous description. It uses the operator db_extract
to extract the tuples corresponding to the objects se-
lected by the spatial operation op,. More formally,

1

ropr{< R, S >)
rops(< R, S >)

< opr(R),sp-extract(opr(R),S) >, and
< db.extract{R, ops(S)), ops(S) > .

il
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Describing spatial and relational operators using ex-
tended operators is very general. Depending on the con-
text, we can replace this general form with simpler ver-
sions of the same operator and still get the same query
answer. These simplified versions are mainly useful for
query optimization. In fact, as we demonstrate in the
Section 3, several optimizations can take place.

3 Query Processing Strategies

We demonstrate the strategies for spatial query pro-
cessing by giving examples using the database schema
definitions of Figures 1 and 2.

Example 1: Find all roads other than “Route 1” that
pass through a given window w,

select all
from roads
where in_window(road_coords,w)
and road_name != "Route 1"

Below, we give several strategies for processing this
query as well as others.

Plan 1 - Un-optimized: Plan 1, given in Figure 4,
uses the notion of extended operators without any fur-
ther optimizations. We can rephrase Plan 1, as given

<Ty, 8 > «~
< TSy > &

z.sp.window(< R, S >, w)
rdb_seleci(< T\, Sy >,db.cond)

Figure 4: Summary of Query Plan 1

in Figure 5. This helps to clarify the optimization steps
demonstrated in the following plans. Notice that a re-

S1  ~  spawindow(S, w)
Ty « db.extract(R,Sy)
T, « db_select(Ty,db cond)
S, e~ sp.extract(S;,Tz)
Figure 5: Rephrasing of Query Plan 1

ordering of the operations is also possible as given in
Figure 6. Other reorderings are given in Plan 2.

Plan 2 - Further reorderings: Figure 7 gives an
alternative reordering of the operators in Plan 1. Here
the database process and the spatial process each work
independently on a different portion of the input data.
The results are merged at a later step.
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T{ « db.select(R, db.cond)
Sy~  sp.extract(S,T})
S~  sp.window(S],w)
Ty ~ dbertract(T{,S))

Figure 6: Reordering of the operations of Query Plan 1

S1  ~ spwindow(S, w)
Ty «— db_select(R, db_cond)
<T2,82 > «— merge(Th,S51)

Figure 7: Query Plan 2

The purpose of the merging step is to find the ob-
Jects that exist in both the input spatial data structure,
say S1, and the input relation, say 77, and generate an
output pair, say < Ty, Ss >, that contains all these com-
mon objects. Figure § illustrates the merging operation.

: E’:’@ - ET 1T
=] Y

(2 ®)

IA/‘IA

& |» = o

Figure 8: (a) Relation R and spatial data structure S
to be merged, (b) relation T and spatial data structure
[/ contain the result of merging R and S.

Basically, there are two ways of performing a
merge: spatial-driven (sp-merge) and relational-driven
(db_merge). sp-merge traverses the spatial data struc-
ture S and for each spatial object that it encounters, say
o0, sp-merge tries to retrieve o’s corresponding tuple, say
1, through the tuple-id stored with o. If ¢ is found, then
! and o are stored in T and U, respectively. Otherwise, o
is not part of the result - i.e., it is skipped. A schematic
listing of sp_merge is given in Figure 9. db_merge is the
same as sp.merge except that the relation R is traversed
and the spatial objects (if any) that correspond to the
tuples in R are retrieved and stored into the output
spatial data structure U. Tuples with no corresponding
spatial objects are discarded, while tuples with match-
ing spatial objects are stored into the output relation T'.
A schematic listing of db_merge is given in Figure 10.

Plan 3 - Intersection of pointers: A third method of
merging the results of conjunctive selections, in addition
to the spatial-based merging and relation-based merging
described in Plan 2 above, is by intersection of pointers.
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sp_merge(R,S)
/% Merge relation R with spatial data structure S
based on the common objects in them.
The results are stored in relation T and spatial
data structure U. »/
begin
initialize relation T;
initialize spatial data structure U;
traverse S;
for each spatial object o in S do
begin
tid := get o’s tuple-id;
if tid in R then
begin
retrieve tid’s tuple t from R;
append t into T;
insert o into U;
end;
end;
end;

Figure 9: Spatial-driven merging

This is a well-known technique for answering conjunc-
tive selections where the tuple-ids resulting from each
selection are intersected [Elmasri and Navathe, 1989].
Intersecting pointers is possible if the selections that are
performed generate tuple-ids. This situation can arise
when the attributes that comprise the selection condi-
tion can be accessed via a secondary index that contains
the associated tuple-ids.

In SAND we have two types of object-ids, namely
tuple-ids and spatial-ids. In addition, the conjunctive
selections may be spatial, relational, or bhoth. Incor-
porating the intersection of pointers technique in the
SAND environment can be done in two different ways,
depending on whether we intersect the tuple-ids or the
spatial-ids. This is illustrated by the following example.

Example 2: Find all 4-lane roads that are within r
miles of point (x,y).

salect
from
where

road_name

roads land-use
in_circle(road_coords,x,y,r)
and road_lanes = 4

1 - Intersection of tuple-ids: If a secondary in-
dex is present on the attribute road lanes, then when
performing the selection based on roadlanes (i.c.
road_lanes = 4) would generate a set of tuple-ids (we
use tuple-ids as indexes so that we are able to intersect
them with tuple-ids generated from the spatial side).
The spatial selection in_circle generates the spatial
objects that lie inside the specified circle and stores
them in a temporary spatial data strocture. To get
the tuple-ids of the objects selected by in.circle, we
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db_merge(R,S)
/% Merge relation R with spatial data structure S
based on the common objects in them.
The results are stored in relation T and spatial
data structure U. */
begin
initialize T, U;
traverse R;
for each tuple t in R do
begin
sid := get t’s spatial-id;
if sid in S then
begin
retrieve sid’s spatial object o from §;
insert o into U;
append t into T;
end;
end;
end;

Figure 10: Relation-driven merging

need to traverse this data structure and collect the cor-
responding tuple-ids. These can be intersected with the
ones generated from the database selection. The result
of the intersection is then materialized both from the
relational as well as the spatial side. Notice that the
operation in._circle can generate the list of tuple-ids
directly without the need of an extra traversal of the
spatial data structure. Figure 11 gives the resulting
plan. Operator sp.in.circle_tid is a simplified version
of the operator in.circle which returns just the back-
ward link information (tuple-ids) of the selected spa-
tial objects. db.seleci_tid is a secondary index selection
that returns the tuple-ids. Operation list.intersecl tid
is given in Figure 12.

Lsp ~ span_circle.tid(S,c)
Ly, «— db_select_tid(R,db_cond)
< Tp,8 > «~ listantersect.tid(Lgy, Lep, R, S)

Figure 11: Intersecting tuple-ids generated from both
the spatial and relational selections. ¢ denotes the co-
ordinates of the circle and its radius.

2 . Intersection of spatial-ids: The same strategy
can be applied when we consider intersecting spatial-
ids instead of tuple-ids. Consider the plan given in
Iigure 13. Operation sp.in_circle_sid(S,c) is a simpli-
fied version of operation sp_in_circle which returns just
the spatial-ids of the qualified objects (i.e., the ones ly-
ing inside the circle ¢). In order to return the spatial-
ids as a result of the database selection (i.e., based on
road_lanes = 4), we need to return the value of the
spatial attribute for each qualifying tuple in the se-
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list_intersect_tid(Lo,Lr,R,S)

/* Intersect lists Lo and Lr where each list
contain tuple-ids and retrieve the tuples
and spatial objects corresponding to the common
tuple-ids. The results are stored in
relation T and spatial data structure U. */

begin

initialize T, U;
I := intersect Lr and Lo;
for each tuple-id tid in I do
begin
retrieve tid’s tuple t from R;
append t into T;
sid := get t’s spatial-id;
retrieve sid’s spatial object o from §;
insert o into U;
end;
end;

Figure 12: Conjunctive selection using intersection of
tuple-ids. Tuple-ids in the intersection can be sorted
for faster retrieval.

lection. This strategy is useful when the cost of re-
trieving the spatial description of ohjects is expected
to be high in comparison to that of retrieving tuples
from the database (e.g., when the volume of the spatial
data is high in comparison to that of the non-spatial
data). The operation list.intersect_sid(Lay, Lyp, R, S)
intersects the two spatial-id lists resulting from the spa-
tial and relational selections. Then. it retrieves the spa-
tial and non-spatial description of the aobjects in the
intersection. Operation list_interseci_sid is given in Fig-
ure 14.

span_circle_sid(S, c)
db_select_std{ R, db.cond)

<T2,8: > « listintersect.sid(Lan, Lsp, R, S)

Figure 13: Intersecting spatial-ids generated from both
the spatial and relational selections. ¢ denotes the co-
ordinates of the circle and its radius.

Plan 4 - Pushing spatial operations into
sp-extract: Consider the plan given in Figure 6 to
answer the query of Example 1. Spatial data struc-
ture S} is written by operator sp.extract and then read
by operator sp.window. To avoid an extra traversal of
S as well as the read/write overhead, we can perform
some spatial conditions on the fly along with operator
sp_extract. This technique may he desirahle under some
but not all circumstances. For example, if the cardinal-
ity of the spatial objects is low and if the spatial test
to be performed is relatively simple (e.g., if a ine inter-
sects a given window), then it is indeed more econom-

Proceedings of the 17th Iniemational
Conference on Very Large Data Bases

87

list_intersect_sid(Lo,Lr,R,S)

/* Intersect lists Lo and Lr where each list
contain spatial-ids and retrieve the tuples
and spatial objects corresponding to the common
spatial-ids. The results are stored in
relation T and spatial data structure U. #*/

begin

initialize T, U;
I := intersect Lr and Lo;
for each spatial-id sid in I deo
begin
retrieve sid’s spatial object o from S;
insert o into U;
tid := get o’s tuple-id;
retrieve tid’s tuple t from R;
append t into T;
end;
end;

Figure 14: Conjunctive selection using intersection of
spatial-ids.

ical to perform this spatial test on the fly along with
the sp_extract operator instead of storing the result and
then retraversing the whole structure. Figure 15 gives

T{ ~ db_select(R, db.cond)
Sy« sp.extract_f(S, T}, in-window({w))
T, «— dbeztract(T],S})

Figure 15: Plan 4: pushing window selection into op-
erator sp_extract.f. The output is stored in the pair
< T3,5 >. Relation 77 is a temporary relation.

the resulting plan. Notice the use of the new operator
sp-extraclf (f denotes filter) which has one additional
argument over sp_extract. This argument serves as a
spatial selection condition. All the spatial objects ex-
tracted should satisfy this condition. Also notice that
Plan 4 uses only one temporary spatial data structure,
namely S5, which is also the output data structure while
Plan 1 uses two temporary data structures, namely S
and S5, where Sy is also the output data structure.

Plan 5 - DPushing database selection into
db_extract: Consider the plan given in Figure 5 to
answer the query of Example 1. The relation T3 is writ-
ten by operator db_extract and then read by operator
db_select. To avoid an extra traversal of the tempo-
rary relations, we can perform the database selection at
the same time that we extract the corresponding tuples.
This is one form of the use of the pipelining technique
to save from creating needless temporary relations and
to save on traversal time. Figure 16 lists the modified
plan. Notice the use of the new operator db_exrtract_f
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sp.window(S, w)
db_extract_f(R,S1,db_cond)

S2  — spertract(S;,T?)

Figure 16: Plan 5: pushing database selection into
db.extract_f operator. The output is stored in the pair
< T,,89 >. Sy is a temporary spatial data structure.

(f denotes filter) which has one additional argument over
db_extract. This argument serves as a relational selec-
tion condition. All the tuples extracted should satisfy
this condition. Also notice that Plan 5 uses only one
temporary relation, namely T, which is also the out-
put relation while Plan 1 uses two temporary relations,
namely Ty and T5, where Ty is also the autput relation.

Plan 6 - Further Pipelining: Notice that in Plans 4
and 5 we can get rid of the temporary relations and
data structures T and S; in Figures 15 and 16, respec-
tively. This is achieved by directly piping the results of
database selection in Plan 4 and the results of spatial
windowing in Plan 5 into the next stage. Notice that
some communication overhead is incurred due to the
pipelining of data items between concurrent processes
(the spatial process and the DBMS process), and due to
the distinction between set-at-a-time or tuple-at-a-time
communication. This has to be taken into consideration
when deciding if this strategy is to he applied.

Plan 7 - Deletion instead of insertion: in some
cases (e.g., in database selections or spatial operations
with very high selectivity values) it is easier to delete
the disqualified data items from the existing structure
or relation than to create a new one with almost all the
same data items that are in the input structure or rela-
tion except for a few missing data items. Of course, this
depends on the relative cost of deletion versus insertion
in conjunction with the value of the selectivity factor.
Other factors are that in some cases deletion is not fea-
sible. This is especially true when we are overwriting
or destroying the input structures. It is mostly useful
with intermediate temporary structures. Furthermore,
the nature of the temporary structures nsed to speed
the processing of queries may not allow deletions in the
first place. Figure 17 gives one example modification
of Plan 1 as given in Figure 5 where deletion is used
instead of insertion in the last step. In this case Sa is
formed by removing from Sy all of the spatial objects
whose corresponding tuples are not in Ty, This is per-
formed by the operation sp_ezclude. 51 no longer exists
after executing sp-exclude.
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S1 e~  spwindow(S, w)

Ty «— db.eztract(R,51)

T, «~ db_select(Ty,db.cond)
S2  ~  sp-exclude(S;,Ty)

Figure 17: Use of deletion instead of extraction when
spatial selectivity is high.

Plan 8 - Performing projection as early as possi-
ble: Thisis a standard technique in query optimization.
However, in our spatial database architecture there is
more to it. When a spatial attribute is not part of
the final answer, we can stop maintaining the spatial
data structure associated with this attribute as early as
possible. This saves needless execution of the operator
sp.extract. The same technique also applies when no
non-spatial attributes are part of the projection list. In
such a case, we can stop maintaining the corresponding
database relation as early as possible and avoid needless
executions of the operator db_extract.

Example 3: Suppose that the query in Example 1 is
slightly modified to be:

select
from
where

road_name

roads
in_window(road_coords,w)
and road_name != "Route 1"

Notice that only the attribute road_name is to be pro-

jected. Therefore, Plan 1 in Figure 5 can be expressed

as given in Figure 18 taking into consideration the pro-

S1 ~—  sp.window(S, w)
Ty «~— db_extract.p(R,Sy,roadname)
Ty  —  dbselect(Ty, db.cond)

Figure 18: Effect of projection on Query Plan 1. Only
attribute road name is to be returned

jection rule mentioned here. Projection is performed
along with the extraction operation through the opera-
tor db_eztract.p (here, p denotes project). Notice that
the invocation of operator sp.extract has been elimi-
nated from the plan. Also, notice that we can eliminate
relation T} by applying the pipelining rule.

Plan 9 - Composing operations: This strategy ap-
plies only when there are at least two spatial or rela-
tional operations that refer to the same spatial attribute
or to the same relation, respectively. In either case, only
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one execution of the operator sp.extract or dh_extract
needs be performed after all the composed operations
are executed.

Example 4: Find the road passing through the Uni-
versity of Maryland campus that is nearest to the Com-
puter Science Department (for simplicity, specified here
by its coordinate values (¢x,cy)).

select
from
where

road_name

roads land-use
pass_through(road_coords,location)
and name = "University of Maryland"
and nearest_to(road_coords,cx,cy)

Originally, the operator db_extract wonld be executed
twice, as part of the execution of each of the extended
spatial operators pass_through and nearest_to to build
up the relational result of the execution of each operator.
Since both spatial operators refer to the same spatial
attribute, namely road_coords, both spatial operations
can be cascaded on the same spatial data structure fol-
lowed by only one execution of db_extract.

Example 5: Find all industrial regions and airports
that lie in the same zip code region.

all

land-use 11, land-use 12
11.usage = "industrial"

and 12.usage = “airport"

and 11.zip_code = 12.zip_code

select
from
where

Since no spatial operations exist in the above query,
there is no need to maintain the spatial data structures
(via the operator sp_extract) until the end of the three
relational operations. At thal stage, only a final execu-
tion of sp_extract is needed to build the data structure
containing the selected objects (i.e., the airports and in-
dustrial regions).

Plan 10 - Application-dependent alternative op-
erations: Depending on the context we can replace
some of the operations by alternative ones that yield
the same results. This may lead to hetter performance
in some cases. Two examples are given helow.

Nearer vs. nearest: If the nearest spatial object to
a given point does not meet all the conditions in the
query, then we may want to perform another nearest
object computation with the remaining spatial ohjects.
An alternative option is to always defer the nearest ob-
ject computation to the end until all other query condi-
tions are met. However, this option restricts the order
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in which the query conditions are executed. Another op-
tion 1s to perform a nearer object computation instead
of a nearest object computation. The operator nearer
builds a list of spatial objects that are sorted by their
distance from the given point (i.e., it returns the near-
est object, 2nd nearest, 3rd nearest, etc.). Hence, if the
nearest object does not meet all the query conditions,
then we pick the first object from the top of the list
that meets them. Therefore, we do not need to repeat
the nearest object computation several times. The best
option can be chosen based on a cost model.

Simplified operations: Consider the following query
that finds the names of the airports in the State of Mary-
land.

select 1l.name
from land-use 1 states s
where s.name = "Maryland"
and 1l.usage = "airport”
and intersect(l.location,s.location)

This query assumes a relation, called states, containing
information about different states. It has one spatial at-
tribute, called location, of type REGION. Only the name
of the airport is to be returned by the above query. As
mentioned in Plan 8, there is no need to maintain the
temporary spatial data structures. In addition to the
fact that this saves execution time, it may also simplify
the spatial algorithms involved. In this case, the in-
tersect. operator need only return the tuple-ids of the
intersecting regions. The intersection algorithm may be
totally different if we do not want to output the spa-
tial details of the intersecting regions, but only the fact
that they do intersect. In summary, having multiple ver-
sions of operators can result in different cost estimates
for each version. This would help in plan selection in
the optimization process. Other examples of simplified
operators are also demonstrated in Query Plans 3 and 4
where two versions of the in_circle and in_window oper-
ators are considered, respectively.

4 Conclusions

We have shown how standard query processing and op-
timization strategies can be adapted to spatial data-
base systems. When the following requirements are
met, all the query processing and optimization strate-
gies mentioned in this paper (except for the application-
dependent ones such as Plan 10) can be applied to other
types of data in different application domains, not nec-
essarily lor spatial data:
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e a process to perform the specific algorithms for
handhing the complex data ohject,

e a relational DBMS to store the thematic descrip-
tion of the complex object,

e the maintenance of a dual architecture in which
both the complex object handler and the rela-
tional DBMS are linked together via forward and
backward links between each complex object and
its thematic counterpart, and

e the existence of extended operators that preserve
the consistency between both components of a
complex object.

Future research includes building a cost model for
analyzing the suggested spatial query processing and op-
timization strategies as well as building a spatial query
optimizer to experiment with such strategies.
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