
VASCO: Visualizing and Animating Spatial Constructs and
Operations∗

František Brabec
Computer Science

Department, Center for
Automation Research

and Institute for Advanced
Computer Studies, University

of Maryland
College Park, Maryland

20742, USA

brabec@cs.umd.edu

Hanan Samet
Computer Science

Department, Center for
Automation Research

and Institute for Advanced
Computer Studies, University

of Maryland
College Park, Maryland

20742, USA

hjs@cs.umd.edu

Cemal Yilmaz
Computer Science

Department, Center for
Automation Research

and Institute for Advanced
Computer Studies, University

of Maryland
College Park, Maryland

20742, USA

cyilmaz@cs.umd.edu

ABSTRACT
A video is used to demonstrate a set of spatial index JAVATM

applets that enable users on the worldwide web to experi-
ment with a number of variants of the quadtree spatial data
structure for different spatial data types, and, most impor-
tantly, enable them to see in an animated manner how a
number of basic search operations are executed for them.
The spatial data types are points, line segments, rectangles,
and regions. The search operations are the window query
(i.e., a spatial range query) and a nearest neighbor query
that enables ranking spatial objects in the order of their dis-
tance from a given query object. The representations and
algorithms are visualized and animated in a consistent man-
ner using the same primitives and colors so that the differ-
ences between the effects of the representations can be eas-
ily understood. The video demonstrates the PR quadtree,
PM1 quadtree, and R-tree. The applets can be found at
www.cs.umd.edu/~hjs/quadtree/.

Categories and Subject Descriptors
E.1 [Data Structures]:

General Terms
Algorithms

Keywords
quadtrees, k-d trees, R-trees, visualization, nearest neighbor
algorithms

1. INTRODUCTION
The representation of spatial data is an important issue in

a wide variety of applications including computer graphics,

∗This work was supported in part by the National Science
Foundation under Grants IRI-9712715, EIA-99-00268, IIS-
00-86162, and EIA-00-91474.

Copyright is held by the author/owner.
SoCG’03, June 8–10, 2003, San Diego, California, USA.
ACM 1-58113-663-3/03/0006.

computational geometry, computer vision, pattern recogni-
tion, and geographic information systems (GIS). There are
two principal methods of representing spatial data. The first
is based on a decomposition of the underlying space into
disjoint blocks so that a subset of the objects are associated
with each block. This subset is often defined by placing a
bound on the number of objects that can be associated with
each block (termed a stopping condition). The drawback of
this disjoint method is that when the objects have extent
(e.g., lines, rectangles, regions, and any other non-point ob-
jects), then an object may be associated with more than
one block. The alternative is to use an object hierarchy
that aggregates objects into groups based on proximity and
then use proximity to further aggregate the groups. The
drawback of this approach is that it results in a non-disjoint
decomposition of space. This means that if a search fails to
find an object in one path starting at the root, then it is
not necessarily the case that the object will not be found in
another path starting at the root.

2. VIDEO
In this video we demonstrate the use of VASCO, a sys-

tem for Visualizing and Animating Spatial Constructs and
Operations. We show in a comparative manner a number
of hierarchical spatial data structures that are examples of
the above representation techniques. In order to be able
to visualize these representations, we restrict our data do-
main to two dimensions and hence we only look at points,
lines, rectangles, and regions. However, the representations
can be used for higher dimensional data. The video demon-
strates the highlights of JAVA applets that can be found at:
www.cs.umd.edu/~hjs/quadtree/.

For the methods based on a disjoint decomposition of the
underlying space and disjoint hierarchies, we subdivide the
representations into four classes depending on the underly-
ing data type. All of these representations are based on a
recursive decomposition of the underlying space and thus are
variants of quadtrees and k-d trees (e.g., [5, 6]). For point
data, VASCO includes the point quadtree, PR quadtree,
MX quadtree, k-d tree, PR k-d tree, PMR quadtree, PMR
k-d tree, bucket PR quadtree, and bucket PR k-d tree. For
line data, VASCO includes the PM1, PM2, PM3, PMR, and

374



bucket PM quadtrees. For rectangle data, VASCO includes
the MX-CIF quadtree, rect quadtree, PMR rect quadtree,
PMR k-d tree, and bucket rect quadtree. For region data,
VASCO includes the region quadtree. The video shows ex-
plicitly how the data structure is built for a PR quadtree for
points, and for a PM1 quadtree for lines.

It also shows the decompositions for the displayed data
set that result from the use of each of the remaining data
structures. VASCO permits the user to delete data although
we do not show this in the video.

For the methods based on a non-disjoint decomposition of
space we examine the R-tree [1]. In this case, the nature of
the underlying data type is not of importance and we just
examine rectangle data although VASCO can handle R-tree
representations of point and line data as well. There are
many variants of R-trees, where the distinguishing feature
is the manner in which an overflowing node is split during in-
sertion, and the manner in which the objects that comprise
it are subsequently aggregated. The video shows a number
of methods of dealing with this situation and displays the
resulting aggregations at an intermediate level of decompo-
sition for a number of the overflow techniques for a given
data set.

VASCO provides a tool for comparing the space decompo-
sitions and object aggregations resulting from these different
representations by demonstrating how they handle insertion
and deletion of objects. A move operation is also provided
to show the sensitivity of each representation to the move-
ment of an object as well as the constituent types that make
up the object. For example, in the case of a line segment
object, we can also see the effect of moving one of its ver-
tices. Similarly, for a rectangle object, we can also see the
effect of moving one of its vertices or one of its edges.

In addition, VASCO provides a way to visualize in an
animated way how the different representations can be used
to perform a number of operations. The first is finding the
nearest neighbors to a user-specified query object which can
be a point, rectangle, polygon, polyline, or a sector. We
illustrate an incremental nearest neighbor algorithm [2, 3]
which means that the data objects that satisfy the query are
returned and displayed one-by-one. When this algorithm is
run to completion, it provides a full ranking of the data
objects in terms of their distance from the query object.
The advantage of the incremental algorithm over traditional
methods that compute the k nearest neighbors (e.g., [4]) is
that with these methods, if instead we want the k+1 nearest
neighbors, then we must compute all k + 1 neighbors again.
In contrast, using our algorithm, the k+1st neighbor is found
by simply continuing the search from the point immediately
after having found the k nearest neighbors.

The incremental nearest neighbor algorithm makes use of
a priority queue where the queue elements are the blocks of
the underlying data structure as well as the objects them-
selves. The priority queue is ordered on the basis of the
distance of its elements from the location of the query ob-
ject which is a point in the example shown in the video. The
algorithm works in a top-down manner in the sense that as
elements are removed from the queue, they are checked to
see if they correspond to blocks that are not at the lowest
level of the hierarchy (i.e., nonleaf nodes). If this is the case,
then their immediate descendants (i.e., the children) are in-
serted in the queue ordered according to their distance from
the query object. Otherwise, the objects that they contain

are inserted into the queue ordered according to their dis-
tance from the query object. If the element e that has been
removed from the queue is a data object, then e is reported
as the next nearest neighbor of the query object.

The VASCO system also enables the performance of over-
lap and within queries. The overlap query is equivalent to
a window query where the query object serves as the win-
dow. It is frequently used in database operations to retrieve
all spatial objects within a given subarea of the underlying
space. The within query is equivalent to a corridor or buffer
in a geographic information system (GIS). In this case, the
operation results in retrieving all spatial objects within a
given distance of the query object. Both of the algorithms
are implemented in such a way that they report the result-
ing objects incrementally — that is, in increasing order of
their distance from the query object. Again, as in the near-
est neighbor operation, the query object is specified by the
user and is either a point, rectangle, polygon, polyline, or a
sector. The animation proceeds in the same manner as in
the incremental nearest neighbor algorithm with the same
color conventions.

VASCO also includes the region quadtree. Operations are
provided for inserting and deleting pixels and blocks. Two
variants of the move operation are provided: one that copies
a pixel or block (thereby acting like a union operation), while
the other one overwrites the pixel or block at the new lo-
cation. Finally, operations are provided for converting a
quadtree to an array, raster and chain code representation.

3. REFERENCES
[1] A. Guttman. R-trees: a dynamic index structure for

spatial searching. In Proceedings of the ACM SIGMOD
Conference, pages 47–57, Boston, MA, June 1984.

[2] G. R. Hjaltason and H. Samet. Ranking in spatial
databases. In Advances in Spatial Databases — Fourth
International Symposium, SSD’95, M. J. Egenhofer and
J. R. Herring, eds., pages 83–95, Portland, ME, August
1995. Also Springer-Verlag Lecture Notes in Computer
Science 951.

[3] G. R. Hjaltason and H. Samet. Distance browsing in
spatial databases. ACM Transactions on Database
Systems, 24(2):265–318, June 1999. Also Computer
Science TR-3919, University of Maryland, College
Park, MD.

[4] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proceedings of the ACM SIGMOD
Conference, pages 71–79, San Jose, CA, May 1995.

[5] H. Samet. Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[6] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.

375


