Visualizing and Animating Search Operations on Quadtrees on
the Worldwide Web*

FrantiSek Brabec
Computer Science Department
University of Maryland
College Park, Maryland 20742
brabec@umiacs.umd.edu

Hanan Samet
Computer Science Department
Center for Automation Research
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
hjs@cs.umd.edu

December 24, 1999

Abstract

A set of spatial index JAVA™ appletsis described that enable users on the worl dwide web
to experiment with anumber of variantsof the quadtree spatial datastructurefor different spatial
data types, and, most importantly, enable them to see in an animated manner how a number of
basic search operations are executed for them. The spatial datatypes are points, line segments,
and rectangles. The search operations are finding nearest neighbors from an object of arbitrary
typeand shape, and retrieving all objectsthat overlap an object of arbitrary type and shape or are
withinagiven distance of an abject of arbitrary typeand shape. The nearest neighbor and within
gueriesretrieve their resultsin the order of their distance from the given query object. The rep-
resentations and algorithms are visualized and animated in a consistent manner using the same
primitives so that the differences between the effects of the representations can be easily under-
stood. Theappletscanbefoundathttp://www.cs.umd. edu/"hjs/quadtree/index.html.

Keywords and phrases: quadtrees, worldwide web, incremental nearest neighbor finding, win-
dow queries, ranking, animation, visualization

*This work was supported in part by the National Science Foundation under Grant IRI-9712715.

In this paper we focus on the visualization of different representations of spatial data and on
the use of animation to visualize search operations such as those found in geographical informa-
tion systems (GIS). We have chosen an approach that is accessible on the worl dwide web. Our work
is strongly related to that performed in algorithm animation. Much of the research in thisfield has
focussed on investigating issues involved in the devel opment of genera purpose systems designed
towork for many different types of algorithms(e.g., [5, 4, 6, 16]). Asour focusison the representa-
tions of spatial data, systemsthat are oriented towards geometric computing are of greater interest.
However, many of these systems (e.g., [7, 9, 14]) are primarily designed as general systemsto facil-
itate the implementation of geometric algorithmsrather than their animation although it is possible
to do so using them. More closaly related to our work, although with adifferent focus, are GASP-I1
[15] which is designed to facilitate the visualization of three-dimensional geometric algorithmsin
an electronic classroom and Mocha[2] which provide animation of two-dimensiona agorithms on
the worldwide web. In contrast, we focus on the issuesinvolved in the visualization of a particular
family of spatial data structures and a specific application domain. It isimportant to note that we are
not providing agenera framework for al algorithms and data representations.

The representation of spatial data isan important issue in computational geometry, geographic
information systems (GIS), computer graphics, image processing, pattern recognition, robotics, etc.
Therearetwotypesof spatial data: |ocational dataand object data. Locationa dataconsistsof points
while object data consists of spatia objects that have extent (i.e., they occupy space) such as line
segments, rectangl es, regions, surfaces, volumes, etc. The representation of spatial datainvolvesthe
selection of an appropriate decomposition of the underlying space that contains the spatial objects
as well as the selection of an access structure (e.g., a sequentiad list, array, tree, etc.), known as a
gpatial index, to facilitate finding the objects. Spatia indexes usually provide aquick way to access
the objects given a specific location or set of locations.

There are two principal methods of representing spatial data. The first is to use an object hi-
erarchy that aggregates objects into groups based on proximity and then use proximity to further
aggregate the groups. The drawback of thismethod isthat it resultsin a non-disoint decomposition
of space. Thismeansthat if a search failsto find an object in one path starting at the root, thenitis
not necessarily the case that the object will not be found in another path starting at the root. Data
structures such as the R-tree [8] and the R*-tree [3] are examples of the use of this method. The al-
ternativeis based on arecursive decomposition of the underlying space into disjoint blocks so that a
subset of the objects are associated with each block. Thissubset is often defined by placing abound
on the number of abjectsthat can be associated with each block (termed a stopping condition). The
drawback of thisdisjoint method isthat when the objects have extent (e.g., line segments, rectangles,
and any other non-point objects), then an object may be associated with more than one block.

In this abstract we present VASCO, a system for Visualizing and Animating Spatial Constructs
and Operations. VASCO consists of a set of spatial index JAVA™ (eg., [1]) applets that enable
users on the worldwideweb to experiment with anumber of quadtree and R-tree (e.g., [11, 12]) rep-
resentationsfor different spatia datatypes, and, most importantly, enable them to seein an animated
manner how a number of basic spatial database search operations are executed for them. Dueto the
limitations of our displays, our examples are restricted to a two-dimensiona domain where the ob-
jects can be points, line segments, and rectangles. The decompositionscan beregular (i.e., based on
arecursive halving or quartering of the underlying spaceinto blocks of equal size) until the stopping
conditionissatisfied, or non-regular (inwhich casetheblockscan have arbitrary size). A non-regular
decompositionisonewherethe positionsof the partitionsare based on the datarather than rather than
being restricted to fixed positions due to the halving or quartering of the underlying space. The de-
composition process can partition all of the axes at once (asisthe casefor the quadtree), or one axis

a atime(e.g., ak-dtree).

Figure 1 showsasampleappl et window for quadtreerepresentationsof linedata. The applet win-
dow containsadrawing canvas and a control panel. Thedrawing canvas showsaPM; quadtree[13]
representation of a collection of line segments that form a polygonal subdivision. In essence, the un-
derlying spaceisrecursively decomposed into four blocks of equal size until thereisjust oneportion
of alinesegment in each block, or if thereare portionsof morethan oneline segment in ablock, then
all of theportionsmust meet at avertex withintheblock. Figure 1 also containsawindow describing
the avail able data structures with the line applet (see also Figure 2a). Thiswindow is implemented
asaJAVA™ check box group plusaclosebutton. Thewindow is created when the user activatesthe
Data Structures button. Similar control panels and data structure selection windows are avail-
ablefor the point (Figure 2b) and rectangle (Figure 2c) applets.

Although the representations that we have implemented are hierarchical, in most cases only the
decomposition at the lowest level of the tree which corresponds to blocks of the underlying space
is shown explicitly. This means that the elements of the hierarchy are displayed implicitly as they
consist of aggregations of the blocks at the lower level. In particular, the blocks at the remaining
levelsarevisualized by combining the blocks at thelower level. Notethat displaying just thelowest
level of the hierarchy is adequate for most of the representations as their intermediate levels only
correspond to different aggregationsof the underlying space rather than the objects contained in the
space. Nevertheless, in the animation of the search operations, these blocks are often displayed ex-
plicitly (thereby hiding the blocks at the lower levels). Such a situation arises when the agorithms
process the e ements of the data structure in a top-down manner as is the case when the agorithms
are based on atreetraversal or when the algorithmstake advantage of the aggregation of the blocks
to prune some of the smaller blocks from consideration.

Figure 1 shows the available operations for the line data applet. Most of these operations are
availableto al of the applets, when applicable. Users can see how the underlying space is decom-
posed through the ahility to insert and delete data in an incremental manner. Moreover, users can
also see the effect of the positioning and resizing of the data on the representation through the use
of a move operation. Of course, the same effect could be achieved by a sequence of delete and
insert operations. However, the move capability is much more intuitive (and most importantly
less tedious) thereby enabling users to get a continuous view of how the data structure changes as
the datais moved. In the case of non-point data, users have the ability to move both the object and
its constituent el ements thereby changing itssize. For example, inthe case of line segment data, we
can move the lines (amove operation), as well as change them by modifying their constituent ele-
ments (i.e, the verticesviaamove vertex operation). Similarly, for rectangle data, we can move
the rectangles (via amove operation), as well as modify them by moving their vertices and edges
(viamove vertex andmove edge operations). Thisis preferableto the tedious processof deleting
adataitem and reinserting it at another position.

Users of the applets can see how the space decompositions support the most common database
search operations including finding nearest neighbors from an object of arbitrary type and shape
(nearest asin Figure 3a), retrieving al objects that overlap an object of arbitrary type and shape
(overlap asinFigure3b) or within agiven distance of an object of arbitrary typeand shape (within
asin Figure 3c). These operations are executed in an incremental manner which meansthat the data
objects that satisfy the query are returned and displayed one-by-one. When the algorithms that im-
plement the search operationsare run to completion, they provide the data objectsfor thenearest
and within operationsin the order of their distance from the query object (i.e., they are ranked in
this order). The advantage of the incremental algorithm over traditional methods that compute the

k nearest neighbors (e.g., [10]) isthat if instead we want the k+ 1 nearest neighbors, then we don’t
have to compute al k+ 1 neighbors again. In contrast, using our algorithm, the k + 1% neighbor is
found by simply continuing the search from the pointimmediately after having found the k™ nearest
neighbor.

Thealgorithms are implemented using a priority queue where the queue el ements are the blocks
of the underlying data structure as well as the objects themselves. In the case of thenearest and
within operations, the priority queueis ordered on the basis of the distance of its elements from
the location of the query object. The algorithm works in a top-down manner in the sense that as
elements are removed from the queue, they are checked if they correspond to blocks that are not
a the lowest level of the hierarchy (i.e., nonleaf nodes). If thisis the case, then their immediate
descendants (i.e., the sons) are inserted in the queue ordered according to their distance from the
guery object. Otherwise, the objects that they contain are inserted into the queue ordered according
to their distance from the query object. If the element e that has been removed from the queueisa
data object, then eis reported as the next nearest neighbor of the query abject.

Thenearest and overlap operations are visualized by distinguishing, using colors, between
the blocks and objects that have been processed and those that remain to be processed by virtue of
either being in the queue or not even examined. The speed of the animation can be varied. It can be
run in continuous mode, or incrementally in which case it halts each time an object is processed by
the algorithms, or each time an answer isfound. Thereisalso acapability to review the progress of
each agorithm by replaying it backward through the use of the progress scrollbar.

The same incremental approach can also be used with the overlap operation. The overlap a-
gorithm is a simple tree traversal that visits the blocks of the representation in a top-down manner
checking at each stage if the block b overlaps the query window. If there is no overlap, then exit.
Otherwise, check if bisnot at the lowest level of the hierarchy (i.e., b isanonleaf node), in which
casetheagorithmis applied recursively to theimmediate descendantsof b. If bisat thelowest level
of the hierarchy, then check if the objects contained in b are in the query window and report them as
satisfying the query.

The overlap operation agorithm isanimated in a similar manner to that for thenearest and
within operations. In particular, it also makes use of the concept of blocksto be processed, as well
as objects to be processed. It uses a queue to keep track of the blocks and aobjects whose smallest
containing block has a nonempty intersection with the query range. In other words, the queue con-
tainsthe blocks and objectsthat are guaranteed to be processed in the future (i.e., they are explicitly
checked to seeif their intersection with the query range isnonempty). The difference from the prior-
ity queue of thenearest and within operationsis that there the eementsin the priority queue are
ordered by their distance from the query object while there is no required order in the set of blocks
or objects to be processed in the overlap operation. In other words, once a block b isinserted in
the set of blocksto be processed, b can be processed at any time.

TheVASCO systemcanbefoundat: http://www.cs.umd.edu/ “brabec/quadtree/index.html.
The VASCO system has found usein anumber of applicationssuch as spatia database performance
evaluationand also as an instructional aid in coursesin computational geometry and database design.

References

[1] K. Arnold and J. Gosling. The JAVA™ Programming Language. Addison-Wesley, Reading,
MA, 1996.

(2]

(3]

[4]

(5]

6]

[7]

8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J.E. Baker, I.F. Cruz, G. Liotta, and R. Tamassia. Algorithm animation over the world wide
web. In Proceedings of the International Workshop on Advanced Visual Interface (AVI'96),
pages 203-212, Gubbio, Italy, May 1996.

N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient and robust
access method for points and rectangles. In Proceedings of the ACM S GMOD Conference,
pages 322—331, Atlantic City, NJ, June 1990.

M. Brown. Zeus: asystem for algorithm animation and multi-view editting. Computer Graph-
ics, 18(3):177-186, May 1992.

M. H. Brown. Exploring agorithms using Balsa-1l. Computer, 21(5):14-36, May 1988.

M. H. Brown and R. Sedgewick. A system for algorithm animation. Computer Graphics,
18(3):177-186, July 1984. (Also Proceedings of the S GGRAPH’ 84 Conference, Minneapolis,
July 1984).

P. Epstein, J. Kavanagh, A. Knight, J. May, T. Nguyen, and J. R. Sack. A workbench for com-
putational geometry. Algorithmica, 11(4):404-428, April 1994.

A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of the
ACM S GMOD Conference, pages 47-57, Boston, MA, June 1984.

K. Mehlhorn and S. Naher. Leda: alibrary of efficient data types and agorithms. In Mathe-
matical Foundationsof Computer Science 1989 (MFCS 89), A. Kreczmar and G. Mirkowska,
eds., pages 88-106, Porabka-K ozubnik, Poland, August 1989. (Also Springer-Verlag Lecture
Notesin Computer Science 379).

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proceedings of the
ACM S GMOD Conference, pages 71-79, San Jose, CA, May 1995.

H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing,
and GIS. Addison-Wesley, Reading, MA, 1990.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA, 1990.

H. Samet and R. E. Webber. Storing a collection of polygons using quadtrees. ACM Trans-
actions on Graphics, 4(3):182—222, July 1985. (Also Proceedings of Computer Vision and
Pattern Recognition 83, Washington, DC, June 1983, 127-132; and University of Maryland
Computer Science TR-1372).

P. Schorn. The XY Z GeoBench: a programming environment for geometric algorithms. In
Computational Geometry—Methods, Algorithmsand Applications, H. Bieri and H. Noltemeier,
eds., pages 187-202, Bern, Switzerland, March 1991. (Also Springer-Verlag Lecture Notesin
Computer Science 553).

M. Shneerson and A. Tal. Visudization of geometric algorithmsin an e ectronic classroom.
In Proceedings | EEE Visualization’ 97, R. Yagel and H. Hagen, eds., pages 455458, Phoenix,
AZ, October 1997.

J. T. Stasko. Tango: aframework and system for a gorithm animation. Computer, 23(9):27-39,
September 1990.

PM1 Quadtree data structure Line Applet — |

[0, a] | Zoom InfOut Mode [512, 0] Loz | Sava | Clear|
. Farid + - 71:59”
ove
Data Structures
Move vertex

el o Operations Insert = | pelate
\\ Undao Cverlap

-\l— \ Operation Color Legend | Eiet:

Wwithin
\ - T Max Decomposition 3 —
IR Help
] Click and drag to il
insert a new line,
To snap endpoints:
keep finger on
H \ control when
o 1=

/ ‘lllﬂ— If.II Zoom window |

] Speed

L+

7 Progress

Start |

Run Mode: continuous —

Compiled on Sep 17, 1933

Data Structure

Warning: FApplet Window
i |" PM1 CQuadtree |
7] s PMZ Quadtree

[0, 5121 Cursor | 354, 97 512, 512] ~ PM3 Quadtree

W PMR Quadtree
wBucket PM Quadtres

[<ALT=>+click]

Zoom In v R-Tree
Insert new line Zoom out Close
[<METAz+click]

Applet started.

Figure 1: A sample applet window for line segment data. The drawing canvas
shows a sample polygonal subdivision represented by a PMy quadtree. The
set of possible data structures are also shown by a separate window.

& [ata Structures

Warning: Applet Window

s

PM1 Quadtres

'

'

'

~Bucket PM Quadtres

o

PM2 Quadtres
PM3 Quadtres
PME Quadtres

R—Tree
Close

e Data Structures

Warning: Applet Window

~Bucket PR Quadtres

- Bucket PR k—d Tree

b

PMR Quadtres

| o k—d Tree |
e M Quadtree
v PR Quadtree
« Point Quadtres
v PR k—d Tree

S Data Shructures

Warning: Applet Mindow

[* MX-CIF Quadtree

o Rect Quadtres
~Bucket Rect Quadtree
o PMRE Rect Tree
o PME k—d Tree
W R—Trea

Close

PME k—d Tree

(a)

2d Range Tree
Priarity Tree
R—Tree
PE Tree
Close

(b)

<L LKL

(c)

Figure 2: The set of possible data structures for the (a) line segment, (b)
point, and (c) rectangle data applets.

Applet Window
Cuery object:

> Point

~~Rectangle

~~Polygon

~Path

e ctar

_I Blend
Cantinue |

Warting: Applet Window

Query ohject:

“*Rectangle

~Polygon

~Path

~oSector

Search Options — Look for

[T Objects completely inside query range

_lDbjects intersecting query range, at least one verter part of intersection

_lOhject intersecting query range, no vertices part of intersection
Continue

B Within query B8
Warning: Applet Window

Query object:
“Boint
~Rectangle
~Polygon

«Path

whector

] Blend

Max Distance | 5

Continue

(a)

Figure 3:
queries.

(b)

(c)

The dialog boxes for the (a) nearest, (b) overlap, and (c) within

