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Abstract

A set of spatial index JAVA™ appletsis described that enable users on the worl dwide web
to experiment with anumber of variantsof the quadtree spatial datastructurefor different spatial
data types, and, most importantly, enable them to see in an animated manner how a number of
basic search operations are executed for them. The spatial datatypes are points, line segments,
and rectangles. The search operations are finding nearest neighbors from an object of arbitrary
typeand shape, and retrieving all objectsthat overlap an object of arbitrary type and shape or are
withinagiven distance of an abject of arbitrary typeand shape. The nearest neighbor and within
gueriesretrieve their resultsin the order of their distance from the given query object. The rep-
resentations and algorithms are visualized and animated in a consistent manner using the same
primitives so that the differences between the effects of the representations can be easily under-
stood. Theappletscanbefoundathttp://www.cs.umd. edu/"hjs/quadtree/index.html.
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In this paper we focus on the visualization of different representations of spatial data and on
the use of animation to visualize search operations such as those found in geographical informa-
tion systems (GIS). We have chosen an approach that is accessible on the worl dwide web. Our work
is strongly related to that performed in algorithm animation. Much of the research in thisfield has
focussed on investigating issues involved in the devel opment of genera purpose systems designed
towork for many different types of algorithms(e.g., [5, 4, 6, 16]). Asour focusison the representa-
tions of spatial data, systemsthat are oriented towards geometric computing are of greater interest.
However, many of these systems (e.g., [7, 9, 14]) are primarily designed as general systemsto facil-
itate the implementation of geometric algorithmsrather than their animation although it is possible
to do so using them. More closaly related to our work, although with adifferent focus, are GASP-I1
[15] which is designed to facilitate the visualization of three-dimensional geometric algorithmsin
an electronic classroom and Mocha[2] which provide animation of two-dimensiona agorithms on
the worldwide web. In contrast, we focus on the issuesinvolved in the visualization of a particular
family of spatial data structures and a specific application domain. It isimportant to note that we are
not providing agenera framework for al algorithms and data representations.

The representation of spatial data isan important issue in computational geometry, geographic
information systems (GIS), computer graphics, image processing, pattern recognition, robotics, etc.
Therearetwotypesof spatial data: |ocational dataand object data. Locationa dataconsistsof points
while object data consists of spatia objects that have extent (i.e., they occupy space) such as line
segments, rectangl es, regions, surfaces, volumes, etc. The representation of spatial datainvolvesthe
selection of an appropriate decomposition of the underlying space that contains the spatial objects
as well as the selection of an access structure (e.g., a sequentiad list, array, tree, etc.), known as a
gpatial index, to facilitate finding the objects. Spatia indexes usually provide aquick way to access
the objects given a specific location or set of locations.

There are two principal methods of representing spatial data. The first is to use an object hi-
erarchy that aggregates objects into groups based on proximity and then use proximity to further
aggregate the groups. The drawback of thismethod isthat it resultsin a non-disoint decomposition
of space. Thismeansthat if a search failsto find an object in one path starting at the root, thenitis
not necessarily the case that the object will not be found in another path starting at the root. Data
structures such as the R-tree [8] and the R*-tree [3] are examples of the use of this method. The al-
ternativeis based on arecursive decomposition of the underlying space into disjoint blocks so that a
subset of the objects are associated with each block. Thissubset is often defined by placing abound
on the number of abjectsthat can be associated with each block (termed a stopping condition). The
drawback of thisdisjoint method isthat when the objects have extent (e.g., line segments, rectangles,
and any other non-point objects), then an object may be associated with more than one block.

In this abstract we present VASCO, a system for Visualizing and Animating Spatial Constructs
and Operations. VASCO consists of a set of spatial index JAVA™ (eg., [1]) applets that enable
users on the worldwideweb to experiment with anumber of quadtree and R-tree (e.g., [11, 12]) rep-
resentationsfor different spatia datatypes, and, most importantly, enable them to seein an animated
manner how a number of basic spatial database search operations are executed for them. Dueto the
limitations of our displays, our examples are restricted to a two-dimensiona domain where the ob-
jects can be points, line segments, and rectangles. The decompositionscan beregular (i.e., based on
arecursive halving or quartering of the underlying spaceinto blocks of equal size) until the stopping
conditionissatisfied, or non-regular (inwhich casetheblockscan have arbitrary size). A non-regular
decompositionisonewherethe positionsof the partitionsare based on the datarather than rather than
being restricted to fixed positions due to the halving or quartering of the underlying space. The de-
composition process can partition all of the axes at once (asisthe casefor the quadtree), or one axis



a atime(e.g., ak-dtree).

Figure 1 showsasampleappl et window for quadtreerepresentationsof linedata. The applet win-
dow containsadrawing canvas and a control panel. Thedrawing canvas showsaPM; quadtree[13]
representation of a collection of line segments that form a polygonal subdivision. In essence, the un-
derlying spaceisrecursively decomposed into four blocks of equal size until thereisjust oneportion
of alinesegment in each block, or if thereare portionsof morethan oneline segment in ablock, then
all of theportionsmust meet at avertex withintheblock. Figure 1 also containsawindow describing
the avail able data structures with the line applet (see also Figure 2a). Thiswindow is implemented
asaJAVA™ check box group plusaclosebutton. Thewindow is created when the user activatesthe
Data Structures button. Similar control panels and data structure selection windows are avail-
ablefor the point (Figure 2b) and rectangle (Figure 2c) applets.

Although the representations that we have implemented are hierarchical, in most cases only the
decomposition at the lowest level of the tree which corresponds to blocks of the underlying space
is shown explicitly. This means that the elements of the hierarchy are displayed implicitly as they
consist of aggregations of the blocks at the lower level. In particular, the blocks at the remaining
levelsarevisualized by combining the blocks at thelower level. Notethat displaying just thelowest
level of the hierarchy is adequate for most of the representations as their intermediate levels only
correspond to different aggregationsof the underlying space rather than the objects contained in the
space. Nevertheless, in the animation of the search operations, these blocks are often displayed ex-
plicitly (thereby hiding the blocks at the lower levels). Such a situation arises when the agorithms
process the e ements of the data structure in a top-down manner as is the case when the agorithms
are based on atreetraversal or when the algorithmstake advantage of the aggregation of the blocks
to prune some of the smaller blocks from consideration.

Figure 1 shows the available operations for the line data applet. Most of these operations are
availableto al of the applets, when applicable. Users can see how the underlying space is decom-
posed through the ahility to insert and delete data in an incremental manner. Moreover, users can
also see the effect of the positioning and resizing of the data on the representation through the use
of a move operation. Of course, the same effect could be achieved by a sequence of delete and
insert operations. However, the move capability is much more intuitive (and most importantly
less tedious) thereby enabling users to get a continuous view of how the data structure changes as
the datais moved. In the case of non-point data, users have the ability to move both the object and
its constituent el ements thereby changing itssize. For example, inthe case of line segment data, we
can move the lines (amove operation), as well as change them by modifying their constituent ele-
ments (i.e, the verticesviaamove vertex operation). Similarly, for rectangle data, we can move
the rectangles (via amove operation), as well as modify them by moving their vertices and edges
(viamove vertex andmove edge operations). Thisis preferableto the tedious processof deleting
adataitem and reinserting it at another position.

Users of the applets can see how the space decompositions support the most common database
search operations including finding nearest neighbors from an object of arbitrary type and shape
(nearest asin Figure 3a), retrieving al objects that overlap an object of arbitrary type and shape
(overlap asinFigure3b) or within agiven distance of an object of arbitrary typeand shape (within
asin Figure 3c). These operations are executed in an incremental manner which meansthat the data
objects that satisfy the query are returned and displayed one-by-one. When the algorithms that im-
plement the search operationsare run to completion, they provide the data objectsfor thenearest
and within operationsin the order of their distance from the query object (i.e., they are ranked in
this order). The advantage of the incremental algorithm over traditional methods that compute the



k nearest neighbors (e.g., [10]) isthat if instead we want the k+ 1 nearest neighbors, then we don’t
have to compute al k+ 1 neighbors again. In contrast, using our algorithm, the k + 1% neighbor is
found by simply continuing the search from the pointimmediately after having found the k™ nearest
neighbor.

Thealgorithms are implemented using a priority queue where the queue el ements are the blocks
of the underlying data structure as well as the objects themselves. In the case of thenearest and
within operations, the priority queueis ordered on the basis of the distance of its elements from
the location of the query object. The algorithm works in a top-down manner in the sense that as
elements are removed from the queue, they are checked if they correspond to blocks that are not
a the lowest level of the hierarchy (i.e., nonleaf nodes). If thisis the case, then their immediate
descendants (i.e., the sons) are inserted in the queue ordered according to their distance from the
guery object. Otherwise, the objects that they contain are inserted into the queue ordered according
to their distance from the query object. If the element e that has been removed from the queueisa
data object, then eis reported as the next nearest neighbor of the query abject.

Thenearest and overlap operations are visualized by distinguishing, using colors, between
the blocks and objects that have been processed and those that remain to be processed by virtue of
either being in the queue or not even examined. The speed of the animation can be varied. It can be
run in continuous mode, or incrementally in which case it halts each time an object is processed by
the algorithms, or each time an answer isfound. Thereisalso acapability to review the progress of
each agorithm by replaying it backward through the use of the progress scrollbar.

The same incremental approach can also be used with the overlap operation. The overlap a-
gorithm is a simple tree traversal that visits the blocks of the representation in a top-down manner
checking at each stage if the block b overlaps the query window. If there is no overlap, then exit.
Otherwise, check if bisnot at the lowest level of the hierarchy (i.e., b isanonleaf node), in which
casetheagorithmis applied recursively to theimmediate descendantsof b. If bisat thelowest level
of the hierarchy, then check if the objects contained in b are in the query window and report them as
satisfying the query.

The overlap operation agorithm isanimated in a similar manner to that for thenearest and
within operations. In particular, it also makes use of the concept of blocksto be processed, as well
as objects to be processed. It uses a queue to keep track of the blocks and aobjects whose smallest
containing block has a nonempty intersection with the query range. In other words, the queue con-
tainsthe blocks and objectsthat are guaranteed to be processed in the future (i.e., they are explicitly
checked to seeif their intersection with the query range isnonempty). The difference from the prior-
ity queue of thenearest and within operationsis that there the eementsin the priority queue are
ordered by their distance from the query object while there is no required order in the set of blocks
or objects to be processed in the overlap operation. In other words, once a block b isinserted in
the set of blocksto be processed, b can be processed at any time.

TheVASCO systemcanbefoundat: http://www.cs.umd.edu/ “brabec/quadtree/index.html.
The VASCO system has found usein anumber of applicationssuch as spatia database performance
evaluationand also as an instructional aid in coursesin computational geometry and database design.
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set of possible data structures are also shown by a separate window.
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