
Visualizing and Animating Search Operations on Quadtrees on
the Worldwide Web�

František Brabec
Computer Science Department

University of Maryland
College Park, Maryland 20742

brabec@umiacs.umd.edu

Hanan Samet
Computer Science Department

Center for Automation Research
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

hjs@cs.umd.edu

December 24, 1999

Abstract

A set of spatial index JAVATM applets is described that enable users on the worldwide web
to experiment with a number of variants of the quadtree spatial data structure for different spatial
data types, and, most importantly, enable them to see in an animated manner how a number of
basic search operations are executed for them. The spatial data types are points, line segments,
and rectangles. The search operations are finding nearest neighbors from an object of arbitrary
type and shape, and retrieving all objects that overlap an object of arbitrary type and shape or are
within a given distance of an object of arbitrary type and shape. The nearest neighbor and within
queries retrieve their results in the order of their distance from the given query object. The rep-
resentations and algorithms are visualized and animated in a consistent manner using the same
primitives so that the differences between the effects of the representations can be easily under-
stood. The applets can be found at http://www.cs.umd.edu/~hjs/quadtree/index.html.

Keywords and phrases: quadtrees, worldwide web, incremental nearest neighbor finding, win-
dow queries, ranking, animation, visualization�This work was supported in part by the National Science Foundation under Grant IRI-9712715.



In this paper we focus on the visualization of different representations of spatial data and on
the use of animation to visualize search operations such as those found in geographical informa-
tion systems (GIS). We have chosen an approach that is accessible on the worldwide web. Our work
is strongly related to that performed in algorithm animation. Much of the research in this field has
focussed on investigating issues involved in the development of general purpose systems designed
to work for many different types of algorithms (e.g., [5, 4, 6, 16]). As our focus is on the representa-
tions of spatial data, systems that are oriented towards geometric computing are of greater interest.
However, many of these systems (e.g., [7, 9, 14]) are primarily designed as general systems to facil-
itate the implementation of geometric algorithms rather than their animation although it is possible
to do so using them. More closely related to our work, although with a different focus, are GASP-II
[15] which is designed to facilitate the visualization of three-dimensional geometric algorithms in
an electronic classroom and Mocha [2] which provide animation of two-dimensional algorithms on
the worldwide web. In contrast, we focus on the issues involved in the visualization of a particular
family of spatial data structures and a specific application domain. It is important to note that we are
not providing a general framework for all algorithms and data representations.

The representation of spatial data is an important issue in computational geometry, geographic
information systems (GIS), computer graphics, image processing, pattern recognition, robotics, etc.
There are two types of spatial data: locational data and object data. Locational data consists of points
while object data consists of spatial objects that have extent (i.e., they occupy space) such as line
segments, rectangles, regions, surfaces, volumes, etc. The representation of spatial data involves the
selection of an appropriate decomposition of the underlying space that contains the spatial objects
as well as the selection of an access structure (e.g., a sequential list, array, tree, etc.), known as a
spatial index, to facilitate finding the objects. Spatial indexes usually provide a quick way to access
the objects given a specific location or set of locations.

There are two principal methods of representing spatial data. The first is to use an object hi-
erarchy that aggregates objects into groups based on proximity and then use proximity to further
aggregate the groups. The drawback of this method is that it results in a non-disjoint decomposition
of space. This means that if a search fails to find an object in one path starting at the root, then it is
not necessarily the case that the object will not be found in another path starting at the root. Data
structures such as the R-tree [8] and the R�-tree [3] are examples of the use of this method. The al-
ternative is based on a recursive decomposition of the underlying space into disjoint blocks so that a
subset of the objects are associated with each block. This subset is often defined by placing a bound
on the number of objects that can be associated with each block (termed a stopping condition). The
drawback of this disjoint method is that when the objects have extent (e.g., line segments, rectangles,
and any other non-point objects), then an object may be associated with more than one block.

In this abstract we present VASCO, a system for Visualizing and Animating Spatial Constructs
and Operations. VASCO consists of a set of spatial index JAVATM (e.g., [1]) applets that enable
users on the worldwide web to experiment with a number of quadtree and R-tree (e.g., [11, 12]) rep-
resentations for different spatial data types, and, most importantly, enable them to see in an animated
manner how a number of basic spatial database search operations are executed for them. Due to the
limitations of our displays, our examples are restricted to a two-dimensional domain where the ob-
jects can be points, line segments, and rectangles. The decompositions can be regular (i.e., based on
a recursive halving or quartering of the underlying space into blocks of equal size) until the stopping
condition is satisfied, or non-regular (in which case the blocks can have arbitrary size). A non-regular
decomposition is one where the positionsof the partitions are based on the data rather than rather than
being restricted to fixed positions due to the halving or quartering of the underlying space. The de-
composition process can partition all of the axes at once (as is the case for the quadtree), or one axis

1



at a time (e.g., a k-d tree).

Figure 1 shows a sample applet window for quadtree representations of line data. The applet win-
dow contains a drawing canvas and a control panel. The drawing canvas shows a PM1 quadtree [13]
representation of a collection of line segments that form a polygonal subdivision. In essence, the un-
derlying space is recursively decomposed into four blocks of equal size until there is just one portion
of a line segment in each block, or if there are portions of more than one line segment in a block, then
all of the portions must meet at a vertex within the block. Figure 1 also contains a window describing
the available data structures with the line applet (see also Figure 2a). This window is implemented
as a JAVATM check box group plus a close button. The window is created when the user activates theData Structures button. Similar control panels and data structure selection windows are avail-
able for the point (Figure 2b) and rectangle (Figure 2c) applets.

Although the representations that we have implemented are hierarchical, in most cases only the
decomposition at the lowest level of the tree which corresponds to blocks of the underlying space
is shown explicitly. This means that the elements of the hierarchy are displayed implicitly as they
consist of aggregations of the blocks at the lower level. In particular, the blocks at the remaining
levels are visualized by combining the blocks at the lower level. Note that displaying just the lowest
level of the hierarchy is adequate for most of the representations as their intermediate levels only
correspond to different aggregations of the underlying space rather than the objects contained in the
space. Nevertheless, in the animation of the search operations, these blocks are often displayed ex-
plicitly (thereby hiding the blocks at the lower levels). Such a situation arises when the algorithms
process the elements of the data structure in a top-down manner as is the case when the algorithms
are based on a tree traversal or when the algorithms take advantage of the aggregation of the blocks
to prune some of the smaller blocks from consideration.

Figure 1 shows the available operations for the line data applet. Most of these operations are
available to all of the applets, when applicable. Users can see how the underlying space is decom-
posed through the ability to insert and delete data in an incremental manner. Moreover, users can
also see the effect of the positioning and resizing of the data on the representation through the use
of a move operation. Of course, the same effect could be achieved by a sequence of delete andinsert operations. However, the move capability is much more intuitive (and most importantly
less tedious) thereby enabling users to get a continuous view of how the data structure changes as
the data is moved. In the case of non-point data, users have the ability to move both the object and
its constituent elements thereby changing its size. For example, in the case of line segment data, we
can move the lines (a move operation), as well as change them by modifying their constituent ele-
ments (i.e., the vertices via a move vertex operation). Similarly, for rectangle data, we can move
the rectangles (via a move operation), as well as modify them by moving their vertices and edges
(via move vertex and move edge operations). This is preferable to the tedious process of deleting
a data item and reinserting it at another position.

Users of the applets can see how the space decompositions support the most common database
search operations including finding nearest neighbors from an object of arbitrary type and shape
(nearest as in Figure 3a), retrieving all objects that overlap an object of arbitrary type and shape
(overlap as in Figure 3b) or within a given distance of an object of arbitrary type and shape (within
as in Figure 3c). These operations are executed in an incremental manner which means that the data
objects that satisfy the query are returned and displayed one-by-one. When the algorithms that im-
plement the search operations are run to completion, they provide the data objects for the nearest
and within operations in the order of their distance from the query object (i.e., they are ranked in
this order). The advantage of the incremental algorithm over traditional methods that compute the

2



k nearest neighbors (e.g., [10]) is that if instead we want the k+ 1 nearest neighbors, then we don’t
have to compute all k+ 1 neighbors again. In contrast, using our algorithm, the k+ 1st neighbor is
found by simply continuing the search from the point immediately after having found the kth nearest
neighbor.

The algorithms are implemented using a priority queue where the queue elements are the blocks
of the underlying data structure as well as the objects themselves. In the case of the nearest andwithin operations, the priority queue is ordered on the basis of the distance of its elements from
the location of the query object. The algorithm works in a top-down manner in the sense that as
elements are removed from the queue, they are checked if they correspond to blocks that are not
at the lowest level of the hierarchy (i.e., nonleaf nodes). If this is the case, then their immediate
descendants (i.e., the sons) are inserted in the queue ordered according to their distance from the
query object. Otherwise, the objects that they contain are inserted into the queue ordered according
to their distance from the query object. If the element e that has been removed from the queue is a
data object, then e is reported as the next nearest neighbor of the query object.

The nearest and overlap operations are visualized by distinguishing, using colors, between
the blocks and objects that have been processed and those that remain to be processed by virtue of
either being in the queue or not even examined. The speed of the animation can be varied. It can be
run in continuous mode, or incrementally in which case it halts each time an object is processed by
the algorithms, or each time an answer is found. There is also a capability to review the progress of
each algorithm by replaying it backward through the use of the progress scrollbar.

The same incremental approach can also be used with the overlap operation. The overlap al-
gorithm is a simple tree traversal that visits the blocks of the representation in a top-down manner
checking at each stage if the block b overlaps the query window. If there is no overlap, then exit.
Otherwise, check if b is not at the lowest level of the hierarchy (i.e., b is a nonleaf node), in which
case the algorithm is applied recursively to the immediate descendants of b. If b is at the lowest level
of the hierarchy, then check if the objects contained in b are in the query window and report them as
satisfying the query.

The overlap operation algorithm is animated in a similar manner to that for the nearest andwithin operations. In particular, it also makes use of the concept of blocks to be processed, as well
as objects to be processed. It uses a queue to keep track of the blocks and objects whose smallest
containing block has a nonempty intersection with the query range. In other words, the queue con-
tains the blocks and objects that are guaranteed to be processed in the future (i.e., they are explicitly
checked to see if their intersection with the query range is nonempty). The difference from the prior-
ity queue of the nearest and within operations is that there the elements in the priority queue are
ordered by their distance from the query object while there is no required order in the set of blocks
or objects to be processed in the overlap operation. In other words, once a block b is inserted in
the set of blocks to be processed, b can be processed at any time.

The VASCO systemcan be found at : http://www.cs.umd.edu/~brabec/quadtree/index.html.
The VASCO system has found use in a number of applications such as spatial database performance
evaluation and also as an instructionalaid in courses in computational geometry and database design.

References

[1] K. Arnold and J. Gosling. The JAVATM Programming Language. Addison-Wesley, Reading,
MA, 1996.

3



[2] J.E. Baker, I.F. Cruz, G. Liotta, and R. Tamassia. Algorithm animation over the world wide
web. In Proceedings of the International Workshop on Advanced Visual Interface (AVI’96),
pages 203–212, Gubbio, Italy, May 1996.

[3] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R�-tree: an efficient and robust
access method for points and rectangles. In Proceedings of the ACM SIGMOD Conference,
pages 322–331, Atlantic City, NJ, June 1990.

[4] M. Brown. Zeus: a system for algorithm animation and multi-view editting. Computer Graph-
ics, 18(3):177–186, May 1992.

[5] M. H. Brown. Exploring algorithms using Balsa-II. Computer, 21(5):14–36, May 1988.

[6] M. H. Brown and R. Sedgewick. A system for algorithm animation. Computer Graphics,
18(3):177–186, July 1984. (Also Proceedings of the SIGGRAPH’84 Conference, Minneapolis,
July 1984).

[7] P. Epstein, J. Kavanagh, A. Knight, J. May, T. Nguyen, and J. R. Sack. A workbench for com-
putational geometry. Algorithmica, 11(4):404–428, April 1994.

[8] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of the
ACM SIGMOD Conference, pages 47–57, Boston, MA, June 1984.

[9] K. Mehlhorn and S. Naher. Leda: a library of efficient data types and algorithms. In Mathe-
matical Foundations of Computer Science 1989 (MFCS’89), A. Kreczmar and G. Mirkowska,
eds., pages 88–106, Porabka-Kozubnik, Poland, August 1989. (Also Springer-Verlag Lecture
Notes in Computer Science 379).

[10] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proceedings of the
ACM SIGMOD Conference, pages 71–79, San Jose, CA, May 1995.

[11] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing,
and GIS. Addison-Wesley, Reading, MA, 1990.

[12] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA, 1990.

[13] H. Samet and R. E. Webber. Storing a collection of polygons using quadtrees. ACM Trans-
actions on Graphics, 4(3):182–222, July 1985. (Also Proceedings of Computer Vision and
Pattern Recognition 83, Washington, DC, June 1983, 127–132; and University of Maryland
Computer Science TR–1372).

[14] P. Schorn. The XYZ GeoBench: a programming environment for geometric algorithms. In
ComputationalGeometry – Methods, Algorithmsand Applications,H. Bieri and H. Noltemeier,
eds., pages 187–202, Bern, Switzerland, March 1991. (Also Springer-Verlag Lecture Notes in
Computer Science 553).

[15] M. Shneerson and A. Tal. Visualization of geometric algorithms in an electronic classroom.
In Proceedings IEEE Visualization’97, R. Yagel and H. Hagen, eds., pages 455–458, Phoenix,
AZ, October 1997.

[16] J. T. Stasko. Tango: a framework and system for algorithm animation. Computer, 23(9):27–39,
September 1990.

4



Figure 1: A sample applet window for line segment data. The drawing canvasshows a sample polygonal subdivision represented by a PM1 quadtree. Theset of possible data structures are also shown by a separate window.
5



(a) (b) (c)Figure 2: The set of possible data structures for the (a) line segment, (b)point, and (c) rectangle data applets.
(a) (b) (c)Figure 3: The dialog boxes for the (a) nearest, (b) overlap, and (c) withinqueries.

6


