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Hierarchical Infrastructure for Internet
Mapping Services

Frantǐsek Brabec and Hanan Samet?

Abstract For years, the access to internet-based public mapping services
provided by vendors such as MapQuest or MapsOnUs has changed little. The
mapping service would generate maps of the viewed areas in raster format
and transfer them in the form of images embedded in web pages to remote
users. This approach is suboptimal for users who plan to explore a given area
in more detail as the same data may be sent to the users repeatedly. In mid
2005, Google Maps and MS Virtual Earth improved upon this approach by
dividing the images into smaller tiles which allows many of them to be reused
in subsequent panning. This increases performance of such mapping systems
substantially. In both cases, however, the client only has access to data con-
verted in its raster format which prevents it from querying or re-processing
the data locally. We investigate this opportunity for further improvement in
providing the client with map data in vector format so that it can perform
some operations locally without accessing the server. We focus on finding
strategies for distributing of work between the server, clients, and possibly
other entities introduced into the model for query evaluation and data man-
agement. We address issues of scalability for clients that have only limited
access to system resources (e.g., a Java applet). We compare performance
of the vector-based system with raster-based systems, both traditional (e.g.,
MapQuest) and tiled methods (e.g., Google Maps) for a set of common basic
operations consisting of fine and fast scrolling and zooming (both in and out).
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1.1 Introduction

Technological advances in recent years have opened ways for easier creation of
spatial data. Vast amounts of data are collected daily by both governmental
institutions (e.g., USGS, NASA) and commercial entities (e.g., IKONOS) for
a wide range of scientific applications (e.g., [18]).

The motivation is the increased popularity and affordability across the
spectrum of collection methods, ranging from personal GPS units to satel-
lite systems. Many collection methods such as satellite systems produce data
in raster format. Often, such raster data is analyzed by researchers directly,
while at other times such data is used to produce a final dataset in vector
format. With rapidly increasing data supplies, more applications for the data
are being developed that interest a wider consumer base. The increasing pop-
ularity of spatial data viewers and query tools with end users introduces a
requirement for methods to allow these users to access this data for viewing
and querying instantly and without much effort. Our work focuses on pro-
viding remote access to vector-based spatial data, rather than raster data.

Traditionally, common spatial databases and Geographic Information Sys-
tems (GIS) such as ESRI’s ArcInfo are designed to be stand-alone products.
The spatial database is kept on the same computer or local area network
from which it is visualized and queried. There are, however, many appli-
cations where a more distributed approach is desirable. In these cases, the
database is maintained in one location, while users need to work with it from
possibly distant places over the network (e.g., the public internet). A com-
mon approach for providing access to remote spatial databases adopted by
numerous web-based mapping service vendors (e.g., MapQuest [8]) performs
all the operations on the server side, and then transfers only bitmaps that
represent results of user queries and commands. Although this solution only
requires minimal hardware and software resources on the client site, the re-
sulting product is severely limited in the available functionality and response
time (each user action results in a new bitmap being transferred to the client).
Naturally, the drawbacks of this traditional approach have been identified and
work has started to improve the performance of remote spatial access using
both raster [1] and vector [19] approaches. Similar issues were addressed in a
component-based WebGIS [12] tool by adding a spatial caching framework.

Providing efficient data flow between a given spatial server and individual
clients is not the only problem that needs addressing. In many scenarios,
data originates from multiple providers and the information they offer needs
to be aggregated before being presented to the end user. Similarly, multiple
spatial servers may be involved for redundancy or load balancing. Such topics
have been explored in other work, when the providers’ hosting environment
remains stable [20] and for more dynamic peer-to-peer arrangements [11].

In our research, we explore new ways of allowing visualization of both
spatial and nonspatial data stored in a central server database on a simple
client connected to this server by a possibly slow and unreliable connection.
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We develop a new vector-based client-server approach as a response to some
of these drawbacks of traditional solutions. Our system aims to partition the
workload between the client and the server in such a manner that the user’s
experience with the system is interactive, with minimal delay between the
user action and appropriate response. We consider scenarios where bringing
in auxiliary servers would improve the performance of the system. The design
works around potential bottlenecks for the information transfer such as the
limited network bandwidth or resources available on the client computer. To
support multiple concurrent clients, limited resources on the server must also
be considered. We will see that the performance of our vector approach is
comparable and at times better than the latest raster-based methods.

The rest of the paper is organized as follows. Section 1.2 reviews existing
commonly used methods for remotely accessing spatial databases. Section 1.3
discusses our architecture based on pure client-server approach. Given a client
that communicates directly to a server, we examine different deployment op-
tions and describe several methods that improve the performance that can
be achieved in this environment. Section 1.4 extends the basic client-server
approach by adding auxiliary servers. Such servers can be used as temporary
data storage between the client and the server. We present typical deployment
scenarios when this would be beneficial, as well as present methods for using
this arrangement to further speed up its performance. Section 1.5 combines all
the different design options and speed-up methods together, performs evalua-
tions, and discusses how to choose the optimal deployment method for given
specific usage scenarios. Section 1.6 shows results of experiments compar-
ing performance of our method and existing established raster-based remote
access methods. Finally, Section 1.7 draws some conclusions and proposes
topics for further research.

1.2 Internet Mapping Services

Many vendors that provide access to maps over the web utilize an approach
where server-generated bitmaps are sent to the web browser client for view-
ing. The typical example of providers of such services are vendors such as
MapQuest [8] for street maps based on addresses; or TopoZone [7] for to-
pographical maps. Their approach is simple, the server receives a location
description (e.g., a street address, name of a place, etc), it queries its spatial
database, retrieves a map, converts it into a bitmap image and sends it back
to the user (their browser). The map retrieved from the spatial database
may be in vector (MapQuest) or raster (TopoZone) format. In either case, it
gets rasterized or subsampled respectively before sending the data over the
network to user’s browser.

This approach requires very little support from the client site, typically
just a web-browser equipped computer or network appliance. The drawback of
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this solution is that it quickly reaches its usability limitations when more se-
rious work is attempted. Such poorly supported operations include even basic
zooming in or out or panning not to mention running queries. In particular,
actions such as zooming or panning are very cumbersome with performance
bordering unacceptable for many users as the response time is determined
by the amount of data that needs to be transferred every time a new view is
requested. Other operations such as querying the database beyond displaying
all objects within a certain rectangle are not supported at all.

An interesting enhanced raster-based design has recently been presented
by Google [1] and Microsoft [3]. Similar to MapQuest, Google Maps and
Microsoft Virtual Earth (and its predecessor TerraServer [10]) services are
raster-based as is also NASA’s World Wind [5] which besides working with
NASA’s own data it also makes use of data from TerraServer. However, these
services do not send a single image covering the whole viewable area every
time there is a need for an update. Instead, the viewable map is divided into
a grid of smaller image cells. When a panning operation is executed, there is
no need to download a new image that represents the whole viewable area.
Only cells covering the area that just became visible need to be downloaded,
others are reused by simply moving them on the screen.

As an alternative to these raster-based systems, we consider the SAND
Internet Browser [17] — a Java application that represents the client piece
of our vector-based client-server solution for facilitation of remote access to
spatial databases.

1.3 Direct Server Access

Traditionally, a client-server computing paradigm only involves two comput-
ers — the client and the server (obviously ignoring computers and devices in
between the two that simply route or shape the traffic between them, such as
routers, firewalls, etc). We examine such a scenario as well as scenarios that
involve other auxiliary servers.

1.3.1 Pure Client-Server Design

The simplest and most common design for the client-server architecture
makes individual tasks such as data management, image rendering, and query
evaluation the responsibility of either the client or the server. When the spa-
tial database application is implemented in this manner, the server handles all
the data management and query evaluation. The client only facilitates data
visualization while maintaining connectivity to the server. In this scenario,
the client simply translates user input into queries and transmits them to the
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server. It can also receive data sent by the server and visualize it. There is no
data storage or processing on the client beyond these basic functions. Note
that this design corresponds to the way in which many popular web-based
mapping services such as MapQuest operate.

This approach’s advantage is that most users can utilize the service with
the resources that they already have — that is, a networked machine with a
web browser. Users do not need to install or set up any additional hardware
or software. However, this approach’s main drawback is that clients need
to communicate with the server each time users request even the simplest
operation. This can slow down users experience significantly if the network
throughput and latency are a limiting factor or if the server is heavily loaded.

1.3.2 Memory-Based Caching in the Client

The first method that improves upon the basic design is one where the client
utilizes some of its own main memory to store (cache) some of the data in
the central database. This allows the client in some cases to rely on its own
data repository to handle some of the user’s requests thus cutting back on
the network utilization and improving the system’s responsiveness. Naturally,
the spatial data stored on the client must be spatially indexed for fast access.
Note that in this approach it is no longer possible to use the standard web
browser as a mere image viewer. In particular, custom code needs to be loaded
onto the client to facilitate the operations to be performed there. The Java
environment has emerged in the past years as a platform of choice for most
types of lightweight cross-platform applications. The maximum amount of
data to be stored on the client to optimize the overall performance depends
on the client’s available resources. The rationale for this design is for the
client to fetch the requested data via fast memory-only operations whenever
possible. This is more efficient than retrieving the same data over the network
from the central server.

Operations performed by the mapping system are primarily client-driven,
i.e., any operation performed on either the client or the server is in response
to some user-generated input. To minimize the amount of data that needs
to be transferred from the server to the client in response to each event on
the client side, various techniques were developed and implemented in the
form of the SAND Internet Browser. To keep the amount of traffic between
the client and the server low, we cache some data on the client in case the
user requests another operation on data in the same area. We store the data
in their original vector format rather than the resulting bitmaps so that the
client is able to generate new views and process some types of queries locally
without having to request additional data from the server.
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1.3.3 Internal Spatial Data Structures

The spatial data is stored on the client using a PMR quadtree [13] spatial
data structure. This structure subdivides the plane into quadrants such that
if an object is inserted into a certain quadrant, then if the quadrant already
contains more than a predefined threshold of other objects, then the quadrant
is split into its four children once and only once and the objects are reinserted
into the children. Thus, the objects are always stored in the leaf nodes of this
quadtree. We establish and maintain the maximum amount of data that
can be cached on the client in order not to overwhelm or crash the client
platform. Each leaf node of the PMR quadtree also contains a time stamp
indicating when it was accessed (displayed) last. Together with the PMR
quadtree containing the spatial data, we also maintain pointers to all of the
PMR quadtree leaf nodes using a variant of a binary heap data structure.
The key for this tree is the time stamp stored in the PMR quadtree leaf
nodes. This is shown in Figure 1.1.
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Figure 1.1: Individual spatial data layers are stored in separate PMR
quadtrees. A priority queue shared by all of them maintains ordering of
all the PMR leaves for all the PMR quadtrees based on the time of their
last viewing.

This structure enables quick insertions, deletions and locating the pointer
representing the PMR node with the oldest time stamp. This arrangement
facilitates our caching mechanism. When we need to make more memory
available for additional data, we use the least-recently-used (LRU) caching
mechanism to delete as many PMR leaf nodes linked from the top of the
binary heap data structure as necessary. If all four children of some internal
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PMR quadtree node are removed, then the quadtree automatically collapses
and the internal node becomes an empty leaf node. A flag in each node
indicates whether the node represents an area that is actually empty (valid
node) or whether the node is empty because its elements are not available in
the memory (e.g., page fault, invalid node).

Note that using this mechanism, the entire quadrant has to be contained
in the memory for its node to be valid. This may be too inefficient as if we
continuously work with only part of the quadrant and have no need to load
the rest of the quadrant, then the node would never be marked as valid and
the data from the part in which we are interested would be reloaded over and
over. To prevent this, we add another field in each node indicating which part
of it is actually valid. Thus, if we loaded data for only part of the quadrant,
we mark the quadrant as valid but indicate which part of it is actually valid
(i.e., the intersection of the quadrant and the query window). The next time
we need to access data from this quadrant, if the area that we need falls
completely within the valid area of the node, then we do not need to load
any additional data. If the area that we need is not fully enclosed by the valid
area, then we load the missing part and increase the valid area of the node
accordingly.

A typical dataset would contain several tables representing different layers
of the map. While each layer is stored in a separate PMR quadtree, there
is only a single binary heap data structure for all the layers combined. This
way, when a user stops working with one of the layers, its data will be au-
tomatically and gradually removed from the cache and will be replaced with
the data needed currently.

As the user explores the content of the database using a graphical viewer,
s/he is basically retrieving all the objects stored in the database that over-
lap the current viewing window. When the content of the spatial structure
overlapping a certain query object needs to be drawn, a tree traversal is per-
formed to find all the objects in the PMR quadtree that overlap the query
object. At times, we find that the internal nodes are “invalid” which means
that either they were not loaded yet or they were previously removed by the
memory management process when they were not used for some time. In such
a case, the data needs to be reloaded.

The algorithm contains two steps. In the first step, the system finds out
what areas need to be loaded from the server and builds a collection of rect-
angles that represent this area.

In the second step, the algorithm takes the list of rectangles returned by
the first step and loads all the data from the server that lie within the area
defined by this collection of rectangles. Next, for each rectangle loaded, it
adjusts the corresponding PMR node status.

Now, when we need to display all data that overlaps a given window w,
we can look at not just the valid/invalid identifier of each PMR node that
overlaps w, but instead we can also check the validSubarea field of the in-
valid nodes. If the intersection of the window w with the PMR block is fully
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contained in the node’s validSubarea, then we know that all the necessary
data for this window query is already in the database, even if the PMR node
is not loaded fully. When the drawing function is called, it already knows that
all the data is already loaded in the memory and it simply steps through the
overlapping PMR nodes and displays their contents.

An obvious limitation of the memory-only approach is the maximum
amount of space that can be utilized for local data storage. This approach is
the only one available when the client runs on a platform that has no sec-
ondary memory (e.g., disks) available. Such an environment is usually present
on smaller handheld devices or on Java applet-based viewers. Various SQL-
based DBMSs exist for many platforms that can be used to facilitate local
caching using available disk space.

1.4 Utilizing Auxiliary Servers

Development of internet technologies has introduced various methods for uti-
lization of additional servers to improve performance for end users who con-
nect to external servers. One of the first and most popular methods is caching.
Caching can be implemented directly within the end user’s browser, or it can
also be implemented within the user’s network, on the gateway (proxy) be-
tween the network and the outside internet. In the latter case, the same cache
can be shared among several users.

Obviously, the rationale for introducing these proxy servers between the
client and the internet is that the responsiveness of the proxy server with re-
spect to the end user’s browser is much higher than if the data was requested
directly from the original host. This is due to the higher network speed be-
tween the client and the proxy server compared to the network speed between
the client and the original host. Another factor can possibly be the lower load
and higher responsiveness of the proxy server since it only handles traffic for
a few users and therefore can process requests more efficiently.

An example deployment of a proxy server is an emergency situation illus-
trated in Figure 1.2. There, multiple first responders equipped with handheld
devices link with a mobile communication van or similar vehicle. This vehicle
is equipped with a wireless router as well as with satellite or similar commu-
nication technology and facilitates connectivity with the central computing
facilities.

1.4.1 Static Proxy

In some cases, the main spatial server provider and the individual users of
this database are from within the same organization or these organizations
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Figure 1.2: Emergency response service deployed a mobile unit (e.g., a
mobile van) in support of the operations. This unit can cover the area
with a fast wireless network access and provide a proxy service for spatial
operations. Individual responders can utilize the applications on their
mobile devices more efficiently.

collaborate closely. If this is the case and the spatial data is rather static (i.e.,
updates in the database are not performed frequently), it may be feasible to
execute a one-time step of copying all the spatial data stored in the main
spatial database onto the auxiliary database running on the proxy server. In
such a scenario, the auxiliary database needs to be preloaded with the spatial
data from the central SAND server when the system is being installed as well
as possibly periodically after that.2 The frequency would depend on how often
the data on the central server changes. This approach is especially effective if
updates on the central spatial server are performed in regular intervals rather
than dynamically. For instance, a new data set may be released once a month
or once a year instead of applying partial updates continuously.

Since the complete valid map resides on the proxy server, there is no need
for the client to ever connect to the central spatial server for window queries.
There is also no need for the proxy server to talk to the spatial server, to
receive updates or for any other reason. Therefore, the only traffic generated
by this scheme involves the SAND Internet Browser clients communicating

2 This arrangement is similar to setting up a mirror server. The difference is that a mirror

server is typically a copy of the primary server and can provide any functionality that the

primary server does. In this case, the proxy only stores spatial data of the background map

and facilitates window queries. The central server is still used to evaluate complex custom

queries as initiated by the user.
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with both the central spatial server (e.g., SAND server) and the auxiliary
proxy server.

1.4.2 Dynamic Proxy

In other cases, the amount of data stored on the central server would over-
whelm even a normal server-level machine. Or, the data on the central server
gets updated continuously and any information stored on the server may po-
tentially be valid for only a short period of time. In such scenarios, preloading
the proxy server with all the spatial data from the main spatial server is not
possible and/or useful. For this situation, we have developed a design that
involves deploying the proxy server with no data preloaded on it. As the indi-
vidual clients start working with the data, they still go directly to the central
spatial server to get results for custom queries and to the proxy server to get
results of window queries. This time however, the necessary data may or may
not be available on the proxy server. If the data is available, it is sent back to
the client immediately. If the data is not available, then the proxy connects
to the central spatial server, retrieves the necessary data and stores it in its
database. Once this is finished, the proxy server evaluates the window query
locally. As the data was just loaded, the server retrieves all the data success-
fully and sends it back to the client. The layout of this scenario is illustrated
in Figure 1.3.

Since the dynamic proxy loads the data from the central spatial server on
as-needed basis, it is not a problem if some data is not available locally. The
proxy can utilize this to drop data when necessary, e.g., to keep the amount of
data stored locally under a prescribed limit or to ensure that the data served
is not older than a certain predetermined age. This approach can be used as
described if the data on the server does not change (e.g., a street map). If
the data on the server is updated frequently, then the server needs to notify
its clients that a certain part of the database was updated. In response, the
clients drop the corresponding data from their cache and will reload it the
next time a user requests it.

1.4.3 Implementation Details

The SAND Internet Browser running on clients is implemented in Java and
its connection with the external servers is facilitated via Java Database Con-
nectors (JDBC) modules provided by the respective database vendors.

The SAND Proxy, the implementation of the proxy server outlined in
general above, is a combination of two modules. The first one is an off-the-
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Figure 1.3: Dynamic Proxy — The proxy server is installed with no data
on it initially. It connects to the central spatial server and if a request
comes from a client for data not available locally, the proxy retrieves the
data from the central server, caches it locally, and sends it back to the
client.

shelf SQL database3 responsible for storage of spatial data storage used in
handling of window queries. Note however, that the SQL database does not
have any information regarding what data it contains compared to the content
of the main spatial server. This is the responsibility of the second module, it
maintains information about which parts of the SQL database are currently
valid (i.e., which parts fully mirror the content of the central SAND database).
Additionally, it facilitates communication with the clients and, in case of the
dynamic proxy, with the SAND server that performs the role of the central
spatial database.

The second module in essence implements a second database which main-
tains the information about which area of the “world” that is stored in the
central database is covered in the local SQL database. The SAND Proxy uti-
lizes the Region Quadtree (e.g., [14, 15, 16]) data structure to manage this
information. The problem of determining which areas of the world are rep-
resented in the SQL database translates into evaluating window queries on
this data structure. The Region Quadtree allows the SAND Proxy to identify
quickly and efficiently which part of the main database is available through
the local SQL database.

When the proxy server is first started, the auxiliary SQL database is empty
and the region quadtree is correspondingly all ’white’. As the clients start

3 The SAND Internet Browser system has been used with MySQL [4] and PostgreSQL [9]

but other SQL databases could also be plugged in.



12 Frantǐsek Brabec and Hanan Samet

connecting and requesting spatial data, the proxy server initially forwards
these requests to the central spatial data server as it does not store the
required information locally yet. Once the data arrives over the network back
to the proxy server, the Java code in the application layer fetches the data
from the communication layer and inserts it into the database through its
JDBC connection. Once the data is stored in the database, it means that
the gaps in the coverage are filled. At this point, the local database can be
queried directly and the result is then returned back to the respective SAND
Internet Browser clients.

For any query window R, some data overlapping the window may already
be available locally and some may not be. Therefore, for every window query
R, we first test whether the data overlapping R is available locally in full
by recursively traversing the region quadtree. If all the data for R is fully
available, then no download from the central server is needed. The local
database can be used to fetch all the overlapping objects and the resulting
data stream can be sent back to the client. If the region quadtree reports that
some data overlapping R is missing in the local database, then a download of
all the data overlapping R in its entirety is requested from the server. While it
will re-load some data that are already present locally, the benefit is that the
overhead is much smaller, as only a single window query is submitted to the
central server. Any would-be duplicates are ignored by the SQL databases as
the data table structure is set up to enforce uniqueness of individual objects
stored. This ensures that we do not store duplicate entries in the cache. The
decision to aggregate multiple smaller queries into a single larger one is one
of the aspects of our design.

After the data overlapping R is loaded from the server, the region quadtree
is updated to mark R as fully loaded. This is done through top-to-bottom
insertion into the region quadtree — that is, by recursively visiting all over-
lapping nodes, marking them as covered if they are fully overlapped. Or, in
case of a partial overlap and unless the maximum depth was reached, the
node is subdivided into four children and the same operation is performed
recursively. If there is still just partial overlap of R and leaf node N when the
algorithm reaches the maximum allowed decomposition level, then we mark
the node as covered. This ensures that any subsequent window query that
is simply a result of a lateral movement (i.e., a scroll operation) along the
same axis as the window edge that intersects N won’t report missing data
due to the same N and cause another download request to the central server.
Of course, the drawback is that the region tree reports N as available in the
SQL database while part of the data overlapping N is in fact missing. In
reality, this area is very small (a fraction of the node on the region quadtree
maximum depth level) and will typically be loaded before the data is needed
— once the window R moves such that it overlaps N in full. This is because
N ’s empty neighbors will trigger download of data overlapping R thus filling
the gap in N ’s coverage as well.
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This approach guarantees that the proxy is always able to provide the
data requested by the client, while efficiently caching the data for future
use. While this approach as described, assumes the auxiliary database has
enough resources to store all data that flows through the proxy, it is not a
requirement. If the availability of sufficient resources cannot be guaranteed,
the same method used in Section 1.3.2 that allows for a limited amount of
storage space can be applied here as well.

1.5 Building Combined Solutions

This section describes how the individual building blocks presented previously
can be combined together to build a complete spatial database visualization
solution. Results of experiments are given that provide guidelines for selection
of appropriate designs given specific deployment scenarios.

1.5.1 Modular Design and Chaining

While different host types may be used to cache spatial data, their function-
ality is similar. Their goal is to store the data that have passed through up
to their efficient capacity. The individual proxy modules can be stacked on
top of each other, where the node closest to the actual displaying client has
the smallest capacity and usually stores a subset of data of its successor in
the chain. The farther up in the chain that we go from the client, the more
data and processing power the node within the chain has.

This is because when a client requires a certain data range and cannot find
this information locally, it sends the request to the next cache/proxy node.
If the data is available there, then it is served. If it’s not available there, then
the cache/proxy requests the same data farther up the chain. This process
repeats until the data is reached, in the worst case in the main spatial data
server. Once the data is reached, it is sent back the same way the requests
came, i.e., all caches/proxies on the way between the client and the successful
data repository will get the chance to store the data as well. Since the layers
closer to the client have typically smaller capacity, they would usually have to
drop some of the data first and thus end up storing subsets of data available
on the proxy. This proxy hierarchy is outlined in Figure 1.4. Of course, what
data can be expected to be stored on the proxy becomes less clear once the
proxy serves multiple clients. In such a case, the proxy may get overwhelmed
by requests from another client in such a way that it is forced to drop all
data loaded for our client. In this case, our client may still hold some data
while the proxy no longer does.
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Figure 1.4: SAND Internet Browser and proxies chained together

Regardless of the type of platform managing the data, the data is always
stored in a spatial data structure (e.g., some variant of a quadtree). The
main data server runs a full-blown spatially-enabled DBMS. The proxies and
clients however only perform a subset of operations of a normal DBMS in
order to support the limited functionality required by this layered system of
caches/proxies.

This layered system is only used for base map visualization. It is not used
to evaluate queries. The common interface for nodes participating in the
stacked caching system turns out to be very simple:

implements: getArea(Rectangle area)

requires: getArea(Rectangle area)

This means that each participant in the infrastructure must be able to
perform a remote procedure call (RPC) representing a window query on its
parent within the hierarchy (where the parent means the node closer to the
main server). It also needs to provide a window query interface, i.e., allow
nodes closer to the client to submit window queries (RPCs) to it.

Above, we have shown that individual computing platforms can be linked
together to create a chain of caching proxies that link the client’s visualization
module with the central spatial database. Not all computers within this chain
need to employ the same caching method. They only need to implement
the above interface. The actual implementation can vary depending on the
hardware parameters of that platform as well as other factors. However, even
within each computer, the individual caching methods do not need to be used
in an isolated fashion. The caching concept can be generalized to involve an
arbitrary number of caching layers that can be stacked on top of each other
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in the order of the speed with which they are able to serve the content. Many
times, the speed of delivery is inversely proportional to the volume of data
any given layer can store efficiently or at all. For instance, access to data
stored in primary memory is fast but the storage capacity is limited. On the
other hand, a disk-based memory has substantially larger capacity but access
to the data is slower.

Note that accessing the central data server can be considered to be within
the framework of such a layer as well, and it would be the last and slowest
layer; however, it always succeeds (never generates a page fault). So we see
that it does not matter whether the data served by any given layer is stored
locally or in a remote location. Thus, this concept allows us to generalize the
caching into multi-server setups, or even to a peer-to-peer environment. All
the client needs to know is in which order it should turn to individual data
providing layers. Note that the border between data cache and data server
is fuzzy as individual clients can share caches on servers closer to them than
the original server, in which case such caches would actually serve as sort of
proxies in such environment.

1.6 Evaluation

Our research explores the impact of various types of techniques for chaining
different caching layers together on the performance of the solution. We in-
vestigated different scenarios and suggest ideal combinations of caching based
on the types of devices used, usage model (e.g., number of users looking at
the same data), network speed, and other factors.

Specifically, we have designed and implemented the following caching
methods and investigated properties of the SAND system created by chaining
them in various combinations:

• Client

1. direct access — client communicates directly with main spatial server
with no local caching

2. local caching — client caches data in its memory

• Proxy

1. pre-loaded data — the local SQL database is pre-loaded with all spatial
data from the server

2. dynamically-loaded data — the local SQL database is loaded dynami-
cally based on the requests coming from the clients

The behavior of the whole system depends on a number of factors, many
outside our reach (e.g., the network latency, number of concurrent users,
or even the exact implementation of the garbage-collection algorithm in the
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underlying operating system or virtual machine, etc.). This also makes a
rigorous comparison with other existing systems that aim to serve the same
goal (e.g., MapQuest) difficult as we are not able to run performance tests of
both systems in identical environments. Therefore, the nature of the SAND
system and a MapQuest-type system makes their comparison difficult. Of
course, we have tried to minimize the impact of external factors. This is
achieved by utilizing the same hardware and software platforms for both
systems, the same networking environment as well as identical data sets,
queries or sequences of queries. In addition, the parameters of the server
platform, the networking environment, and the type of datasets and queries
that were run on them were chosen to be typical for the types of deployments
that we suggest would benefit from this system.

The goal of this evaluation is not necessarily to determine that one ap-
proach is better in every scenario. Instead, we aim to identify what approach is
the best one for different methods of deployments and provide the system ad-
ministrator and user with guidelines for selecting a solution best suitable for
their specific needs. Besides comparing vector-based SAND Internet Browser
against a bitmap solution, we also deployed SAND in several different ways
utilizing its modularity as described in Section 1.5.1.

1.6.1 Comparison with Raster-Based Visualization

For our performance evaluation, we used TIGER datasets from the U.S. Cen-
sus, specifically the street maps for states in the Mid-Atlantic region. This
includes all the roads and streets in Virginia, Maryland, District of Columbia,
New Jersey, and Pennsylvania. There are over 7,500,000 entries in this com-
bined dataset. Each entry corresponds to a single line segment, where each
actual street may be represented by one or more line segments in the map.
The total size of the data stored in the format distributed by U.S. Census is
over 700MB.

Our performance testing aims to compare different methods of deploying
SAND’s vector-based approach to remote mapping with the bitmap based
approach employed by such popular systems such as MapQuest. In order
to run both systems in the same environment, we chose MapServer [2] to
represent the bitmap approach. This allows us to deploy both systems on
the same hardware, using the same operating system and within the same
networking environment. This also enabled us to minimize performance dif-
ferences caused by factors that are not directly related to the design of spatial
data management.
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1.6.2 Typical Usage Scenarios

A user of a mapping or GIS system frequently performs the following opera-
tions while navigating the map:

• Zoom in — view an area of interest in more detail.
• Fast Scroll — move the viewable area to the left and to the right, or up

and down by large increments. In our scenario, the map moves by one half
of the window size, i.e., there is 50% overlap between the old and new
views.

• Fine Scroll — move the viewable area to the left and to the right or up
and down by small increments, perhaps only by a fraction of the window
width or height. In our scenario, the map moves by 10% of the window
size, i.e., there is 90% overlap between the old and new views.

• Zoom out — view a larger area of the map within the viewable window.

We expect (and confirm our expectations by running experiments) that
the cost of each visualization operation (zoom, pan) for the MapServer ap-
proach will be approximately constant given a constant data density (i.e., the
number of objects to be visualized for a fixed view area size) and viewable
area size. If the number of elements within the viewable area remains the
same, then the cost of the spatial query and the cost of subsequent rendering
and bitmap transfer remains the same as well. Thus we see that when the
number of objects visible as a result of a visualization operation remains the
same, the cost of updating remains constant as well. Given a server platform,
the MapServer system responsiveness will depend on the network speed and
latency. The situation for the SAND Internet Browser is different. There,
the system takes a more complex approach when processing visualization re-
quests and the response time depends on the nature of the request as well as
on the history of similar requests preceding this one.

As mentioned above, we have selected several typical operations that users
of a mapping system or GIS would perform most often while navigating
around the map. These operations include zooming in and out and pan-
ning/scrolling. First, we compare MapServer with the standard SAND Inter-
net Browser setup that only involves the central data server and the SAND
Internet Browser client. Later we also compare MapServer with a deployment
of the SAND Internet Browser in an environment where data cannot be stored
locally. We conclude with a comparison of the estimated performance of the
tile method as typified by Google Maps in the same environment in which
both MapServer and the SAND Internet Browser were deployed

For the SAND Internet Browser, we measure the execution time in two
scenarios:

• The data to be visualized as a result of the user’s operation is already
cached on the system.
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• The data to be visualized as a result of the user’s operation is not yet
cached on the system and has to be loaded dynamically from the server.

For MapServer, the bitmap is always downloaded from the server for each
new operation.

To measure performance across various deployment scenarios (here rep-
resented by different properties of the network connection), we emulate net-
working environments that correspond to several typical methods of achieving
connectivity (i.e., “hookup”) on mobile devices as well as fixed workstations.
Table 1.1 describes these connections.

Connectivity (i.e., “hookup”) methods

Hookup
Bandwidth Delay

(kB/sec) (sec)
Modem 7 0.3

Broadband 182 0.2

Satellite 62 1

LAN 1,250 0.002

Table 1.1: Properties of various network connection (i.e., “hookup”)
methods

To emulate standard usage scenarios, all TCP/IP parameters of the net-
working layer were left at their default values even though for some types
of connectivity adjustments of these parameters may improve the overall
throughput.

To emulate different networking properties in our test environment, we
have utilized NIST Net [6], a general-purpose tool for emulating performance
characteristics in IP networks. We have configured NIST Net using network-
ing parameters typical for individual connectivity methods (Table 1.1) to
measure the performance of the SAND system in different deployment sce-
narios.

For the pure client-server environment (i.e., no auxiliary servers), the per-
formance was tested for the following three basic client-server architecture
states. First, the cached SAND Internet Browser state refers to a scenario
where the SAND Internet Browser provides local caching and the data to be
displayed as a response to the sequence of scroll operations is already avail-
able in the client’s memory. Second, the direct SAND Internet Browser state
refers to a scenario where the client does not cache data locally and down-
loads all the data from its server. This represents the pure client-server setup
where the client communicates directly with the central server. Finally, the
dynamic SAND Internet Browser state refers to a scenario where the client
provides local caching but the necessary data is not available in the local
cache yet.
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Results of a performance comparison of MapServer with the SAND Inter-
net Browser for fine scrolling can be seen in Table 1.2. During a sequence of
fine-scroll operations, the previous window overlaps of the next window 90%
of the window area. This means that the SAND Internet Browser can use
a fast bitmap copy operation to transfer the part that can be reused to an
other location of the screen and it needs to rasterize only 10% of the window
using vector data stored either locally or downloaded from the server. We see
that the performance in case of cached data is essentially the same across
all hookup methods. This is because all data is cached and no data needs
to be transferred across the network. Slight differences are due to operations
performed by unrelated background processes (e.g., Java VM garbage collec-
tion). Also note that while the direct approach does not use any caching and
loads all data from from its upstream provider all the time, its data manage-
ment overhead is lower. Hence, for faster types of network connections the
direct method tends to perform better, while the cached methods is typically
better for slower connection methods.

Fine scrolling/Local Panning

Cached Noncached

Hookup SAND Internet Browser Map Est. Tile
Cached Direct Dynamic Server Method

Modem 6.6 124 80 179 18

Broadband 6 20 38 52 5

Satellite 5 81 85 181 18

LAN 5 10 33 18 2

Table 1.2: Performance comparison of MapServer, the SAND Internet
Browser, and the Tile Method (e.g., Google Maps) for fine scroll. The
table indicates the time in seconds to perform 20 subsequent fine-scroll
operations.

Results of a performance comparison of MapServer with the SAND Inter-
net Browser for zooming in can be seen in Table 1.3. The starting viewable
window showed 25,000 line segments and each zoom-in operation doubled the
map scale, i.e., both the x and y coordinate ranges were halved. Thus, the
area before the zoom-in operation is four times as large as the area displayed
after the zoom-in operation. We measured the time it took to execute five
subsequent consecutive zoom-in operations with the last view showing only
dozens of line segments.

Note that the viewable area resulting from the zoom-in operation is always
a subset of the viewable area that existed prior to the zoom-in operation.
Thus, for the caching SAND Internet Browser, the data to be displayed after
any zoom-in operation will always be available in the cache. Here we assume
that the client uses the same data set on all the zoom levels involved. In
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practice, zooming in may require the client to display data from additional
data layers which may not be available in the cache yet.

Zoom In

Cached Noncached
Hookup SAND Internet Browser Map Est. Tile

Cached Direct Dynamic Server Method

Modem 0.5 10 N/A 44 44

Broadband 0.8 3 N/A 12 12

Satellite 0.5 10 N/A 44 44

LAN 0.8 1 N/A 5 5

Table 1.3: Performance comparison of MapServer, the SAND Internet
Browser, and the tile method (e.g., Google Maps) for zoom-in. The
table indicates the time in seconds to perform five subsequent zoom-in
operations. The results for the dynamic SAND Internet Browser method
are not applicable (N/A) since the data will always be cached from the
previous operation (assuming all zoom levels retrieve data from the same
dataset).

Results of a performance comparison of MapServer and the SAND Internet
Browser for the zoom-out operation can be seen in Table 1.4. This query
test is essentially a reverse of the zoom-in operation with a single important
distinction in the caching SAND Internet Browser. In particular, while each
zoom-in operation can expect to have all the necessary data cached from
the previous step, in the zoom-out operation this is not necessarily the case.
Consider a scenario when the user moves around in a zoomed-in (e.g., street)
level and then tries to zoom out (e.g., to city level). As the viewable area
grows, not all the data objects that overlap this area are necessarily cached.

For the zoom-out operation, the starting viewable window showed a large
detail containing only a few dozens of line segments. Each zoom-out opera-
tion expands both the x and y coordinate ranges twice. Thus, the displayed
area before the zoom-out operation is four times smaller than the displayed
area showing after the zoom-out operation. We measured the time it took
to execute five subsequent zoom-out operations, the last view was showing
about 25,000 line segments. We considered both scenarios outlined above for
the SAND Internet Browser. One scenario captures the situation where the
data to be shown after the zoom-out operation is already in the cache (i.e.,
the zoom-out operation was preceded by a zoom-in operation without any
panning operations in between). The other scenario explores a situation when
the data to be shown after the zoom-out operation is not in the cache and
has to be fetched from the spatial server.

Table 1.5 shows the results of a performance comparison between MapServer
and the SAND Internet Browser for global panning. Unlike in the Local Pan-
ning/Fine Scrolling scenario evaluated above, in the global panning operation,
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Zoom Out

Cached Noncached

Hookup SAND Internet Browser Map Est. Tile

Cached Direct Dynamic Server Method

Modem 1.8 26 48 45 45

Broadband 1.6 5 22 12 12

Satellite 3.2 17 36 45 45

LAN 2.3 2 20 5 5

Table 1.4: Performance comparison of MapServer, the SAND Internet
Browser and the tile method (e.g., Google Maps) for zoom out. The
table indicates the time in seconds it took to perform five subsequent
zoom-out operations.

a large portion of the post-panning viewable area does not overlap the pre-
panning viewable area. This means that the SAND Internet Browser must
load a large portion of the new viewable area from the locally cached data or
from the central spatial server. Given this realization, we again measure the
performance of the SAND Internet Browser for two distinct scenarios:

• The data to be visualized as a result of the user’s operation is already
cached on the system.

• The data to be visualized as a result of the user’s operation is not yet
cached on the system and has to be loaded dynamically from the server.

MapServer, as always, generates a new bitmap on the server and pushes
it onto the client. Each view was showing about 25,000 line segments during
this panning operation. As we can see, each of the tests performed above
repeats the same operation under the same conditions. This provides us with
a comparison of each possible operation under given conditions (in terms of
network parameters) separately. While in a real life deployment the network
parameters will likely remain fixed during each session, the sequence of op-
erations will probably be a combination of the available operations. In other
words, the user will probably not use solely the fine-scroll or the zoom oper-
ations, instead they would typically do some scrolling, then zoom in, scroll
some more, zoom out, etc. The typical sequence structure and duration of
such a session depends on the nature of the scenario. Reviewing a larger area
for certain properties may involve much scrolling and a minimum of zooming.
Investigation of multiple separate locations may involve more zooming in and
out with a minimum amount of panning.

The user will rarely work under conditions when the spatial data is either
fully cached all the time or not cached at all in any step. Depending on
the exact usage patterns, the user can expect to benefit from the caching
for some portion of his or her operations. The success rate of the caching
mechanism will depend on numerous factors. The first is the time at which
the operation is executed. The cache will be empty right after the start-up
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Fast Scrolling/Global Panning

Cached Noncached

Hookup SAND Internet Browser Map Est. Tile

Cached Direct Dynamic Server Method

Modem 3.9 108 109 161 80

Broadband 3.9 19 54 44 22

Satellite 3.9 80 104 165 82

LAN 3.8 9 48 14 7

Table 1.5: Performance comparison of MapServer, the SAND Internet
Browser, and the tile method (e.g., Google Maps) for fast scroll (global
panning). The table indicates the time in seconds to perform 20 subse-
quent fast-scroll operations.

of the client application. So the user can expect to be fetching data from the
server for most such operations initially. Thus, the initial performance of the
caching SAND Internet Browser will appear close to what we have shown
above under the non-cached data columns (i.e., direct or dynamic). Once the
cache is filled with data, the success rate will depend on the extent to which
the user’s spatial operations are localized. If the user visualizes information
directly within the same limited area (e.g., fine scroll or zoom in), then most
of the operations will use the cached data. In such a scenario, the performance
will be close to what we have shown above in the cached data column. Most
of the time the sequence of operations generated by the user will trigger a
mixture of cached and non-cached data retrievals. Thus, we can consider our
cached and non-cached results as the extreme cases of what a user may expect
and a typical experience lies somewhere in between.

Figures 1.5a–1.5d display Tables 1.2–1.5 graphically. The figures show that
in most deployment scenarios, network environments, and usage patterns,
the user can expect to have a substantially better experience when using the
SAND Internet Browser than when using a pure bitmap system.

1.6.3 Performance Comparisons for Deployments

Utilizing Auxiliary Servers

In the previous section we compared the SAND Internet Browser-based sys-
tem that involved a caching and non-caching client and a central spatial server
with a bitmap based system represented by MapServer. Here, we evaluate
a scenario outlined in Section 1.4 where a small footprint wireless-capable
handheld devices (e.g., smart/cell phones, PDAs and other similar devices)
not capable of storing data locally can be used within the SAND Internet
Browser-based architecture. Note that the bitmap approach is still valid as
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Figure 1.5: Comparison of a bitmap (MapServer) approach with the
vector-based SAND approach for remote spatial data visualization. As-
suming all zoom levels retrieve data from the same dataset, note that
the SAND dynamic scenario for the zoom-in operation is not applicable
as all data is already cached from the previous view (denoted by ‘X’).

the client does not store any data locally and thus this method is still appli-
cable even on these mobile devices.

We examine three different deployment scenarios. The first scenario in-
volves the static proxy (section 1.4.1) and the state is termed preloaded. The
remaining two scenarios involve the dynamic proxy (section 1.4.2). The first
of the two assumes that the user just started the application so that no
cached data is available yet. We call this state clean. Since the proxy server
can provide its services to multiple users, we also assume that this user is the
first one to request this particular data. The second dynamic proxy scenario
assumes that the same data was already accessed before (by this or another
user), and thus it is already available on the proxy server. This state is termed
cached.

Using the auxiliary server deployment example from section 1.4 where first
responders use handheld devices to communicate with the central facilities
via a mobile van, we see that the communication link consists of two parts.
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The first link connects the devices and the mobile van, while the second link
connects the van with the central facilities. We presume that in emergency
scenarios such as these, the connectivity between the handheld devices and
the van is faster than the connectivity between the van and the central facility.
Based on the assumptions for such an emergency response deployment, we
assume that the mobile teams will be able to connect to the central facilities
over a satellite link. Locally, the connection between the individual response
team members will be wireless (e.g., WLAN 802.11b/g). This emulation is
again facilitated by using the NIST Net tool.

Auxiliary Server-based Deployment

Proxy SAND Internet Browser

Operation MapServer
Preloaded

Dynamic

clean cached

Fast Scroll 165 19 568 52

Fine Scroll 181 29 520 75

Zoom In 44 2 N/A 12

Zoom Out 45 6 58 48

Table 1.6: Performance comparison of various operations for MapServer
and the SAND Internet Browser using the auxiliary server deployment
method. The scroll operation values represent the time (in seconds) it
took the system to process 20 subsequent scroll operations. The values
associated with the zoom operations indicate the number of seconds it
took the system to process five consecutive zoom operations. The result
for the zoom-in operation in the dynamic SAND Internet Browser method
is not applicable (N/A) since the data will always be cached from the
previous operation (assuming all zoom levels retrieve data from the same
dataset).

Table 1.6 shows the results for different usage scenarios that involve auxil-
iary servers. The client to auxiliary server link is of a wireless LAN type. The
link between the auxiliary server and the central spatial server is a satellite
connection. Figure 1.6 shows the performance of a system that utilizes aux-
iliary servers. As we see, MapServer performs better when compared to the
SAND Internet Browser on a freshly installed system where no data has been
pushed through the infrastructure yet (labeled “clean” in the figure) and the
proxy server cache is still empty. This is because of the additional overhead
of copying the necessary data from the central server, a step that MapServer
completely bypasses. Once the cache is loaded with data, we see that the
SAND Internet Browser performs at least as well as, and, most of the time,
significantly better than MapServer. If the auxiliary server is preloaded with
the data, then the improvement in the performance of the SAND Internet
Browser over MapServer is even more pronounced. Note that for the zoom-
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out operation, the preloaded approach is substantially faster than the cached
approach. While there is no network traffic in either case, the cached method
has extra overhead (e.g., before sending the data to the client it first needs to
verify if any additional data needs to be downloaded from the central server).
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Figure 1.6: Performance comparison of various operations for MapServer
and the SAND Internet Browser using the auxiliary server deployment
method. Note that the non-cached (clean) scenario for the zoom-in op-
eration is inapplicable.

1.6.4 Comparison with the Tile Method

The tile method, another bitmap-based method providing an alternative to
the MapQuest-type bitmap approach, was described in Section 1.2. While
we cannot run formal experiments comparing Google Maps or MS Virtual
Earth with the SAND Internet Browser directly, we can estimate what their
performance would be within the same environment in which MapServer
and the SAND Internet Browser were deployed. Assuming that the cost of
generating the tiles on the server is negligible, the determinative factor for
the cost is the amount of data sent from the server to the client. Since the tile
method allows for tile reuse, only the newly visible areas will trigger further
download.

When all the necessary data is fully cached from the previous steps, the
response times for the SAND Internet Browser and the tile method are es-
sentially instantaneous. For the tile method, the browser simply needs to
redisplay the cached tile images which takes no time. Similarly, the SAND
Internet Browser also just needs to render and display the cached vector data,
done by retrieval and rasterization, which also only takes a fraction of a sec-
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ond (e.g., Table 1.2 once the execution time is divided by 20, the number
of scroll operations, to yield the time per fine-scroll operation). Hence, for
scenarios where data is fully locally cached, we consider the performance of
the tile method and the SAND Internet Browser to be comparable.

Comparing the tile method with MapServer, we find that as the fast-scroll
operation reuses 50% of the visible area, the tile method would be twice as
fast as MapServer (see Table 1.5. The fine-scroll operation reuses 90% of the
area, so the tile applications would be about ten times faster than MapServer
(see Table 1.2). Both tables indicate the time in seconds it took to perform 20
subsequent scroll operations. Using the tile method, zoom in/out (if offering
the view for the first time and thus not using cached data) would take as
long as MapServer as the specific bitmaps are not yet available on the client
and thus they have to be loaded from the server in full—that is, they must
be reused. Therefore, MapServer results for zoom in/out shown in Tables 1.3
and 1.4 also apply as estimated results of the tile method.

Comparing the tile method with the SAND Internet Browser we find that
for fine scrolling (see Table 1.2) the tile method would be faster than the
SAND Internet Browser when the data is not already cached (i.e., direct and
dynamic). For fast scrolling (see Table 1.5), the tile method would still be
slightly faster or perform comparably when the data is not already cached
(i.e., direct). The dynamic case is slower in the SAND Internet Browser due to
overhead in setting up the caching such as traversing the PMR quadtree, etc.
The rationale for the comparable behavior for fast scrolling is that, overall,
there is a fixed per-update overhead involved in requesting, handling and
storing the data which is higher for the SAND Internet Browser due to the
vector format of the data. This overhead is amortized over larger downloads
for fast scrolling, thereby making the two methods comparable, while this is
not so for fine scrolling, where the overhead makes the performance of the
SAND Internet Browser worse than the tile method.

For zoom in/out, the SAND Internet Browser would be considerably faster
than the tile method (Tables 1.3 and 1.4). However, in typical deployments,
different zoom levels would be displayed with different levels of detail. For
instance, when performing a sequence of zoom-in operations, we may need to
load more data after some of the steps, even when using the SAND Internet
Browser. The advantage of the SAND Internet Browser is maximized when
users work with the same level of detail while zooming in and out.

Overall, we expect the tile-based approach to perform similarly to the
SAND Internet Browser in many actual usage scenarios. The tile method’s
drawback is that all of the work is concentrated on the server so as the
number of clients connecting to a server rises, performance decreases more
rapidly than for the SAND Internet Browser where the client is responsible
for more work. Also, the tile method does not allow for development of more
sophisticated clients that would execute more operations locally. While for
the SAND Internet Browser, the client stores the vector data and can thus
perform many operations (such as window or nearest neighbor operations);
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for the tile method, the client only has access to the bitmap tiles, which do not
provide data for such localized operations. So, we see that the SAND Internet
Browser is a better platform for developing smarter, more independent client
applications.

1.7 Conclusions and Future Research

We presented a new vector-based system for remote access to spatial databases
that could be used where the traditional raster-based approaches do not work
too well. We compared the performance of a bitmap raster-based system with
the vector-based SAND Internet Browser system. Our experiments allow us
to suggest the best type of a remote spatial data visualization tool for a given
deployment scenario.

We have developed a modular design for the infrastructure that facilitates
remote spatial data access. We applied it to realize several specific types of
the SAND Internet Browser system deployment. The best-performing de-
ployment depends on the environment in which the system is to be used.
Generally, the system can either be deployed so that the clients communicate
directly with the central spatial server. Alternatively, in situations where the
client runs on a thin platform or where the service is shared among several
co-located clients, an auxiliary server could be used to improve the overall
solution’s performance.

Future research directions include investigating methods for caching fre-
quently used data in the form of bitmap tiles instead of vectors. While these
tiles would only be usable in given views (in terms of zoom factor and layers
displayed), they would also allow skipping of repeated rasterization steps.
The result would be a hybrid between the SAND Internet Browser and the
tile method used by Google Maps and Microsoft Virtual Earth.
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