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;. INTRODUCTION

A significant amount of current research in automatic programming is devoted
to the construction of more efficient programs. Researchers have basically taken
two approaches to this problem. At one end, work is proceeding towards the
automatic development of programs from task specifications. These efforts range
from the automatic construction of manipulator programs [Taylor76] to more

. conventional programming tasks such as sorting [Green76]. The latter is driven by

dialogues which explain the desired task. Other work makes use of examples

>Lving ‘ [Summers75]. At the other end, progress is being made at rendering existing i
— programs more efficient. Such work is typified by studies such as [Low74] which aim
cobing [ at automatically selecting the data structure thereby relieving the programmer from |
of a worrying about such issues. In the middle of the spectrum 1lies work in program %
. verification [Waldinger69] and debugging [Sussman75]. %
‘'ogram Our work lies in the middle of the above spectrum. We describe the use of a é
compiler testing system [Samet75] in detecting errors in heuristically optimized
code as well as the prospects for automatically correcting them. This work is
tion, | motivated by the realization that often there 1is no a priori knowledge of how
certain computer programs are to be optimized. In such a case, there may be a need
} to resort to heuristics. Such a paradigm embodies "hypothesis and test" techniques
[Newell73] thereby necessitating a mechanism for verifying that the various attempts
at optimization do indeed function properly. Currently, a system exists [Samet75]
which proves that programs are correctly translated as well as pinpoints the
mistakes in erroneous translations. The goal of our presentation is to illustrate
the errors that can be detected and to demonstrate that often the error information
is sufficient to indicate the necessary correction. Thus it will be shown that a
significant number of errors, in addition to being detected, could also be corrected
automatically. |
- the | Such an error detection and correction capability is attractive in the |
' el context of self repairing software. In many artificial intelligence applications,

Programs write other programs which they later execute. In such a case, efficiency
Considerations may lead to the invocation of a compiler to translate the newly
Created program. Use of techniques presented here can lead to a greater degree of
reliability of compilers used in such an environment. In particular, if one is
Operating in a hostile environment , say Mars, then it would be difficult to debug a
Program such as a compiler from Earth. Thus just as self checking circuits find
Usefulness in hardware, we feel that at times a need exists for their software

analogs, self repairing programs. ;

I



This paper is organized into several sections. First , we present 4 bri
overview of the concept of compiler testing. This is followed by a short ex&mpl
illustrate the type of programs our system can handle. Next, we discuss the emw:
detection capabilities of the system. Finally , an erroneously encoded Comp le
example is given and the reader is led through the errors that the system dlsQOVQ
as well as the necessary corrections. Often, the actual corrections arg quih
straightforward thereby justifying a conclusion that automatic error correctygy, {

feasible in a large number of situations.

2. COMPILER TESTING

Compiler testing is a term we use to describe a means of proving that givey
a compiler (or any translation procedure) and a program to be compiled, the
translation has been correctly performed. The actual test consists of demonstratillg
a correspondence or equivalence between a program input to the compiler angd the
corresponding translated program. By equivalence we mean that the two programs mysgt
be capable of being proved to be structurally equivalent [Lee72], that is they have
identical execution sequences except for certain valid rearrangements of
computations. Note that this is a more stringent requirement than that posed by the
conventional definition which holds that two programs are equivalent if they have a
common domain and range and both produce the same output for any given input in
their common domain. For example, using our techniques, we cannot prove that a high

level insertion sort program is equivalent to a low level quicksort program.

The actual testing procedure relies on the existence of an intermediate
representation common to both the source and object programs. This representation
reflects all of the computations performed on all possible execution paths. Given
the existence of such a representation, the testing procedure consists of threé
steps (see fig. 1). First, the high level language program is converted to the
intermediate representation via the use of a suitable set of syntactic
transformations. Second, the 1low level program must be converted to the
intermediate representation. This is achieved by use of a process termed symb°1ic
interpretation [Samet76] which interprets procedural descriptions of 1low level
machine operations to build the intermediate representation. Third, a check must D°
performed of the equivalence of the two representations. This check is in the for?
of a procedure which applies equivalence preserving transformations to the res“lts

of the first two steps in attempting to reduce them to a common representation.
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Fig. 1 - Compiler testing system diagram

In this paper we are primarily concerned with the error detection
capabilities of such a technique and the implications it has for error correction.
To this end we need a sample system. We use a subset of LISP 1.6 [Quam72] (a
variant of LISP [McCarthy60]) as the high level language and LAP [Quam72] (a variant
of the PDP-10 [DEC69] assembly language) as the low 1level language. A suitable

intermediate representation for our subset of LISP in the form of a tree is shown to
exist in [Samet77].

An an example, consider fig. 2 where a function, REVERSE, which reverses the
links of a list, is encoded in MLISP [Smith70], an ALGOL-like [Naur60] version of
LISsp,

REVERSE(L) = if NULL(L) then L
else *APPEND(REVERSE(CDR(L)) ,LIST(CAR(L)))

Fig. 2 - Definition of REVERSE

Prior to presenting a LAP encoding we describe our execution environment. A
LIsp cell is represented by a full word whose left and right halves point to CAR and
CDR respectively. Addresses of atoms are represented by (QUOTE <atom-name>) and by

2ero in the case of NIL. A stack is used for control with accumulator 12 containing

& stack pointer , and upon function entry the return address is found on the top of



the stack. A LAP program expects to find all of its arguments in the aCQUmulat

and returns its result in accumulator 1. The accumulators containing the papamet ‘ number:
are always of such a form that a O is in the 1left half and the LISP pointer T iy were ©l
the right half. All parameters are assumed to be valid LISP pointers, wheneVep (E? !
recursion or a call to an external function occur, the contents of all 4p the v 3
accumulators (except 12) are assumed to be destroyed with the exception of Cong ! NiL (%
XCONS , and NCONS, in which case all accumulators but 1 in the case of NCONS, Goit {

and 2 in the case of CONS and XCONS, have the same values before and after the caly

XCONS is the antisymmetric counterpart of CONS - i.e., CONS(A B) = XCONS(B ,A) while 3. ERI
NCONS obeys the relation NCONS(A) = CONS(A NIL) = LIST(A).

Fig. 3 contains a LAP encoding for the function given in fig. 2. The fopmat ! can be
of a LAP instruction is (OPCODE AC ADDR INDEX) where INDEX and ADDR are optionaj, dictior
OPCODE is a PDP-10 instruction optionally suffixed by € which denotes indirect ' errors
addressing. ADDR denotes the address field. AC and INDEX denote respectively the proced{
accumulator associated with the instruction and the accumulator to be used in cage | as comf
of indexing. These two fields contain a number between O and decimal 15. (CALL 1 detect:
(E NCONS)) denotes that NCONS is a recursive function of type EXPR (call by value) the ob
and is called with one argument. Similarly, JCALL corresponds to a non-recursive the ex
function call. JCALL is used to invoke ¥APPEND since once this function 1is exited result
nothing remains to be computed in REVERSE. other.

REVERSE (SKIPN 2 1) load acec. 2 with L and skip if not NIL
POPJ 12) return NIL -
HLRZ 1 0 1) load ace. 1 with CAR(L) (1) Er
clch 1,5y eonsn  sempie AR (e cvao o

HRRZ 1 0 2) load ace. 1 with CDR(L

CALL 1 (E REVERSE)) compute RthRSE%CDR(L) 1?
PC9 SggLL ZE%E ¥APPEND) ) ggﬁpt%ET Eggéh%(ﬂgvggsg?CDg(€?§,LIST(CAR(L))) ! an
Fig. 3 - LAP encoding of REVERSE ca
in

The intermediate representation obtained by the symbolic interpretation ac
procedure is given in fig. Y. Notice that we have a symbolic representation and @ er
numeric representation. The numbers in the latter are unique to each computation | er
and execution path and their purpose is to indicate a relative ordering for the er
sequence of computations. The numbers are used in a proof to enable us to prove ir
that equivalence is preserved when certain functions are computed out of order: er
However , these numbers can also be used profitably in the process of errof (2) Al
detection. Since the numbers are unique to each computation and execution path, W€ o
may determine from each computation where in the program it was computed and thus .
pinpoint the error. This is accomplished by maintaining a dictionary of computatio?B .
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rs numbeps where with each entry is stored an instruction address and the 1labels that
rs 76 encountered along the execution path starting at function entry.
in | (8 L.NIL) (10,5 0)
er N . a s
he N NIL (*APPEND (REVERSE (CDR L)) (CONS (CAR L) NIL)) 0 (20 (18 (16 5)) (14 (12 5) 0))
S, Fig. 4 - Intermediate representation of fig. 3
18 ’
Al 3. ERRORS

Errors in the translated program that are caused by the translation process
gl ! can be detected. This is accomplished, in part, with the aid of the computation
a1, dictionary mentioned in the previous section. There are basically four classes of
sot ' errors. Errors of the first class are detected by the symbolic interpretation
the procedure while the remaining three classes are detected during the proof procedure
ase h as computations are being matched in the two intermediate representations. Errors
L & detected during the symbolic interpretation phase pertain to the well-formedness of
ue) the object program - 1i.e., violations of the rules set forth in the definition of
ive | the execution environment. Errors detected during the proof procedure are often the
ted result of computations occuring in one intermediate representation and not in the

other.

(1) Errors pertaining to the well-formedness of the program include improper calling
sequences, illegal stack pointer formats, illegal operations on certain high
level data structures, etc. For example, performing arithmetic on LISP pointers
and possibly attempting to pass the result to another LISP function. Using a
calling sequence which combines or replaces an accumulator with a stack location

incorrectly. Storing data in locations which are off 1limits - i.e., certain

.ion accumulators and even unknown addresses. The stack also serves as a source of
\d 2 error due to confusion as to the status of the stack pointer. All of these
sion errors are detected during the symbolic interpretation phase. Whenever such an
the ' error 1is encountered, the current execution path is abandoned and symbolic
Ve interpretation is continued on an alternate path so that a maximal number of
jer . errors can be detected.
rrol

e (2) A1l of the computations in one of the intermediate representations were found to
ghus exist in the other representation, but the reverse is not true. Such an error
Lion may occur when certain side effect computations occur in one of the programs and

not in the other. Alternatively, this may also occur when certain tests are

performed in one program and not in tge other.
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(3) There are occasions when each of the intermediate representations reflects the
performance of the same computations along each execution path, yet, the th
representations are not identical. This occurs when the results of they
execution paths are different. For example, consider the two r‘epr’esentations
given below. Notice that all computations performed on the left are alg,
performed on the right. However, the results of the two right subtrees are Not
equivalent (i.e., (CDR A) is not equivalent to (CDR B)).
(EQ (CDR 4) (CDR B)) (EQ (CDR 4) (CDR B))

N .
1 \
. .
1 1

NIL (CDR A) NIL (CDR B)

(4) The actual proof procedure may reach a point at which it cannot continue. Thyg
is the case when a function in the intermediate representation of the 1low leve]
program can not be matched with a function in the intermediate representatiqy
corresponding to the original high level program. This is caused by such
factors as invalid rearranging of computations, mistakes in the object progranm,
invalid optimizations, etc. Some of the errors of this class that have been
detected (see section 4) include use of wrong accumulators, misuse of
antisymmetry, misspelling of operation codes and operands thereby causing the

wrong instruction to be executed, and testing the wrong sense of a condition.

When errors of type (1)-(3) occur, the system will return a message
indicating the error type. We also indicate the erroneous computation (somewhat
meaningless for type (1) errors) as well as what should have been computed according
to the intermediate representation corresponding to the original high level program.
In addition, the values of the conditions in terms of truth values are given so that

the offending path can be identified.

We are primarily interested in errors of type (4). When such errors occur,
the system returns the invalid computation along with the computation dictionary
entry corresponding to the computation number of the outermost function - 1i.e. , bhe
address of the instruction computing this function and the labels associated with

the path. The actual error is caused by either the wrong function applied to a set

of arguments or the function applied to the wrong set of arguments. For examplé:’
consider an error in *LESS(A B). The error could be that we desire *GREAT(A B) o8
possibly ¥LESS(A ,C). The proof system indicates that an error has occurred when

attempting to match the computation ¥LESS(A B). In addition, it also returns o=
address of the instruction corresponding to the ¥LESS function which is denoted as

. 5
the location of error as well as the path along which the error was detected. Thi
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Jhen debugging the program we must ascertain whether the error was in the function

or in the arguments,

Error correction is a difficult area. Currently, we only have a limited set
of peuristics to guide us. Nevertheless, it does seem to Dbe a powerful one. As
mentioned earlier , whenever an error occurs in a function, we must determine if the
error 1s caused by the wrong function being applied to a set of arguments (e.g.,
error (13) in section 4) or the correct function being applied to the wrong set of
arguments (e.g., error (4) in section U4). Our approach is first to attempt to
correct the function. Next, an attempt is made to correct the arguments (e.g.,
errors (5) and (7) in section 4). When correcting arguments, we' know the
accumulators which must contain the arguments and thus we can work backwards to
determine where and when the wrong values were computed and loaded into the
accumulators (e.g., error (7) in section 4). Often the debugging process 1is aided
by the presence of instructions that manipulate data that will no longer be

referenced in the program (e.g., error (12) in section 4). Such instructions often

" serve as candidates for removal and replacement by the correct instruction. Errors

also occur frequently in the sense of a condition - i.e., the wrong sense 1is being
tested. This is especially common with arithmetic relations such as less than and
greater than (e.g., errors (6),(8), and (9) in section 4). Such occurrences are
signaled by the presence of errors in both subtrees of a condition in close
proximity (in terms of the logical flow of the program) to the instruction at which
the condition is tested. This can be corrected in the following manner. Reverse
the sense of the test. If all of the errors disappear, then the diagnosis is
clearly correct. If some of the errors disappear, then the diagnosis 1is quite
likely to be valid. The previous is especially true if at least one error 1in each
subtree disappears after making the change. Note that changing the sense of the
test may lead to new errors. However , as long as some of the current errors

disappear, the correction is likely to be valid.

4. EXAMPLE

In this section we examine the error detection capabilities of the system
reported in [Samet75] as well as the potential for automatic error correction. We
use a rather complex function known as HIER1 which is fairly typical of the type of
functions found in artificial intelligence programs. The algorithm originated in
the FOL [WeyhrauchTl4] system where it is used extensively. We will not dwell to any

length on the actual effect of the function except for the following brief summary.
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Application of the function results in the conversion of a list r‘epr‘esentin

expression with prefix and infix operators to a tree-like representation, %:
primary driving force in the determination of the operands corresponding to eaeh
the operators is a set of binding powers (operator precedence). The second apgumn:

b |

to the function denotes the binding power of the operator corresponding t°t

expression in question.

Fig. 5 contains an encoding of HIER1 in MLISP. Note the use of Squy
brackets. This is an MLISP construct which is very useful in visualizingtm‘
structure of a list. Each index indicates a number , say num, which is intepppe%'
as being equivalent to num-1 CDR operations followed by a CAR operation, T%j
brackets can be likened to a function whose arguments indicate a sequence of CDRam}
CAR operations applied from 1left to right. For example L[2,1] is equivalenttm
(CAADDR L) - i.e., CAR(CAR(CDR(CDR(L)))). Angle brackets are used to indicats,
list consisting of the elements separated by commas within the angled brackets, Fwi
example , <A B ,C> is equivalent to LIST(A B ,C). We also use the single quote Symbo) -
instead of the word QUOTE.

EXPR HIER1(L ,RBP);

IF NULL(L[1]) & NOLL(CDDR(L)) THEN L
ELSE IF NULLECDD (L)) HEN HIER1(<CDR(L[11) ,CONS(L[1,1],L[21)> ,RBP)
ELSE IF NULL(L[1]) THE
IF RBP GEQ BP1(L[3 1] ,'LEFT&) THEN L
ELSE HIER1(CONS(NIL
CON§(CONS(L[3
[’2] '
HTER1 (CONS(L[3 ,2]
CONS (L CDDDR(L))),
BP1(L[3,1S,r%fégf&))))EZng,
- CDDR(L))) ,
ELSE IF BP1(L[1,1],'PRIGHT&) GEQ BP1 1] ,'LEFT&) THEN
S HIEﬁw(céNé(dD%(L[1]) co%s(cSNs(LE [%T,EFZJ),CD%R(L))),RBP) .
ELSE HIERT(CONS(L[1]
CONS ( (SETQ(L
HTER1(CONS (NIL ,CDR(L))
BP1(L[1,T] ,'PRIGHT&))))[2]
CDDR(L))) ,
RBP);
EXPR BP1(X,Y);
GET (X ,Y);

Fig. 5 - MLISP encoding of HIER1

Fig. 6 denotes the LAP encoding of HIER1 that is generated by the LISP1'6
compiler. The meaning of the instructions should be clear from the adjoining
comments. In addition, an encoding is given in fig. T, obtained by @ hat
optimization process, containing a number of errors. These errors occurred d”rms
the optimization process and were not intentional. The remainder of the dlsCussir

né
focusses on these errors and demonstrates the error detection capability of
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We show how the errors were detected and how the available information can

l’lg an system .
T be used to correct them, All corrections are made relative to the encoding in fig.
e |
Qhor 7 and thus all instruction locations refer to fig. 7. During this process, we
u ssively make e corrections deemed necessary by e error etection mechanism
ment succe 1 ke th td d d by th detecti hani
0 “m antil 2 correct program results. Unfortunately, the errors preclude fig. 7 from
containing a completely commented encoding. However , the meaning of the uncommented
instructions will become clear as the corrections are being discussed. Note that
Quap, !
@ ;% the scenario presented, sans the automatic error correction, 1is essentially a
metm . transcript of a user session with our system. The only difference is that we have
&g
T | omitted the numeric representation from our discussion.
g
R 1 EPUSH 12 1; save L on the stack
ang PUSH 12 2 save RBP on the stack
: HLRZ@ 1 1) load ace, 1 with L[1]
mt JUMPN 1 TAG2) fumg to TAG2 if L[1] is not NIL
. HRRZE 1 -1 12) oad acc. 1 with CDR(L)
‘ate g HRRZE 1 1) load ace. 1 with CDDR(L)
JUMPN 1 TAGZ; i p to TAG2 if CDDR(L) is not NIL
For | MOVE 1 -1 12 oad ace. 1 with L
. JRST TAG1) i to TAG1
ymbol TAG2 (HRRZE 1 -1 12) oad acc. 1 with CDR(L)
HRRZ@ 1 1) load acc. 1 with CDDR(L)
JUMPN 1 TAGY) f p to TAGY if CDDR L; is not NIL®
HRRZ@ 2 -1 12) oad acc, 2 with CDR L
HLRZE@ 2 2) load acc. 2 with L[2
(HLRZE 1 =1 12) load ace. 1 with L[1
HLRZE 1 1) load ace. 1 with L[1,1]
CALL EE CONS)g compute CONS(L[1 o1 ) L2 }
CALL 1 (E NCONS)) compute <CONS(L[1,1T L[2]1)>
HLRZ@ 2 -1 12) load acc. 2 with L[1Z
HRRZ@ 2 2) load acc. 2 with CDR(L)
. CALL 2 (E XCONS)) compute <CDR(L[1]),CONS(L[1 A1 LI2T)>
MOVE 0 12) load ace. 2 with RBP
. CALL 2 (E HIER1)) compute HIER1(<CDR(L[1]) ,CONS(L[1,1],L[2])> ,RBP)
- JRST O TAG1) iump to TAG1
TAGY (HLRZ€ 1 -1 12) oad acc.1 with L[1}
JUMPN 1 TAG5) jump to TAGS if L{1] is not NIL
MOVEI 2 (QUOTE LEFT&)) load acc. 2 with 'LEFT&
HRRZ@ 1 =1 12) load acc. 1 with CDR(L)
BALL 1 éE CAADR)) 891~ [=+ ¢[3 1B
CALL 2 (E BP1)) compute BP1(L 3. 1] 'LEFT&)
MOVE 2 0 12) load acec. 2 wit P
| CALL 2 (E *GREAT)) compute BP1(L[3 a1, LEFT&}
JUMPN 1 TAG;B iump to TAG7 if BP1(L[3 1 LEFT&))RBP
MOVE 1 -1 1 oad acc. with L
JRST 0 TAG6) iumg to TAG6
TAG7 (HRRZE 2 -1 12) oad ace. 2 with CDR(L)
HRRZE@ 2 2; load ace. 2 with CDDR(L)
HRRZ@ 2 2 load acc. 2 with CDDDR(L)
HRRZE@ 1 -1 12) load acc. 1 with CDR(L)
! CALL 1 (E CDADR)) compute CDR(L53])
CALL 1 (E CADR% compute L
‘ CALL 2 (E CONS compute cowé L[3 .31 ,CDDDR(L) )
sp 1 HRRZ8 2 -1 12) load acc. 2 with CDRE(L)
oad acc. wi
g HRRZ@ 2 2 load 2 'th CDDR(L)
»inif HLRZE 2 2 load acc. 2 with L[3g
of HRRZ@ 2 2 load acc. 2 with CDR L53]
* 1 gkﬁiezz(g XCONS)) ot %cccoﬁs?ifh LEBdSNs( [3,3] ,CDDDR(L)))
: compute i
jurinb PUSH 12 1) save CONS(LL3 } ONS(L[3,3%,CD5DR(L)))
o on the stack
is8t HRRZE 1 -2 12) load ace. 1 with DRSL)
e HLRZ@ 1 13 load ace, 1 with L[2
f b PUSH 12 1 Sovo Ll2] o8 the stagk
HRRZ@ 1 -3 12) load acc. 1 with CDR(L)
CALL 1 (E CAADR)) compute L[3,1]

(MOVEI 2 (QUOTE RIGHT&))

————

load acc.92 with 'RIGHT&

e — 1




PUSH 12 1&
HRRZ@ 12)
CALL éE CAADR))
CALL 2 E BP1))
MOVE 2 1

EXCH 1 =2 12)

(CALL 2 (E HIER1))

(HRRZE 2 1)
(HLRZE 2 2)

$EXCH 1 -1 12)
CALL 2 (E CONS))
(POP 12 2)

(CALL 2 (E XCONS))

(HRRZE@ 2 0 12)
(HRRZE 2 2)

(CALL 2 (E CONS))

éMOVEI 2 (QUOTE NIL))
CALL 2 (E XCONS))

(MOVE 2 -2 12)
(CALL 2 (E HIER1))

EPOP 12 =3 12)

SUB 12 (C 00 1 1))

TAG6 (JRST O TAG1)

TAG5 (MOVEI 2 (QUOTE PRIGHT&))
HLRZE 1 -1 12)
HLRZE® 1 1)
CALL 2 (E BP1))
MOVEI 2 (QUOTE LEFT&))

save L[3,1] on the stack
load acc. 1 w1th CDR(L)
compute L[ E

compute BP1CL 1] ,'RIGHT i

1ocad acc. 2 w1th Bﬁ1(L[3 1] ,'RIGHT&)
exchange acc, 1

CONS(L 3,2] CONS(L[B,B] ,CDDDR(L) ))

HIEE1(CONS(L[3 23 cows(Lg§,3],CDDDB(L))),

37,11, "RIGHT
load 5w th
CSE(H?EE1(CONS(L[3 2], CONS(Lg§Y3],CDDDR(L)))'

BP1(L[3 f] "RIGHT&
load ace. 2 with
HIER1(CONS(L[3 2] ,CONS (L ; ],CDDDR(L))),
1(LL3,1], 'RIGHT [2
exchange acc. ‘1 with
compute
CONS(L[2],
HIhR1(CONS(L[3 2] ,CONS(L[3 ,3] ,CDDDR(L))) ,
BP1(L[3,1]1, RIGHT&))[2])
load ace. 2 with Lf3,f] from the stack
comgute
CON (L[3 2 o3
IERf( CONS(L[3 ,2] ,CONS(L[3,3] ,CDDDR ‘
BP1(L[3,1] 'RIGHT&E%KZ])) (LI |
1o ith TAG12
CDR(HIER1(CON (L[3,2],CONS(L%§,3],CDDDR(L))), g
BP1(L[3,1],‘RIGHT&
load acc, with
CDDR(HIER1(CONS(L[3 2] CONS(LE§,3],CDDDR(L))), .
BP1(L[37,7],"RIGH )
EgﬁS%ESNS(L[3 1]
CONS(L[2] :
HIERT(CONS(L[3 ,2]
CONS(L['3 ,3] ,CDDDR(L))),
BP1(L[3,1) ,"RIGHT&) )[2])),
CDDR(HIER1(CONS(L[3 ,2] ,dONS(L[3 ,3] ,CDDDR(L))),
BP1(L[37,1],"RIGHT&)))
load acc. 2 with NIL
com ute
CONS(NI
CON§(CONS(L[3§(Lf
HIERf(CONs(L[B f 32
DDDR{L
(L53 1], GHTi§3f2DL
CDDR(HIER1(CONS(L[3 Lf3 —
BP1(L[3 15 RIGHT&)))))
load ace. 2 with RBP from the stac
compute
HIE 1(CONS(NIL
é(CONS(L[3
g<h£ER1(CONS(L[3 2]
BP1(L[3,1
'R%dH ))[2])
CDDR(HIER1(CONS(L[§
S(L[3 ,32,
c L)gg,),
BP1(L[3,1]1, 'RIGHT& ))
RBP)
remove a stack entry
remove a stack entry TA
jump to TAG1 G1
oad acc., 2 with 'PRIGHT&
load acc. 1 with L{1]
load ace. 1 with L[1,1]
compute BP1 (L1 ,1] 'PRIGHT)
load acec. 1 UEFT&

2 w1th
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TAG12

TAG1

gPUSH 12 1)

HRRZ@ 1 =2 12)
CALL 1 EE CAADR))
CALL 2 (E BP1))
POP 12 2)

CALL 2 (E *GREAT))
(JUMPN 1 TAG12)

HRRZE& 2 -1 12)
HLRZE 2 2)

HLRZ@ 1 -1 12)
HLRZE 1 1)

CALL 2 (E CONS))
HRRZE@ 2 -1 12)
HRRZ8 2 2)
CALL 2 (E CONS))
HLRZ@ 2 12)
HRRZ@ 2 2)

CALL 2 (E XCONS))

(MOVE 2 0 12)
(CALL 2 (E HIER1))

JRST 0 TAG1)
HRRZ@ 2 -1 12)

MOVEI 1 (QUOTE NIL))

CALL 2 (E CONS))
PUSH 12 1)
HLRZ@ 1 -2 12)

MOVEI 2 (QUOTE PRIGHT&))

PUSH 12 1)
HLRZ@ 1 -; 12)
HLRZ@ 1 1

CALL 2 §E BP1))
MOVE 2 1)

(CALL 5 (8 Aida1))
(HRRZ@ 2 1)

(HRRZ@ 2 2)

(MOVEM 1 =3 12)
(CALL 1 (E CADR))

(CALL 2 (E CONS))

gPOP 12 2)
CALL 2 (E XCONS))

(MOVE 2 =1 12)
(CALL 2 (E HIER1))

save BP1(L[1,1],"PRIGHT) on the stack

load acec. 1 w1th CDR(L)

compute L[3 E

compute BP1(L[3 = 'LEFT&)

load ace. 2 with BB1(L[1 '"PRIGH 3

compute BP1(L[3 1],’LEFT)>B§1(L[1 1] ,"PRIGHT)
% to TAG12 1f

BP1 L[3,1],'LEFT)>BP1(L[1,1] ,'PRIGHT)

load acc. 2 with CDR L)

load acc. 2 with L[2

load acc. 1 with L 1

load ace. 1 with L

compute CONS(L[1 1

load acec. 2 w1th C

load acec. 2 w

compute CONS(CONS(

load acec. 2 with L

load acec. 2 with C

CONg(CDR(L[
CONS(CONSCL[1 1] L[2]) ,CcDDR(L)))
load acc 2 with
com
HIE 1(CONS(CDR L[1])
CONSCL[1 ,11 L[21) ,CDDR(L))) ,

1,1
L
o
REL

)

Ul—'[" U Ul—l—'—'—|U w

]
2
)]
i)
1] L[2]) ,cDDR(L))
(11)

jump to TAG1I

load acc. 2 with CDR(L)

load acc. 1 with NIL

compute CONS(NIL ,CDR(L))

save CONS(NIL CDR(L)) on the stack

load acc. 1 with L[]

load acec. 2 with 'PRIGHT&

save L[1] on the stack

load ace. 1 with L 1]

load ace. 1 with 153

compute BP1(L[1 1] 'PRIGHT&

load ace. 2 with B§1(L[1,1] 'PRIGHT&)

exchange ace. 1 with CONS (NTL ,CDR(L) )

com

HIEE1(CONS(NIL ,CDR(L)) BP1(L[1,1] ,"PRIGHT&))

comp

CDR(HIER1(CONS(NIL ,CDR(L)) BP1(L[1,1],'PRIGHT&)))

com

CDDE(HIER1(CONS(NIL ,CDR(L)) BP1(L[1,1] ,'PRIGHT&)))

replace the old value of L on the stack with

HIhR1(CONS(NIL ,CDR(L)) BP1(L[1,1] ,'PRIGHT&) )

com

Hlbg1éCONS(NIL ,CDR(L)) BP1(L[1,1] ,'PRIGHT&))[2]

compute

CONS(HIhR1(§ONS(NILfCDR(L))
CDDR(HIER1(COM52MIL CDR( ng

BP1(LLY,f],'PRIGHT&))))
load ace. 2 with L[1]

—e—

compute
CONS(L{1]
CONS(HIER1(CONS(NIL CDR(L))
CDDR(HIERg%ééﬁg%NIERégg%ﬁg3[2],
BP1(L[1,7],'PRIGHT&)))))

load ace. 2 with RBP

compute

HIER? (GONS (L[ 1]

CONb(HIER1(CONS(NIL CDR(L))
BP1(L[1,7],'PRIGHT&))[2],
CDDR (HIER1(CONS(NIL ,cDR(L))
BP1(L[1,T] ,'PRIGHT&))))) ,

RBP)
remove one entry from the stack
undo the first two stack operations
return

Fig. 6 - LISP 1.6 compiler generated encoding for HIER1
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The optimized encoding makes use of several optimizations which are briefly
described. In some instances recursion is achieved by bypassing the start of the
program via use of the 1label HIERA. This is motivated by the f‘olloWing
observations. First, for the recursive calls the second argument need nevepr be
present in accumulator 2 because accumulator 2 1is never being referenced priop to
being overwritten. Second , observe that whenever recursion occurs, the Secong
argument is already on the stack and thus there is no need to place it on the stagy
again. Hence, the first instruction may be bypassed and therefore for intepnal
recursive calls there is no need to follow a calling sequence which makes use of
accumulators. Instead, a calling sequence 1is wused where one parameter is in
accumulator 1 while the other parameter is on the stack. Other optimizatj_ons
include common subexpression elimination and a wide use of accumulators to store
temporary values across functions whose 1invocation does not result in  the
destruction of the contents of all of the accumulators (e.g., CONS, XCONS, apg
NCONS). Finally, conditions are compiled more efficiently so that redundant tests
are avoided. This was a problem in the LISP 1.6 compiler generated LAP program due
to the use of the AND operation in some of the conditions present in the original
LISP function definition. The result of these optimizations, when chains of CAR-CDR
operations are expanded in line, is an encoding containing 105 instructions instead
of 145 instructions. Timing measurements indicated that the new encoding was about

40% faster and required 50% less stack space.

HIER1 1 PUSH 12 2) save RBP on the stack
HIERA 2 load acec. 5 w 511
3 JUMPN 5 TAG2) jump to TAG2 if L[ ] is not NIL
40 oad ace. 4 with CDR(L)
5 HRBZ 30 u) load ace. 3 with CDDR(L)
6 (JUMPE 3 TAGA) jump to TAGA if CDDR(L) is NIL
g JRST 0 TAGB) ump to TA GB
TAG?2 HRRZ 4 0 13 oad ace. 2 with CDR(L)
9 (HRRZ 3 0 4 load acc. 3 with CDDR(L)
10 JUMPN 3 TAGC) f p to TAGC if CDDR(L} is not NIL
11 10 33 oad ace. 1 with L[1.,1
12 HLRZ 20 load acc. 2 with L[2]
13 CALL 2 EE CONS)g compute CONS(L[1,1 L[2]3
14 (CALL 1 (E NCONS)) compute <CONS(L[1 1fﬁL[2 >
12 HRRZ 2 0 4) load ace. 2 with CDD LE
16 (CALL 2 (E XCONS)) compute <CDDREL) ,LCONS(L[1 1],L[2]i>
1g JRST O HIERA) compute HIER1(<CDDR(L) ,CONS(L[1,1] ,L[21)> ,RBP)
TAGB 1 PUSH 12 1) save L on the stack
19 (HLRZ 1 O 33 load ace. 1 with LE3]
20 (HLRZ 1 0 1 load acc. 1 with L[3,1]
21 (MOVEI 2 (QUOTE LEFT&)) load acc. 2 with 'LEﬁ
22 (CALL 2 (E BP1)) compute BP1(L[3 1 ’LEFT&)
2 MOVE 2 -1 12) load acec. REP
24 (CALL 2 (E *GREAT)) compute BP1(L[3 11 5 'LEFT&5>RBP
25 (JUMPN 1 TAGT) f p to TAGT if BPT(L[3,1],'LEFT&)>RBP
26 (POP 12 1) oad ace. 1 with L
2g JRST O TAGA) f p to TAGA
TAG7 28 (HRRZ€ 1 0 12) oad ace. 1 with CDR(L)
29 (HRRZ 1 0 1 load ace. 1 with CDDR(L)
30 (HLRZ 1 0 1 load ace. 1 with L[3]
31 (HLRZ 1 0 1 load ace. 1 with L[3,1]
32 (MOVEI 2 (QUOTE RIGHT&)) 1load ace. 2 with 'RIdHT&
33 CALL 2 (E BP1)) compute BP1 L[? 'RIGHT&)
3L (PUSH 12 1) save BP1( L[3 RTGHT&) on the stack

TAGX

TAGC

TAG

TAC

A

e



‘ong
-ack | TAGX
‘naj

* Of

i ip

ong

Ore

and
sts

TAGC

O
—3

dul T%)LEFT&))

nal

12)
HLRZ 1 0 1)
MOVEI 2 (QUOTE PRIGHT))
CALL 2 (E BP1))
POP 12 2)
CALL 2 (E *GREAT))
(JUMPE 1 TAG12)

HLRZE@ 5 0 12)

HLRZ 170 5)

HRRZE@ 4 0 12)

HLRZ 2 0

CALL 2 (E CONS))
204

(CALL 2 (E CONS))

g 0

HRRZ
EHRRZ
CALL 2 (E XCONS))

CDR
ead

out

no

3
;
M
4
M
I
4
i
i
i
y
5
5
2
5
5
g
5
5
the | g
6
8
4
8
6
6
6
4
6
7
7
7
7
7
7
!
7
7
i
8
8
8

83 €SUB 12 (C00 1 1))
JRST O HIERA)

TAG12 HLRZE 1 0 12)

HLRZ 1 0 1)

MOVEI 2 (QUOTE PRIGHT&) )
CALL 2 (E P1))

PUSH 1 )

HRRZ@ 2 -1 12)

MOVEI 2 (QUOTE NIL))
CALL 2 (E CONS))

PUSHJ 12 HIERA

HRRZ 5 0 1
HLRZ

Tagy

TAGa

— d
O OO OW OO OO WO WO COCO0 QOO

W N — OO OO =0 NV — OO 0o~ OWJT

with CDR

load acc. (
with CDD%

load acc.
load acc.
load acc.
load acec. with
load acec. wlth
load acec.

compute CONS(CDD
load acc. 2 w
compute CONS(L[B

with L
with L

N = =01

r—wﬁl—'l—icr—'ﬂ

chhy

h L ]
DR §,1,1,1])
1 NS(CDDDR(L) ,L[3,1,1,1]))

)

load ace. 1 with
load ace. 1
load ace. 2
compute BP1( )
save BP1(L[3 on the stack
1oad ace. 1
load ace. 1
load ace., 2
compute BP1(
load ace. 2
compute BP1(
gum% to TAG1
P1CELY A3 )
load acc §
load acec. 1
load acc. 4
load acc. 2 w
compute CONS(L
load acc. 2 with
compute CONS(CONS
load ace. 2 with C
oomgute
CONS(CDR(L[11])
CONS (CONS(L[1,11 ,L[2]) ,CDDR(L)))

remove an entry from the stack

thﬁ1(cons(CDR(L[1])
CONS(CONS(L[1,1] ,L[2]) ,CDDR(L))) ,

i,'LEFT&)
>BP1(L[3,1] ,'LEFT&)
1(L[3,1] ,'LEFT&)

H
B

S LTUNCECEIE,
S B P P By
= Y=

%[2]),CDDR(L))

load ace. 1 with L[1]

load ace. 1 with L[1,1]

load acc. 2 with 'PRIGHT&

compute BP1(LQ1, ] ,'PRIGHT&)

save BP1(L[1,1] |'"PHIGHT&) on the stack
load ace. 2 with CDR(L)

load acec. 2 with NIL

compute CONS(BP1(L[1,1],'PRIGHT&),NIL)
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Fig. 7 - Erroneous hand optimized encoding of HIER1

When attempting to prove the equivalence of the encoding in fig. 7

and gy petHe

original LISP function definition of HIER1, the following errors were detecteq, Fog Fifst
type (1) errors, the error message indicates the location at which the errop ., 1 1ocat
detected. For type (4) errors, the error message indicates the location at whieh ghe T
the function that could not be found to occur in the original program was computed‘ gust
In both cases a set of instruction locations corresponding to the branches that Wepg (i.€-
pursued is given. Note that in the interest of clarity we do not use brackets ol stack
express chains of CARs and CDRs in errors - i.e., we use CAR(CAR(L)) insteagq of petwe
CAAR(L) or L[1,1]. This is done in order to aid the reader in understanding whep pelow
the various errors were detected. There
(1) Return address on the stack must be a label. '

Detected at instruction 45 along path 1,3 ,4,6,7,18,25,28.
(2) Return address on the stack must be a label.

Detected at instruction 93 along path 1,3,8,10,61,73,85.
(3) The ggéé?g%ﬂg computation does not occur in the original LISP program: l

CON§(CONS(CAR§CABEL3§ ; |
CAR(CDR(L))) ,

Computed at instruction 16 along path 1,3,8,10,11. det e
(4) The fg%%gg%ng computation does not occur in the original LISP progranm: fune

Computed at instruction 69 along path 1,3,8,10,61. .

Errors (1) and (2) were detected by the symbolic interpretation procedure.
They resulted from invalid return addresses on the stack at instructions 45 and 93
when recursion was implemented by bypassing the start of the program. In this case
the stack is being used instead of accumulator 2 to contain the second argument. %oca
However , the contents of the stack are wrong. In particular, the return addresses e
(i.e., locations 46 and 94) appear in the stack at a position where the binding of (HEE
the second argument is expected (i.e., the top of the stack). Thus when a returd %ha]
will be made from the recursive call, execution will not resume at locations 46 or g
94, Also, all references to the top of the stack will fetch the return address the
rather than the binding of RBP. The solution is to place the return address on the zhe
stack before the binding of RBP. In the case of error (1), the binding of RBP is & | S
BP1(CAR(CAR(CDR(CDR(L)))) ,"RIGHT&) which is computed starting at location 28 and
pushed on the stack at location 34. Thus the return address may be placed on the
stack anywhere after location 27 and before location 34. We choose to do thi® Ref
between locations 27 and 28 (i.e., location 27A). 1In the case of error (2), tP® fol

binding of RBP is BP1(CAR(CAR(L)) ,"PRIGHT&) which is computed starting at locatio?

4

_*



85 and pushed on the stack at location 89. Thus the return address may be placed on
¢he stack anywhere after location 84 and before location 89. We choose to do this
petween locations 84 and 85 (i.e., location 84A). However, we are not yet through.
pirst, Wwe must insure that all references to labels TAG7T and TAG12 refer to
1ocations 27TA and 84A instead of locations 28 and 85 respectively. Second, since
the return addresses are no longer placed on the stack at locations 45 and 93, we
gust only do a jump (i.e., JRST) rather than a push of a return address and a jump
(i.e«» PUSHJ) at locations 45 and 93. Third , placing the return address on the
stack at locations 27A and 84A has caused the stack to contain an extra entry
petween locations 27 and 45 and 84 and 93. Thus all references to stack entries
pelow the position holding the new return address must be incremented by one.

Therefore , we make the following changes and additions:

location 27A: becomes (PUSH 12 (C 0 QO TAGX 0))
location 28: HRRZ@ 1 0 12) becomes HRRZ@ 1 -1 123

location 35: HRRZ@ 5 -1 12) becomes HRRZ@ 5 =2 12

location PUSHJ 12 HIERA) becomes JRST O HIERA)

location 844: becomes (PUSH 12 (C 0 O TAGY 0))
location 85: (HLRZ@ 1 0 12) becomes (HLRZ@ 1 -1 12;

location 90: gHRRZ@ 2 -1 12) becomes HRRZ@ 2 -2 12

location 93: PUSHJ 12 HIERA) becomes JRST O HIERA)

Errors (3) and (4) were detected during the proof procedure. Error (3) was
detected when CAR(L) was not NIL and CDDR(L) was NIL. Referring to the original
function definition we see that at this point we want the following:

CONS(CDR(CAR(L) )

CONS(CONS(CARECAR(L)),
CAR(CDR(L))) ,
NIL))

Therefore, the error is in the arguments to the function being computed at
location 16 (i.e., CONS). The first argument to this CONS operation is NIL which is
identical to CDDR(L). Looking at the code we find that at location 15 we perform
(HRRZ 2 0 4) which has the effect of loading accumulator 2 with CDR(CDR(L)) rather
than the desired CDR(CAR(L)). However , CDR(CAR(L)) can be achieved by changing the
instruction to refer to accumulator 5 instead of accumulator 4. Thus we see that
there are several possible causes for the error. Among them are a confusion about
the contents of certain accumulators, and mistyping of a 4 for a 5. We make the
following modification:

location 15: (HRRZ 2 0 4) becomes (HRRZ 2 0 5)

Error (4) was detected when both (CAR L) and CDDR(L) were not NIL.
Refepring to the original function definition we see that at this point we want the

f‘Ollowing:

'PRIGHT&

15




Therefore, the error is in the argument to the function being comput gq
il
location 69. This time there 1is no doubt that the cause of the errop wt
EN

misspelling of the atom PRIGHT&. We make the following modification:
location 69: (MOVEI 2 (QUOTE PRIGHT)) becomes (MOVEI 2 (QUOTE PRIGHT&))

|

Once the previous errors have been corrected in the LAP program, we inDut|
the resulting program to the proof system and obtain the following errors.
(5) The following computation does not occur in the original LISP program:
CAR(CAR(CAR(CDR(CDR(L)))))
Computed at instruction 40 along path 1,3,4,6,7,18,25,27A.
(6) The followin% computation does not occur in the original LISP program:
¥ ESS(BP1(CAR CAR(CDR(CDR(L)))§,'LEFT&),
BP1(CAR(CAR(L)) ,"PRIGHT&) )
Computed at instruction 72 along path 1,3,8,10,61.
Error (5) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP ¢
BP1(L[3,1],'LEFT&). Referring to the original function definition, the argument t
the CAR operation at location 40 has already been found to occur in the intermediate

representation of the original program. Moreover , at this point a CDR operation jig
required as shown below:

CDR(CDR(CAR(CDR(CDR(L)))))

We temporarily disregard the fact that the argument to the outermost CDR
operation is wrong - i.e., it has not yet been found to occur in the original
program. The next sequence of debugging will find this error. Recall from section
3 that we first attempt to correct the function, and only once this is done do we
attempt to correct the arguments. Inspection of the code reveals that at
instruction 40 we perform (HLRZ 4 0 5) which has the wrong effect. Moreover , the
result of this operation, i.e., CAR(CAR(CAR(CDR(CDR(L))))), was not matched and thus
it can be changed to a (HRRZ 4 0 5) instruction. The cause for this error can be
confusion as to the contents of a location or again misspelling. However , we leal
towards the former since the error is of a compound nature as will be seen at the
next stage of debugging. We make the following modification:

location 40: (HLRZ 4 0 5) becomes (HRRZ 4 0 5)

Error (6) was detected when both CAR(L) and CDDR(L) were not NIL. One ©of
the characteristics of the intermediate representation is that operations known 1%
be antisymmetric are always represented by only one of the two possible choices:
Thus CONS and XCONS are represented by CONS and similarly, ¥LESS and *GREAT are

represented by *LESS. Therefore, according to the original function definition, L’
want the computation:

*LESS(BP1(CAR(CAR(L) ) ,' PRIGHTS) ,
BP1(CAR(CAR(CDRCCDR(L)))) )'LEFT&) )
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1t In other words, the error is in the order of the arguments to the ¥LESS
13 | function. Looking at the LAP program we find that at location 72 (CALL 2 (E
%*GREAT))) is performed rather than the necessary (CALL 2 (E *LESS)). An equivalent
interpretation of the error is that the contents of accumulators 1 and 2 (which must

contain the arguments to the function) have been permuted. Nevertheless, we opt for

. r the first interpretation since less code need be changed. Clearly, the source of
, this error is a misunderstanding by the programmer of the antisymmetric properties
[ of the arithmetic relations less than, greater than, less than or equal, and greater
) than or equal. We make the following modification.
| location 72: (CALL 2 (E *GREAT)) becomes (CALL 2 (E ¥LESS))
' Once the previous errors have been corrected in the LAP program, we input
' 4 y the resulting program to the proof system and obtain the following errors.
to (7) The following computation does not occur in the original LISP program:
te | Compubad At (netvuetion 0 along path 1,3 4,67 ,18 25 2TA.
is (8) The following computation does not occur in the original LISP program:
CONS(BP1%CAR(CAR(L)),‘PRIGHT&) NIL)
Computed at instruction 92 along path 1,3,8,10,61,73,84A.
(9) The following computation does not occur in the original LISP program:
CAR(CDR(L))
o ' Computed at instruction 77 along path 1,3,8,10,61,73,74.
1al Error (7) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP <
Lon . BP1(L[3,1] ,'LEFT&). Referring to the original function definition, we see that the
we function computed at location 40 is being applied to the wrong argument. Recall
at | from the last debugging session that the desired computation was:
he CDR(CDR(CAR(CDR(CDR(L)))))
s |
be Therefore, the error is in the argument to the function being computed at
. | location 40. The instruction at location 40 is (HRRZ 4 0 5). Therefore its
he argument is in accumulator 5 which is set at 1location 38 by a (HLRZ 5 0 3) f
instruction. We note that accumulator 5 is not referenced with this value except at
location 40, and thus it is quite reasonable to believe that an error occurred at
location 38. The instruction at location 38 has the effect of loading accumulator 5
od with CAR(CAR(CDR(CDR(L)))) rather than the desired CDR(CAR(CDR(CDR(L)))). However,
' this is a relatively easy modification since we merely need to replace the HLRZ
e OPeration at location 38 by a HRRZ operation. The cause of this error is confusion
are about the contents of accumulators or misspelling. We lean towards the latter in
a light of the remedy. Recall that this was part of a compound error as discussed in
the analysis of the previous set of bugs. We make the following modification: f
location 38: (HLRZ 5 0 3) becomes (HRRZ 5 0 3)
. |
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Errors (8) and (9) occured when both CAR(L) and CDDR(L) were not NIL, T
8

difference is that error (8) occurs when BP1(L[1,1],'PRIGHT&) is greater thap 3

equal to BP1(L[3,1],'LEFT&) and error (9) occurs when the latter condition is nog

true. If we were to proceed along lines proposed earlier, we would check ir the

functions computed at these locations are erroneous or if their arguments are fog

correct. Using this strategy, we would discover that we do not get a real idej ag

-to the

error. The problem is that we have branched on the wrong sense of the

condition computed at location 72 and tested at location T73. Such errors are 4

possibility when there are two errors in the subtrees of the same condition. The

error could be detected by the scheme discussed in section 3. In the case of thig

example , we did indeed test the wrong sense of the condition. We were aware of tpjg

fact during the last debugging session; however , we did not discuss it Dbecause We

feel that the present setting is more enlightening. Nevertheless, the probiley

should have been fixed at that time since the error did occur in the computation of

a function. Such problems in the context of multiple errors are quite difficult apg

an adequate method to dispose of them is a subject for future research. Therefore,

change

the sense of the test performed at location 73 by making the following

modification:

location 73: (JUMPE 1 TAG12) becomes (JUMPN 1 TAG12)

Once the previous errors have been corrected in the LAP program, we input

the resulting program to the proof system and obtain the following errors.

(10)

(1)

The following computation does not occur in the original LISP program:
CONS(CDR%CDRE DREL)))
CAR(CDR(CDR({CAR(CDR(CDR(L)))))))
Computed at instruction 42 along path 1,3,4,6,7,18,25,27A.

The following computation does not occur in the original LISP program:
CONS(%?&?CAR( AR(L)) ,'PRIGHT&) ,
Computed at instruction 92 along path 1,3,8,61,73,844.

Error (10) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP ¢

BP1(L[3,1] ,'LEFT&). Referring to the original function definition, we see that at

this point we want the following:

CONS(CARECDR&CDRECARSCDR(CDR(L)))))),
CDR(CDR(CDR(L))))

Clearly, the order of the arguments to the CONS operation has been reversem

Inspection of the code reveals that at location 42 we perform (CALL 2 (E CONS”
5
rather than the necessary (CALL 2 (E XCONS)). This conclusion is made on the bas?

0
of CONS being an antisymmetric function. An equivalent interpretation of the err

is that the contents of accumulators 1 and 2 (which must contain the ar‘guments
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the function) have been permuted. Nevertheless, we opt for the first interpretation
since less code needs to be changed. Clearly, the cause of the error is a confusion
as to the contents of accumulators 1 and 2. We make the following modification:

location 42: (CALL 2 (E CONS))becomes (CALL 2 (E XCONS))

Error (11) was detected when both CAR(L) and CDDR(L) were not NIL and
gP1(L[1,1],'PRIGHT&) was not greater than or equal to BP1(L[3,1],'LEFT&). Referring
to the original function definition we see that at this point we want the following:

CONS(NIL ,CDR(L))

Therefore, the error is in the arguments to the function being computed at
location 92. The desired arguments, NIL and CDR(L), have already been computed at
locations 91 and 92 respectively and found to occur in the intermediate
representation of the original program. Thus the correction is to simply make sure
that they reside in the proper accumulators for the CONS operation at location 92 to
be correct. This means that instead of loading accumulator 2 with NIL at location
91, we load accumulator 1 with this value. Notice that the error that was made was
to load accumulator 2 with NIL at location 91 via (MOVEI 2 (QUOTE NIL)) thereby
destroying the previous contents which was CDR(L). This error was detected, and
quite easily corrected, because we always record all computations that have been
performed whether or not they are referenced. This is wuseful because the proof
procedure will make sure that the computation is performed. Thus when errors occur
in arguments to functions we can easily make a correction since we know where and
when the desired arguments are computed even though they may have been misused. The
error in this case can be clearly attributed to an oversight by the programmer in
typing a 2 instead of a 1. We make the following modification:

location 92: (MOVEI 2 (QUOTE NIL)) becomes (MOVEI 1 (QUOTE NIL))

Once the previous errors have been corrected in the LAP program, we input

the resulting program to the proof system and obtain the following errors.

(12) The following computation does not occur in the original LISP program:
CONS(CDR%CDR(CAR(CDR(CDH(L))))),
CONS CARECDR&CDR§CAR(CDR(CDR(L)))))),
CDR(CDR(CDR(L)))))
Computed at instruction 44 along path 1,3,4,6,7,18,25,27A.

Error (12) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP <
BP1(L[3,1] ,'LEFT&). Referring to the original function definition we see that at
this point we want the following:

CONS(CAR(CDR(CAR(CDR(CDR

(L))))
CONS(CAH(CDR(CDR(CARSCDR CDR(L)))))),
CDR(CDR(CDR (L) ))))

]
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Therefore, the error is in the arguments to the function being oomputed

location 44, The desired second argument is correct, but the first one is lnvallq !

The instruction performed at location 44 is (CALL 2 (E XCONS)) and thus the angmet : ii
in accumulator 2 1is wrong. The desired contents of accumulator is B
CAR(CDR(CAR(CDR(CDR(L))))). Inspection of the code reveals that accumulator » 10 3
last loaded at location 43 by the instruction (MOVE 2 4). However, this valye is N
not necessary in the future and thus the instruction at this location may bt | i
removed. The validity of the previous removal is obvious when we recall the that
the value in accumulator 2 is not referenced past location 44. An alternatiy, | 5%
reason is that the XCONS operation is assumed to destroy accumulators 1 and 2, In
its place we need to compute CAR(CDR(CAR(CDR(CDR(L))))) since it has not yet been l R
computed. This can be done quite easily since at this point accumulator 5 already reﬁ
contains CDR(CAR(CDR(CDR(L)))) and thus we need only obtain CAR of the contents op ! .
register 5. This is quite easily done by inserting (HLRZ 2 0 5) at 1location 4300 .
The cause of this error is obviously confusion on the part of the programmer as tq ! Cué
the contents of accumulator 2. We make the following modification: 2 deé
location 43: (MOVE 2 U4) becomes (HLRZ 2 0 5) | heé
Once the previous errors have been corrected in the LAP program, we input { mi%
the resulting program to the proof system and obtain the following error. % 6.;
(13) The following computation does not occur in the original LISP program:
CAR(HIER%(CONS(CAR(CDR(CAR(CDR(CDR(L))))) K , [DE
o 8%3?88%25’;‘33?‘3““ g Mas
as
Computed at in%ggégé?égAgécg§éggRég g 1 535%2,7 1& 2b ,2TA . | (or
Error (13) was detected when CAR(L) was NIL, CDDR(L) was not NIL, and RBP ¢ Prc
BP1(L[3,1] ,'LEFT&). Referring to the original function definition we see that thiS' Frz
computation 1is unnecessary. Moreover what is required at this point is the ..
following:
CDR(HIER1(CONS(CAR(CDR(CAR(CDR(CDR(L))))), ‘ Y
SO o EpR RS contL o s
BP1(CAR(CAR(CDR(CDR(LB)’) ,'RIGHT&))) s
Clearly, what happened here is that a CAR operation was computed rather that Ste
a CDR operation. In terms of machine instructions the previous is translated inbo [Mc
the performance of a HLRZ rather than a HRRZ. By now we are rather adept at makiug col
such corrections and we simply replace the (HLRZ 2 0 1) instruction at location el
by (HRRZ 2 0 1). Note that we made use of the fact that results of the previo®” (N
instruction at location 47 were never referenced in the future. Clearly, the caus? Lon

of this error is mistyping of HLRZ for HRRZ. We make the following modification:
location 47: (HLRZ 2 0 1) beggmes (HRRZ 2 0 1)

.
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At this point the proof system finds the corrected LAP program to be

quivalent to the original LISP program. Thus we have seen how the system can aid
e
- user in debugging his program. Our goal is to construct a system, employing
jmilar reasoning as we have performed in this section, to debug and correct
s

erponeous programs. Of course, not all errors could be caught by such a system.
However we feel that quite a reasonable number could be detected and corrected by

such an automatic system.
5. CONCLUSION

We have demonstrated the performance of a semi-automatic debugging system.
At the present, only the errors are detected and pinpointed automatically. It
remains for the programmer to make wuse of this information to correct the program.
In the future, we believe that the correction task can, in a large number of cases,
be performed automatically. This is especially true for errors of class (4).
currently , we need to continue to exercise the system with erroneous encodings to
determine 1if any more error-correction heuristics can be discovered. Such
heuristics also provide an insight into the programming process. i These insights

might prove to be useful in future automatic programming systems.
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