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INTRODUCTION 

We are interested in a system to handle equality operations based on known 

equivalences and inequivalences of instances of formulas. Such applications arise 

in the domains of program verification ([London72], [Samet78]), code optimization 

(cockeSchwartz70], and theorem proving [ChangLee73]. Some of the requests to which 

~e would like to be able to respond are: 

(1) Are two items known to be equal? 

(2) Are two items known to be unequal? 

(3) Is it impossible to determine if two items are equal or not? 

(4) Update the data base to include an additional equality. 

(5) Update the data base to include an additional inequality. 

(6) Does the inequality of two ite~s lead to a contradiction (i.e., an implied 
equality) ? 

(7) Does the equality of two items lead to a contradiction (i.e., an implied 
inequality) ? 

A few examples of the type of requests made to the system are given below: 

Ex. 1: Given: a = b 
c = d 
b = c 

Derive: g(a) = g(d) 

Ex. 2: Given: ~~g~ = H~~ = 
a = b 
c d 

Derive: g(a) = g(d) 

Ex. 3: Given: c = d 
f (a) = a 

a = c 
Derive: f (f(a» = d 

Ex. 4: Given: f~b~ = a 
f a = a 

f(f(a) = c 
Derive: f(f(b» = c 

Ex. 5: Given: f(a,b) NEQ f(c,d) 
a ... c 

Derive: b NEQ d 

Note that these examples, and all future examples, are written in a 

functional notation using parentheses and commas although our algorithm will be for 

formulas written in a prefix functional notation. In the remainder of the paper we 

Shall present efficient algorithms to answer these questions using a formal grammar 

approach. For another treatment to similar problems using dags see [DowneySethi77]. 
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2. OTHER APPROACHES 

One way of keeping 

classes [GallerFisher641. 

track of the equivalences is by means of equivalence 

When a new equality is seen, the current list of 

equivalences is updated to reflect all possible members based on the new equality. 

One pitfall of such an approach is that all possible equalities can not be generated 

since such a procedure will not terminate (e.g. f(a)=a will cause substitution to 

go on forever). A variation of this approach is to have pointers to all equivalence 

classes. When an equality is determined, all subexpressions of the equality pair 

that appear in previous equivalence classes have their respective pointers 

substituted. Next, the class name of the new equivalence class is substituted in 

all equivalence classes where members of the new equivalence appear as a 

subexpression. Another pitfall, which must be considered in all approaches, is the 

case when two items are' known to be inequivalent, yet subsequent equality operations 

could cause a contradiction. 

The last pitfall can be illustrated by examining a variant of example S. In 

this case we could not assume, in addition to the two given equalities, that b=d 

since this would lead to a contradiction. Namely, a=c and b=d imply that 

f(a,b)=f(c,d) which is known to be false. Thus the fact that f(a,b) is known to be 

inequivalent to f(c,d) implies that (a NEQ c) or (b NEQ d) or both, but not equality 

(i.e., a=c and b=d). 

Closer examination of example 4 will reveal that in effect f(f(b» is being 

reduced to a during the process of trying to prove f(f(b»=c. This suggests a 

process of equivalence Py reduction which is analogous to parsing. 

our problem can be specified in terms of grammars. 

Thus, perhaps 

Given a grammar G for our language of formulas we wish to determine if two 

sentences of the language are equal based on a known set of equalities. The set of 

equalities is a set of pairs of strings that are sentences of the language generated 

by G (henceforth referred to as L(G». The set of equalities can be considered to 

be a set of symmetric productions where each member of a production corresponds to a 

formula in prefix functional notation. Each argument position in a formula contains 

either another formula or a non terminal symbol which corresponds to an atom. For 

example, consider fig. 1 where the representation of the equality f(a,b)=g(c) is 

demonstrated. Note the use of lower case letters for terminal symbols and upper 

case letters for nontermina1 symbols. 

(f A B) ==> 
(g C) ==> 

A ==> 
B ==> 
C ==> 

(g C) 
(f A B) 

a 
b 
c 

Fig. 1 - Equality Grammar for f(a,b)=g(c) 
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Thus the problem can be formulated in terms of formal languages. Namely, 

~~ere is a set of productions, G, containing two productions for each equality and 

o~e production for each terminal symbol. The problem of equality determination can 

~ow be reformulated as follows: 

Given a pair of sentences of L(G), determine if 
terminal symbol of the first sentence, say SI, 
nonterminal symbol, the set of strings generated 
nonterminals contains the second sentence, say S2. 

after reducing each 
to its corresponding 
from this string of 

However, G is a type 0 grammar whose decision problem is undecidable. 

Therefore, the procedure of generating all sentences of a given length, inefficient 

SS it might be, is impossible. The problem, formulated in such terms, is 

undecidable for the general case. One of the basic troubles of this approach is 

that it does not make use of either transitivity information or the syntax of L(G). 

In other words, transitivity must be rederived each time it is desired to check if 

tWO items are equal. Nevertheless, an advantage of such a method, if it were 

feasible, is that when new equality relations are determined, updating the data base 

consists of merely adding the symmetric productions. 

3. SOLUTION 

The procedure that we will use is based on some special properties of our 

grammar, G, given in fig. 2. Note the use of <atom> to indicate a literal name. 

Also there is one production for each function consisting of the function name, and 

as many S symbols as there are arguments expected by the function. 

S ==> <atom> 
S ==> «fnamel> S S ••• S) 
S ==> «fname2> S S ••• S) 

. 
S ==> «fnameN> S S ••• S) 

Fig. 2 - Sample Equality Grammar 

The basic problem to which we will address ourselves is that of creating and 

Updating a data base for equalities so that a simple decision algorithm can be used 

to determine if two sentences of L(G) are indeed equal. We will use the notion of 

equivalence classes to keep track of all sentences known to be equal. An 

equivalence class is constructed for each valid sentence of L(G) which has been 

encountered while processing equalities of L(G). Moreover, the components of each 

~alid sentence of L(G) are represented in terms of their equivalence classes. This 

a crucial property of the system for it enables the representation to be 

tecursive (i.e., the components of an equivalence class may refer to the class). In 
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fact it is this property which distinguishes the system from one of the typical 

approaches mentioned earlier and enables us to represent such equalities as f(a)=a. 

For example, if f(a)=f(b), then when this equality is processed an 

equivalence class is created for a (say AO), for f(a) (say Al whose contents is 

[(AO», for b (say A2), and fOT feb) (say A3 whose contents is f(A2». The equality 

of f(a) and feb) is noted by meTging the two equivalence classes Al and A3, and all 

subsequent references to f(a) or feb) are by use of the lowest numbered equivalence 

class which was merged - i.e. Al in our case. As another example, suppose a=b, 

then all subsequent references to a or b are via their class name (i.e., AO). Thus 

if f(a) or feb) were to occur in other sentences, then they would be represented by 

a unique equivalence class name whose contents is f(AO). A final example is the 

'representat:'~n of f(a)=a • In this case a is identified by the equivalence class 

AO, while f(a) is iden~ified by the equivalence class Al whose contents is f(AO). 

The instance of equality is represented by the fact that all future references to a 

and f (a) are by their equivalence class name - i. e., AO. 

Thus we see that our data base must include the various equivalence classes 

and their contents in terms of other equivalence classes. At this point it becomes 

clear that we have constructed an equality grammar, G, whose nonterminal symbols are 

the names of the equivalence classes and the productions are simply the equivalence 

class names deriving each of their respective members. 

(1 ) 

(2 ) 

The process of adding an equality to our data base consists of: 

For each half of the equality determine the equivalence class in which it is 
contained (and the creation of one if it is not contained in any equivalence 
class). 

Herge the two equivalence classes. 

(3) Update all references to the merged equivalence classes to point to the new 
equivalence class. 

(4) Herge all equivalence classes whose equivalence is a direct consequence of 2. 

As a clarification of (4) consider the case when a=b, and f(a) and feb) 

appear in separate equivalence classes. Then (2) implies that f(a) and ~(b) are to 

be uniquely represented as f«ecln» «ecln> is the name of the equivalence class 

Containing a=b) , and thus the two classes containing f(a) and feb) are merged. In 

Other words, all equivalence classes are checked against each other for elements in 

cOmmon; and if yes, then a merge occurs and only one of the duplicate entries is 

kept in the newly formed equivalence class. 
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The process of determining the equivalence class containing a sentence of 

~(G) is the same as parsing a sentence of of L(G). The only difference is that 

instead of making a reduction to the nontermina1 symbol S (and also the start 

symbol), we make a reduction to the appropriate equivalence class. If a reduction 

can not be made, then the sentence is not a member of any of the known equivalence 

classes, and a new equivalence class (containing only the sentence in question) is 

created and parsing continues. Reductions, if they exist, are always unique since 

any sentence is contained in only one equivalence class. In fact, the ability to 

add equivalence classes while parsing is what enables us to prove that f(a)=f(b) 

given that a=b. 

Our algorithms take advantage of some special properties of G. The main 

problem in parsing is ~:lat the sentence being parsed could possibly not be a member 

of any equivalence class. This is equivalent to stating that there is a reduction 

to be made, yet there is no non terminal symbol to which the handle is to be reduced. 

In our case the problem is somewhat alleviated by the fact that G is always simple 

precedence [Martin68] (see the proof in the appendix) and thus we always know when a 

reduction is desired. We take advantage of this situation by examining the 

equivalence classes and determining if a reduction exists. If yes, then the 

reduction is made and processing continues in a normal manner. If not, then it is 

known that the current handle (which is a sentence of L(G» is not a member of any 

e.quivalence class, and thus a new class is created with the handle as its sole 

member. This is a natural extension to the process of creating a class for each 

atom not already in a class since atoms are also valid sentences of L(G). By atom 

we mean literal names and not function names. Note that since equivalence classes 

always contain valid sentences of L(G), the equivalence classes have the same 

precedence relations as S (the start symbol). Also, two equivalence class names can 

only have the precedence relation = between them, and in fact they always have this 

relation. The remaining precedence relations are given in the precedence matrix in 

fig. 3 (note the use of <ecln> to denote an equivalence class name). 

<atom> <fname> <ecln> ( ) 

<atom> > > > > 
<fname> < < 
<ecln> < < = 

~ > > > > 

Fig. 3 - Pr ecedence Matrix for Fig. 2 
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4. EQUALITY DETERMINATION ALGORITHM 

The equality data base consists of a set of entries each of which is a 

6entence of L(G). Each entry is uniquely numbered, referred to as index below, and 

~as a left part, which is the sentence value, and a right part which is a pointer to 

tbe sentence representing the equivalence class to which it belongs. A sentence 

1alue is either an atom or a list consisting of a function name followed by pointers 

to the equivalence classes containing the arguments of the function being 

represented by the sentence. ThuS it is seen that each entry in the data base is a 

produc tion: 

index ==> left 

The algorithm for adding an equality pair to the data base is given in fig. 

4 using a combination of LISP [McCarthy60] and ALGOL [Naur60]. Note that all 

references to a member of an equivalence class are in terms of its head (i.e., the 

lowest numbered member of the equivalence class). The nature of adding entries to 

the data base, and the fact that when a merge occurs the head of the new equivalence 

class becomes the lowest numbered component of the merge insure that all sentence 

values are in terms of lower numbered equivalence classes. Moreover, by step 5 of 

the algorithm no sentence is included in more than one equivalence class, and each 

sentence appears only once in an equivalence class. 

To add an equality pair: 

1. 
2. 
3. 
4. 

c1ass1:=resu1t of parsing left half; 
c1assr:=resu1t of parsing right half; 
mods :=ni1; 
a. m:=min(c1ass1,c1assr); 
b. n:=max(c1ass1,c1assr); 
c. for j:=m+l ste~ 1 until maxc1ass do begin 

comment: find candidates for imp11ed equivalence; 
if nu11(right(eqtable[j]» then nil 

comment: check if a deleted entry; 
else if atom(left(eqtable[j]» then nil 
else if member(m,cdr(left(eqtable[j]») then mods:=merge(j,mods) 
else nil 
end; 

d. for j:=n step 1 until maxclass do begin 
comment: replace all instances of the higher numbered 

equivalence by the lower numbered one; 
if null(right(eqtab1e[j)) then nil 

comment: check if a deleted duplicate entry; 
else begin 

if right(eqtable[j) = n tben right(eqtable[j):=m; 
comment: change index to point to new heaa of equivalence 

class; 
if atom(left(eqtable[j)) then nil 
else if member(n,cdr(left(eqtable[j) ») then begin 

comment: replace higher numbered equivalence class by lower 
numbered onel' subst(m,n,cdr(left(eqtab e[j)); 

mods:=merge(j,mods); 
comment: add to list of candidates for implied equivalence; 

end 
else nil; 
end; 

end; 
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5. while not null(mods) do begin 
comment: step through the list of candidate nodes and look for 

implied equivalences; 
for k:~2 step 1 until length(mods) do begin 

if left(eqtable[mods[l)J) = left(eqtable[mods[k))) then begin 
comment: an entry appears more than once in the equalIty data 

base; 
temp: ,ight (egtablelmods [kJ ); 
mods:=deleteCK mods)' 

comment: delete the higher numbered duplicate entry; 
right(eqtable[mods[k)]):=nil; 

comment: check if two entries are already in the same 
eguivalence class' 

if right(eqtaole[mods[111) NE4 temp then begin 
comment: two equivalence classes must be merged; 

classl:~temp; 
classr:~right(eqtable[mods[l)]); 
go to 4; 
end; 

end; 
end; 

mods:~cdr(mods); 
end; 

Fig. 4 - Algorithm to Add an Equality Pair 

In the algorithm eqtable is an array. accessed by left and right. which 

contains one entry for each formula. mods is a list sorted in ascending order 

containing pointers to entries in eqtable which refer to any members of merged 

equivalence classes. maxclass is the highest numbered equivalence class in eqtable. 

Note that the algorithm's implementation is far more efficient than its 

representation here since we have put the emphasis on clarity. For a more efficient 

representation see fig. 5 and also the discussion in section 7 on time and space 

r equ ir emen ts. 

The algorithm terminates since parsing (steps 1 and 2) is a process that is 

limited by the length of the input string and by the number of productions. Step 4 

is a merge of two equivalence classes and the time it takes is bounded by the number 

of productions. Step 5 is used to determine if a merge of two equivalence classes 

is to occur when a previous merge has caused two equivalence classes to have an 

element in common. If this is the case. then the two equivalence classes are merged 

and the resulting class has only one occurrence of the previously duplicate entry. 

tn order to perform the 

algorithm is reapplied we 

merge the algorithm is reapplied. However. when the 

have one less equivalence class and thus by the well 

ordering principle termination is guaranteed. If no two distinct equivalence 

Classes have elements in common. then mods is exhausted and we are through. Note 

that if an equivalence class is found to contain a duplicate occurrence of an 

element after a merge. then the duplicate occurrence is deleted from the class (in 

fig. 4 this is achieved by setting to NIL the right field of the eqtable entry to be 

deleted). This insures that our grammar will always have the property that no two 

Productions have the same right hand side (i.e •• an unambiguous grammar). 
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The motivation behind step 4 is the propagation of transitivity between 

equivalence classes while step 5 propagates transitivity via function application. 

In other words, functions of equal arguments are equal and thus their equivalence 

classes are merged. Steps 4c and 4d insert in mods all entries that are affected by 

the merge of equivalence classes - i.e., only these sentences refer directly to the 

t~O items whose equivalence classes have been merged. Note that steps 4c and 4d 

take advantage of the property that the head of an equivalence class is the lowest 

numbered entry in the class. Similarly, step 5 is only applied to entries in mods 

because only these entries can possibly generate new equivalences. This takes 

advantage of the fact that prior to the application of the algorithm the equivalence 

classes are disjoint, and thus implied equality between equivalence classes can only 

occur via elements pointing to the merged equivalence classes (this is an inductive 

argument) • 

If mods would not be sorted, then step 5 would not be as simple since there 

would be a question as to which of mods(l) or mods(k) should be deleted. The reason 

mods(k) is always deleted is that the equivalence class to which it belongs can not 

be both greater than mods(l) and also be the minimum of the classes containing 

mods(l) and mods(k). This is because the number associated with the head of an 

equivalence class is always less than the number associated with any of its 

component classes. Thus even when mods(k) is deleted, the property of the data base 

having all entries point to lower numbered entries is preserved. 

Equality can be determined quite easily. We simply parse the two items in 

question in the following manner: 

(1 ) 

(2 ) 

(3 ) 

Parse one item with the existing set of productions. This set is modified 
whenever a reduction is encountered \~hich has no corresponding nontermina1 
symbol (i.e., the sentence is not a member of any equivalence class). 

Parse the second item with the modified grammar from part 1. If the two items 
are equal, then no modifications to tne grammar will be necessary at this 
stage. In fact, if any modifications were made, then the items are not equal 
(i.e., it is impossible to determine if the two items are equal based on 
equality information at hand). 

If steps (1) and (2) yield identical equivalence class names, then 
items are equal. Otherwise, they are not known to be equal. 

the two 

At this point we must prove that statement 3 is true. This is equivalent to 

the following theorem: 

~eorem: The algorithm for determining equality is complete. 

ttoof: The theorem is a direct consequence of the following two lemmas: 
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~ma ~ If the algorithm indicates that two items are equal, then they are equal. 

ftoof: This statement is true since by construction the equality updating algorithm 
~ 
~osures that all elements in an equivalence class are equal. 

~ma lL If two items are equal, then the algorithm will 80 indicate. 

ytoof: The proof of this statement reduces to showing that if two items are equal, 
~ 

rben they will appear in the same equivalence class. This is proved by considering 

tbe two ways in which two items can be equal. 

(a) 

~) 

The items were explicitly equal. In this case they will appear in the same 
equivalence class by virtue of step 4 of the updating algorithm and hence are 
aIways referred to by the new equivalence class name. 

The items became equal via transitivity and or functional application. 
case the items, say ,A and B, are equal to some third item C and now: 

In this 

Either C must be in neither equivalence class which is impossible by step 5 of 
the updating algorithm which examines all transitivities and function 
application of equals. 

Or C must be an element of both equivalence classes. This is impossible since 
this means that there exist two leftmost derivations of C thereby contradicting 
the unambiguousness of G which is true by virtue of G a being a simple 
precedence grammar. Therefore if two items are equal, then they will be in the 
same equivalence class. 

Q.E.D. 

Thus the above algorithm for determining equality is complete. 

Q.E.D. 

A more efficient implementation of the equality updating algorithm is given 

in fig. 5. It is different from the algorithm given in fig. 4 in that the number of 

passes over the table is reduced. In addition, it is made more suitable to a LISP­

like implementation where the number of copy operations is to be minimized. Note 

that mods is now a sorted list in descending order, rather than ascending order, 

Containing pointers to entries in eqtable which refer to any members of merged 

equivalence classes. Also we have added a parameter, dels, which is a sorted list 

in descending order containing the names of eqtable entries which are to be deleted. 

the purpose of dels is shown by step 7 which removes from eqtable all entries that 

Step 8 has found necessary to delete. Upon exiting step 7, dels is guaranteed to be 

e~Pty because its minimum entry is greater than or equal to n (i.e., 

~x(classl,classr» since n is the head of the class containing the minimum entry of 

dels (recall that step 8 proceeds from the last entry in eqtable towards the first 
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~~try). Step 9 is used to purge the class names in de1s from eqtab1e when mods is 

e"hausted (i.e., we are through and thus we will not return to step 7). 

At this point we see that the updating algorithm can be described as 

~ncorporating one of the approaches mentioned earlier as a solution to the equality 

9tob1em. Parsing is analogous to the process of substituting equivalence class 

~8mes for all subexpressions known to be members of equivalence classes while steps 

1 and 8 of fig. 5 are analogous to substituting the newly derived equality 

~V"erywhere it appears as a subexpression. 

To add an equality pair: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

8. 

c1ass1:=resu1t of parsing left half; 
c1assr:=resu1t of parsing right half; 
mods:=ni1; 
de1s:=ni1; 
m:=min(c1assl,c1assr); 
n:=max(c1ass1,c1assr); 
for j:=maxc1ass step -1 until m+l do begin 

comment: Rerform all deferred deletions and substitutions, and 
aetermine candidates for implied equivalence; 

if nu11(right(eqtab1e[j]» then nil 
else if j = de1s[l] then begin 

comment: delete entry j; 
right(eqtab1e[j]):=ni1; 
de1s:=cdr(de1s); 
end 

else begin 
if right(eqtab1e[j]) = n then right(eqtab1e[j]):=ro; 

comment: replace occurrence of higher numbered equivalence class 
by lower numbered one" 

if atom(left(eqtab1e[j]) then nii 
else if memberln,cdr(left(eqtab1e[j]») then begin 

comment: a candidate for implied equivalence; 
subst(m,n,cdr(left(eqtab1e[j]»); 
mods:=merge(j,mods); 
end 

else if member(m,cdr(left(eqtab1e[j]») then mods:=merge(j,mods); 
comment: determine if a candidate for implied equivalence; 

end; 
end; 

while no t nu11(mods ) do begin 
comment: s t ep through the list of candidate nodes and look for 

implied equiv al ences; 
1en : =l eng th(moQs); 
f or k: =2 s tep 1 until l en do begi n 

if 1eft( eqt ab1 e [mods [1]]) = 1eft(eqtab1e[mods[k]]) then begin 
comment: an entry appears more than once in the equality data 

base; 
if right(eqtab1e[mods[1]]) NEQ right(eqtab1e[mods[k]]) then begin 

comment: the two entries are not in the same equivalence 
class and the two equivalence classes must be 
merged; 

c1ass1:=right~eqtab1e[mOdS[k]]); 
c1assr:=right eqtab1e[mods[l]])i 
de1s:=reverse mods[l] cons de1s}; 
mods:=cdr(mods); 
go to 5; 
end 

else begin 
comment: 

k:-1en; 
comment: 

the two entries are in the same equivalence class; 

add mods[l] to the deferred deletion list and cease 
searching for entries matching mods[1] - i.e., exit 
the for loop; 

de1s:=mods[l] cons de1s; 
end 
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else nil; 
end; 

end; 
mods:=cdr(mods); 
end' 

9. purgetdels,eqtable); 
comment: remove all entries in dels from eqtable when no more implied 

equivalences; 

Fig. 5 - A More Efficient Algorithm to Add an Equality Pair 

,. EXAMPLES 

In the following examples, each numbered line represents the result of 

either parsing a sentence or updating the data base to include a new equality. In 

the former case only the modifications to the data base, eqtable, are shown while in 

the latter case the entire updated data base is shown. Also in the former case the 

name of the equivalence class containing the sentence being parsed is returned. 

As an example of the updating algorithm, consider example 4 of section 1. 

sentence eg,table result 

1. feb) yields AD: b AD returns Al 
AI: f (AD) Al 

2. a yields A2: a A2 returns A2 

3. f(b)= a yields AD: b AO 
AI: f(AD) Al 
A2: a Al 

4. f (a) yields A3: f (AI) A3 returns A3 

5. a yields no change returns Al 

6. f (a) = a yields AD: b AD 
AI: f(AD) Al 
A2: a Al 
A3: f (AI) Al 

7. f(f(a» yields no change returns Al 

B. c yields A4: c A4 returns A4 

9. c = f(f(a» yields AD: b AO 
AI: f(AD) Al 
A2: a Al 
A3: f (AI) Al 
A4: c Al 

A.t this point we wish to determine if f(f(b» = c 

f (f (b» gets parsed successively as: 

1. f(f(AD» 
2. If AI) 3. 

and c gets parsed as AI. Therefore, f(f(b»=c. 

~ a more complicated example, consider example 2. 

sentence eg,table result 

1. g(b) yields AD: b AD returns Al 
AI: g(AD) Al 
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2. f (a) yields A2: 
A3: 

a A2 returns A3 
f(A2) A3 

3. g(b) = f(a) yields AO: b AO 
A1: g(AO) A1 
A2: a A2 
A3: f(A2) A1 

4. g(c) yields A4: c A4 returns AS 
AS: g(A4) AS 

5. feb) yields A6: f(AO) A6 returns A6 
6. g(c) = feb) yields AO: b AO 

A1: g(AO) A1 
A2: a A2 
A3: f(A2) A1 
A4: c A4 
AS: ~~A4) AS 
A6: AO) AS 

7. a yields no change returns A2 

8. b yields no change returns AO 
9. a = b yields AO: b AO 

A1: g(AO) A1 
A2: a AO 
A3: f (AO) A1 
A4: c A4 
AS: ~(A4) AS 
A6: (AO) AS 

followed by AO: b AO 
A1: g(AO) A1 
A2: a AO 
A3: f(AO) A1 
A4: c A4 
AS: f~!~~ A1 
A6: NIL 

10. c yields no change returns A4 

11. d yields A7: d A7 returns A7 
12. c = d yields AO: b AO 

A1: g(AO) A1 
A2: a AO 
A3: f(AO) A1 
A4: c A4 
AS: f(A4) A1 
A6: (AO) NIL 
A7: d A4 

At this point we wish to determine if g(a) = g(d) 

Sea) gets parsed successively as: 

1. liAO ) 2. 

and g(d) gets parsed successively as: 

1. liA4 ) 2. 

'therefore, g(a) = g(d) • 

6. INEQUALITY DETERMINATION 

The previous discussion indicates how the question of whether· two items are 
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~~o'W to 

possible 

equality 

be equal is answered. However, the question of equality bas two additional 

answers. Namely, the items may be unequal or no information as to their 

is known. Determination of the answer to these two questions is more 

complicated. In order to facilitate such work we also keep track of equivalence 

classes which are known to be unequal by use of a table known as ineqtable. This 

,able is again accessed by left and right. Therefore, whenever a merge of two 

equivalence classes occurs, this table must also be updated. This means tha t 

~etween steps 4b and 4c of the equality determination algorithm given in fig. 4 an 

~pdate is made of the inequivalent classes. 

Two items may be shown to be unequal explicitly or implicitly whereas two 

items are equal only explicitly. The process of parsing allows the bypassing of 

special handling for implied equalities since if a sentence is not in the data base, 

then it is added to it while being parsed. This is what enables the recognition of 

f(a) = f(b) given a = b. Implied inequalities are also quite easy to detect. In 

this case two sentences are not explicitly known to be unequal (i. e., the 
, 

equivalence classes containing them are not known to be unequal); however, when they 

are assumed to be equal, and thereby added to the data base, then a contradiction 

lIill occur. This contradiction is detected at the occurrence of a merge of two 

equivalence classes which are known to be unequal. Thus it is seen that the only 

modification needed to the equality determination algorithm is to check if the two 

about to be merged equivalence classes are known to be unequal. Moreover, if at any 

time during the implicit inequality phase any entries must be added to the data 

base, then the sentences in question can not be shown to be implicitly equal. 

The revised algorithm for the addition of any equality to the data base as 

Well as determining implicit inequalities is given in fig. 6. Note the use of 

maxneq to indicate the number of entries in ineqtable. The proof of the 

completeness of the inequality determination algorithm remains the same while the 

Proof of the completeness of the inequality determination algorithm is similar to 

the former, and thus will not be repeated. Similarly, the algorithm can be encoded 

more efficiently in the style of fig. 5 or even as discussed in section 7. 

To add an equality pair: 

1. 
2. 
3. 
4. 

classl:=result of parsing left half; 
classr:=result of parsing right half; 
mods:=nil; 
a. m:=min(classl,classr); 
b. n:cmax(classl,classr); 
c. for j:=1 step 1 until maxneq do begin 

comment: update ineqtable and check for a contradiction; 
if rightCineqtable[il> "" '('!. then right(ineqtable[i] l:=m 
else If Iefttineqtao e[j)= n then left(1neqtaole[j):=m; 
if left(ineqtable[j]) = right(ineqtable[j]) then "contradiction"; 
end; ' 13 



5. 

d. for j:=m+l step 1 until maxclass do begin 
comment: find candidate for implied equivalence; 

if null(right(eqtable[j]») then nil 
comment: check if a de1eted duplicate entry; 

else if atom(left(eqtable[j]» then nil 
else if member(m,cdr(left(eqtable[j]») then mods:=merge(j,mods) 
else nil 
end; 

e. for j:=n step 1 until maxclass do begin 
comment: replace all instances of the higher numbered 

equivalence class by the lower numbered one; 
if Qull(rightteqtablefj]» then nil 

comment: check if a deleted duplicate entry; 
else begin 

if right(eqtable[j]) = n then right(eqtable[j]):=m; 
comment: change index to point to new heaa of equivalence 

class' 
if atom(left(eqta~le[j]» then nil 
else if member{n,cdr(left(eqtable[j]») then begin 

comment: replace higher numbered equivalence class by the 
lower numbered one' 

subst(m,n,cdr(left(eqtable[j])~); 
mods:=merge(j,mods); 

comment: add to list of candidates for implied equivalence; 
end 

elsE;\ nil; 
end; 

end; 
while not null(mods) do begin 

comment: step through the list of candidate nodes and look for 
implied equivalences; 

for k:=2 step 1 until length(mods) do begin 
if left(eqtable[mods[1]J) = left(eqtable[mods[k]]) then begin 

comment: an entry appears more than once in the equa11ty data 
base; 

temp:=right(eqtable[mods[k]]); 
mods:=delete(k mods)' 

comment: delete t~e higher numbered duplicate entry; 
right(eqtable[mods[k]]):=nilj 

comment: check if two entries are already in the same 
equivalence class' 

if right(eqtaole[mods[l]]) NE~ temp then begin 
comment: two equivalence classes must be merged; 

classl:=temp; 
classr:=right(eqtable[mods[1]]); 
go to 4; 
end; 

end; 
end; 

mods:=cdr(mods)j 
end; 

Fig. 6 - Algorithm to Add an Equality Pair with a Check for a Contradiction 

7. TUIE AND STORAGE REQUIREMENTS 

From a computational complexity standpoint, the equality determination 

algorithm is quite simple. Specifically, in parsing a sentence there are exactly as 

many reductions to be made as there are atoms and function names in the sentence. 

Moreover, the constant of proportionality is directly related to the size of the 

data base since the latter must be searched for the appropriate reduction. Of 

course, the search can be speeded up by keeping the data base sorted via a hashing 

function [Knuth73]. 

A more careful analysis enables us to obtain upper bounds for the storage 
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required for the equality data base as well as obtaining average execution times for 

determining equality and updating the equality data base. Specifically, the maximum 

~umber of equivalence classes possible is when all of the axioms use different 

functions and atoms. In this case we would need at most one equivalence class per 

function and atom. Thus the upper bound on the number of equivalence classes is the 

total length of the axioms in the data base (say n). Each equivalence class 

requires one pointer to the head of its class (the right field of eqtab1e). The 

left field of each eqtable entry requires one location for the function name and one 

pointer for each argument. The maximum number of pointers and locations necessary 

for the left field of all entries in eqtab1e is 2n-1. This quantity is achieved 

when all atomic arguments are unique and thus there are no common subexpressions as 

well as no equality relations. In other words, this is the worst case for a single 

formula comprised of other formulas meeting these conditions. The truth of this 

claim is seen by noting that every atom requires two left field entries - one for 

its equivalence class and one for its occurrence as an argument in another formula; 

and every instance of a function name, but the outermost one, requires two left 

field entries - one for its occurrence in a formula and one for its formula's 

occurrence as an argument in another formula. For example, g(f(a» requires one 

location for a, two locations for f(a), and two locations for g(f(a» - i.e., 2*3-

1=5 locations. Finally, since formulas are not of fixed length (i.e., they have a 

varying number of arguments), we need one marker pointer per eqtab1e entry to denote 

the length of its left field, or, depending on the method of implementation, to 

denote the fact that there are no more arguments. In fact, we need one such pointer 

per eqtab1e entry or at most n such pointers in total. Recalling that we need one 

pointer for each right field means that our equality data structure requires at most 

4n-1 pointers in order to be able to handle a set of axioms containing a total of n 

atoms and function names. Actually, this upper bound is 4n-2m where m is the 

number of axioms present. Note the indistinguishability of pointers and locations. 

Both the equality determination and equality data base - updating algorithms 

need to do table lookup type operations. This is a factor which slows down these 

algorithms considerably. However, the problem can be alleviated by use of hash 

table methods for the equality determination algorithm, and by use of linked lists 

for the equality data base updating algorithm. For each equivalence class we will 

keep a linked list whose elements are all the eqtable entries in whose left field 

the equivalence class appears. Also a linked list is kept with each equivalence 

class for all the eqtab1e entries which are in the equivalence class (i.e., 

identical right field entries). This will add at most n pointers for hashing, n 
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vointers for the left field links, n pointers for the right field links, and n 

vointers for the heads of the left field links chains. There is no need for a 

6pecia1 pointer for the head of a right field links chain since the equivalence 

class is a member of the chain while in the case of the left field links chain the 

equivalence class is not a member of the chain. Thus the new maximum number of 

pointers is 8n-2m. However, it will generally be the case that two pointers can be 

stored per computer word and thus the storage requirement is 4n-m words. Actually, 

~e need slightly more storage since we must also account for the hash buckets. 

gowever, this amount is rather inSignificant in light of the rest of the required 

6torage, and thus we can increase the number of hash buckets to reduce the 

probability of collisions in the table. 

linked hash lists to facilitate updating. 

It might also be desirable to have doubly 

In order to clarify the proposed data structure we give a sample entry in 

fig. 7. Note that all pointers always refer to the first word of the entry. This 

data structure will reduce greatly the amount of work the updating algorithm must do 

because each of the links enables the rapid execution of one of the steps. The 

links between eqtab1e entries containing a certain equivalence class name as an 

argument and the links connecting all entries in the same equivalence class enable 

the rapid execution of steps 4d and 4e of fig. 6. While executing step 4e, wherever 

a substitution in the left field is made, the entry must be rehashed 

the new left field contents and entered in the appropriate hash chain. 

according to 

The latter 

eliminates the need for step 5 since the act of entering the item in the new hash 

chain also includes a check of its presence in the chain. In fact, we can now 

slightly modify the updating algorithm to keep a list of items having identical 

contents that have not yet been merged. Actually, this is the same as mods only now 

We know exactly which entries are identical where previously this was ascertained by 

means of step 5. No modifications are proposed to step 4c which checks if the 

proposed merge of classes will result in a contradiction. Moreover, we use a count 

pointer to indicate the number of arguments in the 1eft(eqtab1e) entry (atoms are 

represented as functions of zero arguments). The count also acts as a filter when 

collisions occur in the hash table since equality checks will only need to be 

performed when both the hashed value and the number of arguments are identical. 

Therefore, we have seen that our equality determination and updating 

algorithms can be implemented in a manner which is largely dependent on the speed 

~ith which items can be looked up in a hash table. Furthermore, the equality 

determination algorithm is seen to be almost linear, on the average, in the sense 

16 



that the time necessary to decide if two strings are identical is proportional to 

the length of the two strings. Moreover, we have devised a data structure which 

sllows the updating of the data base without performing useless operations (this 

includes the many passes over the data base that the algorithm in fig. 6 might 

possibly make). As a final observation, note that previous stipulations that all 

data base entries refer to lower numbered equivalence classes is no longer 

necessary. The reason this requirement was made was to enable us to avoid searching 

the entire table in steps 4d and 4e of the algorithm in fig. 6. 

pointer to head of the pointer to next entry 
equivalence.class . . . . _ ... . . having.~h~.~~~~.~~~h.v~~~~ .. ... . 

first table entry i1aving the pointer to next table entry 
equivale~ce.~~as~.na~~.~~.~~.~~g~~~~t . . . . . . ~~.~~~.s~~~.~q~i~~~e~~~~~a~~ .. . .. 

function name or atom name number ~~ . ~~g~~~~~~ ..... . . .. -. . ... ~ .. .. ~ .. . . - . - .. . . .. . . . . .. 

pointer to next equivalence 
argument 1 class in which argument 1 

occurs as an ~r g~~~~ ~ . _ .. .. . . .. . . . . . . . . . - .. 

pointer to next equivalence 
argument 2 class in which argument 2 

occurs as an argument . . . . - . . . - - . . · .. .. . .. . .. - - .-~ -- - .. . .. . . -- - -- - . -- -

· · · · · · . . . . . · - - .. . . .... .... .. . .. .. - . - . .... - - - ..... 

pointer to next equivalence 
argument m class in which argument m 

. . . . . . . .. _ ... . .. .. .. .. . · .. .?~~~~~.~~.~~.~~g~~~~~.- . . . . . . . 

Fig. 7 - Proposed Data Structure 

8. CONCLUSION AND FUTURE WORK 

We have succeeded in answering the original set of questions posed in 

Section 1. Moreover, the order in which equality pairs are added to the data base 

has no bearing on the actual process of checking equality since each computation is 

in an equivalence class and at any time all possible equivalences are taken 

advantage of as shown in the algorithms and their proofs. 

Some directions for future work include the ability to handle commutative 

and associative functions, transitivity of functions, and certain relations of 

equality for functions. In a LISP domain, this would include such examples as 
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CONS (A,B)=XCONS (B,A) , LESSP(A,B)=GREATERP(B,A) , CAR(CONS(A,B»-A , etc. These 

relations would be dealt with on an instance basis and not on a general variable 

basis. This means that when certain functions are encountered, equalities are added 

to the data base. Such a scheme could adequately deal with quite a large number of 

~nown relationships between functions. However, we still would not be able to deal 

~ith examples such as f(x)=x where x is a free variable (i.e., not an instance). 

When these extensions are made, the proof of the algorithm will have to be modified 

to read "equality of two items will be determined subject to its being derivable 

from the known set of equalities." 

9. APPENDIX 

Precedence relations for a grammar G=(V,T,P,S) are defined as follows (x, y, 

and z are arbitrary strings of length greater than or equal to zero over the 

vocabulary and Bi represents element i of the vocabulary): 

Bi = Bj iff there exists k such that Bk ==> x Bi Bj Y 

Bi < Bj iff there exists k such that Bi = Bk and Bk *==> Bj x 

Bi > Bj iff there exists k 
m,n such that Bm = Bn and 

such that Bk *==> x Bi and Bk = Bj 
Bm *==> y Bi and Bn *==> Bj z 

or there exists 

A grammar is said to be simple precedence if: 

(1) No two productions have the same right hand side. 
t 

(2) At most one of the three precedence relations =, <, and> hold between any two 
symbols of the vocabulary. 

Theorem: The grammar G of fig. 2 is always simple precedence. 

Proof: We first show that at most one precedence relation may hold between any two 

symbols of the vocabulary. 

(1) 

(2) 

a < b implies that b is a leftmost symbol of some production. Therefore b is 
an atom or "(". a = b implies that b appears adjacent to the right of a in 
some production. However, b is an atom or "(" neitner of which can ever appear 
adiacent to the right of any symbol in a production. Therefore a < b and a 
- 0 is impossible. 

a > b implies that a is a rightmost symbol of some production. Therefore a is 
an atom or ")". a = b implies that a apr.ears adiacent to the left of b in 
some production. However, a is an atom or ')" neitner of which can ever appear 
adjacent to the left of any symbol in a production. Therefore a > b and a = 
b is impossible. 
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(3) a > b implies that a is a rightmost symbol of some production. Therefore a is 
an atom or ") ". a < b implies that there exists a nonterminal symbol C such 
that a - C. However, this is im20ssible since no symbol can ever appear 
adjacent to the right of an atom or "(" in a production. Therefore a > b and 
a < b is impossible. 

Thus we have shown that our grammar, G, always satisfies the criteria that 

~t most one precedence relation ever holds between any two symbols of the 

~ocabulary. Moreover, the updating algorithm preserves the uniqueness of right hand 

sides of productions, and therefore regardless of the additional equality pairs the 

equality grammar, G, is always simple precedence. 
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