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1. Introduction 

In [ 1) axioms and canonical form algorithms for 
proving equivalence for the theory of conditional 
forms are presented. These algorithms form the foun- 
dation of [2] where they are extended to enable 
proving the correctness of compilation. The algo- 
rithms are distinguished on the basis of whether or 
not strong or weak equivalence is desired. In the case 
of strong equivalence, an additional set of axioms 
was introduced. Xn this note we prove that the addi- 
tional axioms were unnecessary, and that there is 
essentially no difference in the msthod of proof for 
strong and weak equivalence. We also present a sim- 
pler algorithm for proving strong equivalence. 

case x is a pf and a general variable’ others&z. This 
value is determined for a gbf (p +x6 y) according to 
Table 1. 

Two gbrs are said to be strongly equivalent (de- 
noted by =) if they have the same value for all values 
of the propositional variables & them including the 
case of undefined propositional variables. The gbfs 
are weak.ly equivalent (denoted by =,,,J if they have 
the same values for all values of the propositional 
variables when these are restricted to T and ~9 

There are two equivalence rules which enMe the 
use of equivalences to generate other equivalences. 
These rules hold for both weak and strong equiva- 
lences. 

2. pnliminarics 

The basic entity is a generalized boolean form 
(gbf), formed as follows: 

(1) Variables are divided into propositional varia- 
bles p, 4, r, etc. and general variablesx, y, z, etc. 

(2) Cp +x, y) is called an elementary conditional 
form of which p, X, and y are called the premise, con- 
clusion, and alternative respectively. 

(3) A variable is al gbf, and if it is a propositional 
variable, then it is called a propositional form (pi). 

(4) If p is a pf, and x and y are gbf’s, then 
(p +x, y) is a gbf. lf’, in addition, x and y are pfs, 
sois(p+x,y). 

(a) If x = y and x1 and y 1 are the results of uni- 
formly substituting any gbf for any variable in x and 
y, then x1 =_pl. This is known as the Rule of Substi- 
tution. This enables the use of the about-to-be-pre- 
sented axioms as schemas. 

(b) If x = y and x is a subexpression of z and w is 
the result of replacing occurrences of x in z by an 
occurrence ofy, then z = w. This is known as the 
Rule of &epAzcwnent. Note the similarity to substi- 
tution of equals for equals. 

The vdue of a gb f x for given values (T, F, or unde- 
fined) of the propodtional variables will be T or F in 

Table 1 
Conditional form values 

- 

value @I value (@ +x. y)) 
_---_I__ 

T vahle (x) 
F vdue W 
undefmed undefmed 
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]Quiv&nce can be tested by the method of truth 
tables as in propositional calculus, and also by using 
the following eight equations as axioms to transform 
any gbf into an equivalent one. This transformation 
is aided by using the rules of substitution and replace- 
ment. 

(1) @+a,a)=,a 

(2) (T+a, b) =a 

(3) (F+ a, b) = b 

(4)(is-+T,O=P 

(q + 014 a, ~1, @ + b, d)) . 
Note that all are strong equivalences with the 

exception of the first which is a weak equivalence. 
Thus our previous statement about transforming a 
gbf into an equivalent one should be reworded to 
precludn? the use of axiom (1) in proving strong equiv- 
alence. 

In fa& these rules and axioms can be used to trans- 
form any gbf into a weak canonical form defined as 
follows: 

ffp,,, pz, ‘**# p,, are the variables of the gbf, p, taken 
in some arbitrary order, then p can be transformed 
into the form: 

(PI --) aa al), where each ai has the form: 

Ui = (~2 + aio, ail) and in general for each 
I’c = 1, . . . . n - 1 

ait . ..ik = @k+l -+ ail . ..iko. ail . ..ikl) 

and each ai, _..j, is a truth value or a general variable. 
Thus in this canonical form, the 2” cases of the truth 
or falsity of pj, p2, ._., pn are explicitly exhibited. 
Another way of viewing the canonical form is to 
think of it as a binary tree whose non-terminal nodes 
are propositional variables and whose terminal nodes 
represent computatio:ls. 

3. Equivalence algoritfums 

The algorithm for obtaining D I;;;lnonical form for 
weak equivalerice is as fol1ows: 

(1) tJse axiom (7) repeatedly until in every sub- 
expression the p in (p + X, y) consists of a single pro- 
positional variable. Also apply axioms (Z) and (3) 
whenever possible. 

(2) The propositional variable p1 is moved to th!e 
front by repeated application of axiom (8). There are 
three cases: 

(a) (q + (& + a, b), 61 + c, d)) to which axiom 
(8) is directly applicable. 

(b) (q + a, @I -+ c, d)) where axiom (8) is 
applicable after axiom. 

(c) (q + &I--+ a, b), c) which is handled in the 
same manner as case (b) -- i.e., axior.1 (8) 

applicable after axiom is used to ifield 
the form (q -+ + a, @1 -+ c, ~1)~ 

(3) Once (p 
X, pr ‘s which occur in x and y are moved 
to the front of x and y by using the same procedure. 
The p I ‘s which have been moved are then eliminated 
by usi):;lg axioms (5) and (6).*p2 is then moved to the 
front ofx and y, using axiom (1) if necessary to 
insure at least one occurrence of p2 in each of x arrd y. 
This process is continued until the canonical form is 
achieved. 

There is also a canonical form for strong equ*fai- 
lence. The difference is that the propositional variable 
p1 may nlot be chosen arbitrarily, but instead must 
be an inevitable variable of the gbf a. An inevitable 
variable of a gbf (p +x, y) is defined to be eithe:r the 
first prclpositional variable or else an inevitable variable 
of both .X and y. Note that once again the canon:& 
form is of the form (PI +x, y) where x and y do not 
contain 1pr and are themselves in canonical form, 

Thealgorithm for :he derivation of the canonical 
form for strong equivalence is identical to the algo- 
rithm given for weak eqlrivalence. This statement lis in 
contrast with the algorithm given in [l] where two 

axioms were added in addition to the restriction that 
axiom (I.) could not be used. The axioms that were 
unnecessarily added were: 

(9) (p-+(q3a,b),c)=(p-+(q-)6~3a,a.X 

(1L, -+ b, 0, c) 

(10) (I?-+ a, (q -+ b, c)) = (p + a, (q -+ @ =+ 21, b), 

(P + G 0) l 

T’k algorithm for obtaining a canonic,al form for 
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weak equivalence wais modified to be vtllid for strong 
equivalence by use of these ax.ioms so that occur- 
rences of an inevitable variable, say pl, in t”le condu- 
sion or altern(ative cam be eliminated when svbM:r. 
tion and replacement are used. This was gives as BA 
alternate solution to the obvious use of the general 
rule that any occurrence of the premise in the conchi- 
sion can be replaced by T and occurrences in the alter- 
native by F. The motivation behind the proposed 
solution is a possible reluctance to make use of the 
meta-notion of T anfd F and to work strii:tly by using 
formulas not involving the introduction of T or F. 
The revised algorithm stated that it is desired to 
replace ali occurrences of the premise in the conclu- 
sion by T, and occurrences in the alternative by F. 
This is accomplished by finding the clause (i.e., con- 
clusion or alternative) which contains the objection- 
able atom. If it is in the conclusion, then ar;iom (9) is 
used; and if it is in the alternative, then axiom (1C.Q is 
used. Next, axioms (‘9) and (10) are applied i;i: tQe 
manner described in the previous statement until the 
objectionable atom, say p, occurs as the inner p of 
oneoftheforms~+~+fz,b~,c)or@+q @+ 
b, c)). In either case the objectionable p is removed 
by using axioms (5) or (6) and p’s that were intro- 
duced by applications of axioms (9) and (10) are 
removed by repeated application of axiom (8). Notice 
that the solution characterized by replacement with 
Tand F is much simpler in a computational sense as 
will be seen in a subsequent example. 

Actually, the algorithm differs from that given for 
the weak equivalence case in that step (2) now states: 
choose any inevitable variable, say pl , and put the 
gjf in the form @I -+x, y) by using axiom (8). Note 
that axioms (9) and (10) were added for the specific 
reason that axiom (1) could not be used. In fact, 
there is no need at all for axioms (9) and (10) since, 
for example, axiom (9) can be shown to be true in 
the following manner : 

@+(cl_*&+wO @+W)),d= 

= @ + @J -+ (if-+ ia, bh (17 -+ a, b)), c> 

by axiom (8) 

= @ + (q -+ a, bX c) by axiom (5). 

The same can be said1 for axion- (10). 
‘I’herefore, the alg,orithm is revised as hllows: 

(1) Use axiom (7) to get :4ll premises as proposi- 
tional variables. 

(2) Choose any inevitable variable, say pl, and put 
thy gbf in the form @I +x, u) by using axiom (8). 

(3) Elimi~,at:: occurrences of p1 in x and y. If p1 
occurs in any conclusion part of a gbf is x or y, say 
CCW, then introduce in the alternative clause, say alt, 
(PI -+ al t, dt). Similarly, if p1 occurs in any alterna- 
tive clause in x 01 y, then introduce’in the conclusion 
clause, say cone, @I +- cone, cone). Next, apply 
axiom (8). Repear. step (3) until one of axioms (5) or 
(6) is applicable. 

P’roof of the validity of the change in Step (3). Since 
we have passed the point where p1 is undefined, 
axiom (1) - i.e., (PI + a, a) = a is valid since p1 is 
now defined. Remember the latter was the only rea- 
son that axiom (1) was not applicable to strong equiv- 
alence. The use of the equivalence (pl+ a, a) = a is 
valid according to the rule of replacement. 

D !s it is seen that actually there is no difference 
in the method of proof for strong equivalence and 
wlsak equivalence and that the canonical forms can 
be the same if inevitable variables are used. This leads 
{r *lc Ylowing: 

_. If two gbfs are strongly equivalent, then 
.;LCQ are also weakly equivalent. 

Proof. Order the variables according to inevitabilitzy. 
’ This is one of the acceptable orders and weak equiv- 
alence follows. q.e.d. 

As an example of the process of dptermining the 
equivalence of two gbfs we show &p + (q + @ + 
X, y), b), C) = @ + (q -+x, b), c) by means of axf ems 
(9) and (IO) and also by means of the revised alg D- 

rithm. 
Axioms (9) and (10) method: 

@(q-+0)-+X,Y)rb)A 

=@-+(q-+~+@+x,y), 0-+~9Y>>, 

@ -+ b, b)), c) by axiom (9) 

=(jF(q-+(p-+x, f-p-+x,y>)* @-am4 

by axiom (5) 
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= Q -+ @ -+ (q +x, b), (q +Y, b:)), 4 

by axiom (8) 

=@-((I-J44 by axiom (5) 

The canonical form algorithm for strong equiva- 
lence can be further simplified by revising steps (2) 
and (3) as follows. Once an inevitable propositional 
variable, say ~1, of the gbf (p +x, r> has been found, 

we aimply repliace the gbf by an spbplic@ion’ of axiom 
(1) - i.e., Cp +x, y) = (PI + @ +x, yX dp +x, y)). 
To the ~~wmtity on the right we apply axioms (5) and 
(6) until they can be applied no further. It should be 
clear that this procedure is equivalent to the previous- 
ly given algorithm, The only difference is that the 
latter prcbceeds to propagate the inevitable variable 
out from inside the gbfi while the forme,r first brings 
the variable out and then applies the redvrntlant predi- 
cate removal axioms (i.e., (5) and (6)). 
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