Volume 7, number 2

INFORMATION PROCESSING LETTERS

S Fébm'a:y_}rlé?ﬁ

A CANONICAL FORM ALGORITHM FOR PROVING EQUIVALENCE OF CONDITIONAL FORMS

Hanan SAMET

Computer Science Department, University of Maryland, College Park, Maryland 20742

Received 31 August 1977: sevised version received 8 November 1977

Canonical form, equivalence, conditional forms

1. Introduction

In [1] axioms and canonical form algorithms for
proving equivalence for the theory of conditional
forms are presented. These algorithms form the foun-
dation of [2] where they are extended to enable
proving the correctness of compilation. The algo-
rithms are distinguished on the basis of whether or
not strong or weak equivalence is desired. In the case
of strong equivalence, an additional set of axioms
was introduced. In this note we prove that the addi-
tional axioms were unnecessary, and that there is
essentially no difference in the method of proof for
strong and weak equivalence. We also present a sim-
pler algorithm for proving strong equivalence.

2. Preliminaries

- The basic entity is a generalized boolean form
(gbf), formed as follows:

(1) Variables are divided into propositional varia-
bles p, g, 7, etc. and general variables x, y, z, etc.

(2) (p = x, y) is called an elementary conditional
form of which p, x, and y are called the premise, con-
clusion, and alternative respectively.

(3) A variable is a gbf, and if it is a propositional
variable, then it is called a propositional form (pi).

(4) If p is a pf, and x and y are gbf’s, then
(p > x, y) is a gbf. If, in addition, x and y are pf’s,
sois(@—>x,»).

The value of a gbf x for given values (7, F, or unde-
fined) of the propositional variables will be T or Fin

case x is a pf and a general variable otherwisz. This
value is determined for a gbf (p - x, »') according to
Table 1.

Two gbf’s are said to be strongly equivalent (de-
noted by =) if they have the same value for all values
of the propositional variables in them including the
case of undefined propositional variables. The gbf’s
are weakly equivalent (denoted by =,,) if they have
the same values for all values of the propositional
variables when these are restricted to T and .

There are two equivalence rules which enable the
use of equivalences to generate other equivalences.
These rules hold for both weak and strong equiva-
lences. '

(a) If x =y and x, and y, are the results of uni-

. formly substituting any gbf for any variable in x and

», then x; = ;. This is known as the Rule of Substi-
tution. This enables the use of t'ie about-to-be-pre-
sented axioms as schemas.

(b) If x = y and x is a subezpression of z and w is
the result of replacing occurrences of x in z by an
occurrence of y, then z =w. This is known as the
Rule of Replacement. Note the similarity to substi-
tution of equals for equals.

Table 1
Conditional form values

value ((p — x. yi)

vaiue (7}

T value (x)
F value (¥)
undefined undefined

103



Volume 7, iumber 2

Equivalence can be tested by the method of truth
tabies as in propositional calculus, and also by using
the following eight equations as axioms to transform
any gbf into an equivaient one. This transformation
is aided by using the rules of substitution and replace-
ment.

(D@~>aa)=ya
2)(T~a,b)=a
B)(F->a,b)=b
@@E~>T F=p
&> @>ab)o)=p~ac)
®)p—~a @b c)N=@P-ac0)
Mp—~an>ab)=@->@~>ab) ¢~a b))
BV~ @>ab) y~>cd)=
@=>®@~ac), (p=bd).

Note that all are strong equivalences with the
exception of the first which is a weak equivalence.
Thus our previous statement about transforming a
gbf into an equivalent one should be reworded to
preclude the use of axiom (1) in proving strong equiv-
alence.

In fact these rules and axioms can be used to trans-
form any gbf into a weak canonical form defined as
follows:

If py, P2, ..., Py are the variables of the gbf, p, taken
in some arbitrary order, then p can be transformed
into the form:

(p1 > ag, ay), where each g; has the form:

a; = (p2 = a;0, ;1) and in general for each
k=1,..,n-1
iy ..ix = Ok+1 ™ Oiy..ix0, Biy..ig1)

and eacha; _ ;, is a truth value or a general variable.

Thus in this canonical form, the 2" cases of the truth
or falsity of py, py, ..., D, are explicitly exhibited.
Another way of viewing the canonical form is to
think of it as a binary tree whose non-terminal nodes
are propositional variables and whose terminal nodes
represent computations.

3. Equivalence algorithms

The algorithm for obtaining a canonical form for
weak equivalence is as follows:

104

INFORMATION PROCESSING LETTERS

February 1978

(1) Use axiom (7) repeatedly until in every sub-
expression the p in (p > x, y) consists of a single pro-
positional variable. Also apply axioms (2) and (3)
whenever possible.

(2) The propositional variable p{ is moved to the
front by repeated application of axiom (8). There are
three cases:

(@) (g~ (©1 > 4, b), (p1 ~ ¢, d)) to which axiom
(8) is directly applicable.

(b) (g = a, (p; -> ¢, d)) where axiom (8) is
applicable after axiom.

(c) (g > (@1~ a, b), ¢) which is handled in the
same manner as case (b) - i.e., axiora (8)
is applicable after axiom (1) is used to yield
the form (g > @@y =>4, b), (py > ¢, ©)).

(3) Once the main expression has the form (p, -
x, ), then all p,’s which occur in x and y are moved
to the front of x and y by using the same procedure.
The p,’s which have been moved are then eliminated
by using axioms {5) and (6).p, is then moved to the
front of x and y, using axiom (1) if necessary to
insure at least one occurrence of p; in each of x and y.
This process is continued until the canonical form is
achievzd.

There is also a canonical form for strong equiva-
lence. The difference is that the propositional variable
p1 may not be chosen arbitrarily, but instead must
be an inevitable variable of the gbf a. An irevitable
variable of a gbf (p - x, y) is defined to be either the
first propositional variable or else an inevitable variable
of both x and y. Note that once again the canonical
form is of the form (p; = x, y) where x and y dc not
contain p; and are themselves in canonical form.

The algorithm for he derivation of the canonical
form for strong equivaleuce is identical to the algo-
rithm given for weak equivalence. This statement is in
contrast with the algorithm given in [1] where two
axioms were added in addition to the restriction that
axiom (1) could not be used. The axioms that were
unnecessarily added were:

©®) -@=ab)c)=@->@G~>@p—>aa0)
@~ b,b)) c)

(10) p~>a, @b, )=@—>a @~ @-bb),
@~c0)).

The algorithm for obtaining a canonical form for



Valtume 7, number 2

weak equivalence was modified to be velid for strong
equivalence by use of these axioms so that occur-
rences of an inevitable variable, say p,, in the conclu-
sion or alternative can be eliminated when substit:i.
tion and replacement are used. This was give.i as an
alternate solution to the obvious use of the general
rule that any occurrence of the premise in the conclu-
sion can be replaced by T and occurrences in the alter-
native by F. The motivation behind the proposed
solution is a possible reluctance to make use of the
meta-notion of T and F and to work strictly by using
formulas not involving the introduction of T or F.
The revised algorithmn stated that it is desired to
replace ali occurrences of the premise in the conclu-
sion by T, and occurrences in the alternative by F.
This is accomplished by finding the clause (i.e., con-
clusion or alternative) which contains the objection-
able atom. If it is in the conclusion, then axiom (9) is
used; and if it is in the alternative, then axiom (10) is
used. Next, axioms (9) and (10) are applied is: the
manner described in the previous statement uniil the
objectionable atom, say p, occurs as the inner p of
one of the forms (p = (p ~>a, b), c)or (p~>a, (p >

b, ¢)). In either case the objectionable p is removed
by using axioms (5) or (6) and p’s that were intro-
duced by applications of axioms (9) and (10) are
removed by repeated application of axiom (8). Notice
that the solution characterized by replacement with

T and F is much simpler in a computational sense as
will be seen in a subsequent example.

Actually, the algorithm differs from that given for
the weak equivalence case in that step (2) now states:
choose any inevitable variable, say p;, and put the
gof in the form (p; > x, y) by using axiom (8). Note
that axioms (9) and (10) were added for the specific
reason that axiom (1) could not be used. In fact,
there is no need at all for axioms (9) and (10) since,
for example, axiom (9) can be shown to be true in
the following manner:

P> @>@~aa @>bb)o)=
=p->@>@>ad)@>ab)o
by axiom (8)
=(-@~ab)o)

The same can be said for axiorr {10).
Therefore, the algorithm is revised as follows:

by axiom (5).

INFORMATION PROCESSING LETTERS

February 1978

(1) Use axiom (7) to get ull premises as proposi-
tional variables.

(2) Choose any inevitable variable, say p;, and put
the gbf in the form (p; = x, ) by using axiom (8).

(3) Eliminatc occurrences of py in x and y. If py
occurs in any conclusion part of a gbf is x or y, say
cong, then introduce in the alternative clause, say alt,
(py = alt, alt). Similarly, if p; occurs in any alterna-
tive clause in x o1 y, then introduce in the conclusion
clause, say conc, (p; = conc, conc). Next, apply
axiom (8). Repea: step (3) until one of axioms (5) or
(6) is applicable.

Proof of the validity of the change in Step (3). Since
we have passed the point where p; is undefined,
axiom (1) —i.e., (py =4, @) = a is valid since p, is
now defined. Remember the latter was the only rea-
son that axiom (1) was not applicable to strong equiv-
alence. The use of the equivalence (p; >4, a) =a is
valid according to the rule of replacement.

Tk s it is seen that actually there is no difference
in the mewhod of proof for strong equivalence and
weak equivalence and that the canonical forms can
be the same if inevitable variables are used. This leads
te v ™llowing:

. If two gbfs are strongly equivalent, then
ey are also weakly equivalent.

 Proof. Order the variables according to inevitability.
This is one of the acceptable orders and weak equiv-
alence follows. g.e.d.

As an example of the process of determining the
equivalence of two gbf’s we show (p > (¢ ~> (p -
x,y), b), ¢) = (p - (@ > x, b), ¢) by means of axioms
(9) and (10) and also by means of the revised algo-
rithm.

Axioms (9) and (10) method:

@->@~>@~>xy)b)c)
=@->@>@>@>xy) @>xy)
(p - b, b)), ¢) by axiom (9)
=@>@~>@~>x @>x,) @b b))
by axiom (5)

105



Volume 7, number 2

» =@ > @-xy) @b b))
by axiom (6)
=p>@>@>xb@>y.b)e
by axiom (8)
=@-=+@-=xb)c) byaxiom(5)
Revised algorithm method:
P-@>@>xy)b)o)
=@>@~>@~>xy) @~>bb)c)
by axiom (1)
=p>@>@->xb) @y b)c)
by axiom (8)
=@~>@~xb)c)

The canonical form algorithm for strong equiva-
lence can be further simplified by revising steps (2)
and (3) as follows. Once an inevitable propositional

by axiom (5)

variable, say p;, of the gbf (p —~ x, ») has been found,

106

INFORMATION PROCESSING LETTERS

Febmary 1978

we simply replace the gbf by an application of axiom
@) --ie,@»xy)= @1~ @>xy) @+x))
To the quantity on the right we apply axioms (5) and
(6) until they can be applied no further. It should be
clear that this procedure is equivalent to the: previous-
ly given algorithm. The only differance is that the
latter proceeds to propagate the inevitable variable
out from inside the gbf; while the former first brings
the variable out and then applies the redundant predi-
cate removal axioms (i.e., (5) and (6)).

References

(1} J. McCarthy, A Basis for a mathematical theory of com-
putation, in: Braffort and Hirschberg, Eds., Computer
Programming and Formal Systems (North Holland,
Amsterdam, 1963).

[2] H. Samet, Automaticaily Proving the Cosrectness of
Translations Involving Optimized Code, Ph.I). Thesis,
Stanford Artificial Intelligence Projoct Memo AIM-259,
Computer Science Department, Stanford Uriversity
(1975).



