COMPILER TESTING VIA SYMBOLIC INTERPRETATION¥

by

Hanan Samet
ComButer Science Department
niversity of Maryland
College Park, Maryland 20742

Abstract

A method for compiler testing using symbolic
g rogram testing.
ranslated from a high level language to a low level language
term symbolic
rocess of obtaining an intermediate form of the low level language
Symbolic interpretation is

cross between
are correctl
the reliabil{ty

rogram proving and

of the compiler. The
gurther processing by a proof system.

enables the recording of a transcript of
interprets a set of procedures
corresgonding to the target machine
limitations of the process as well as
LISP implementation on a PDP-10 computer.

on a

Keywords and Phrases: comg
interpretation, machine descr

1. INTRODUCTION
Given a compiler, or for that matter
translation proceaure, a Question that
to mind is how accurate are the
translations. We are interested in a testing too
for proving the correctness of translations
performed by translators which do a considerable
amount of code optimization. Some possible
approaches to this problem include program
provin%[10], program testing[6], and
decompilation[5].

Most of the work in correctness from the program
provin§ aﬁgroach has dealt with specifying
assertions[about the intent of a rogram and
then roving that they do indeed old. The
assertions correspond to a detailed formal
specification of what constitutes correct program
behavior. The process of specifying assertions is
a rather difficult one ([3 ,[16{), and even if a
program is found to satisfy the stated assertions

any program
often comes
resultin

there is no guarantee that the assertions were
sufficiently precise to account for all
contingencies (i.e. there is considerable
difficulty in specifying machine dependent details
such as overflow, precision, etc.). This
difficulty is compounded when the programs are of

such a complexity that they defy formal analysis

(e.i. the exact meaning of the program is not even

wel understood). Proofs using assertions

generally require the aid of a theorem prover and

n the case of a compiler theg ma{ be characterized
exis

as groving that there does no t a program that
is incorrectly translated b¥ the compiler. We feel
that such an approach s unworkable for an

optimizinﬁ compiler, although it has been done for
a simple LISP[11]) compiler(9].

Program testing is a conceg
ention in recent years.

an increasing amount of at
This is in part due to a realization that formal
grogram proving methods rely on a very gowerful
heorem proving capability which 1is unlikely to
appear in the near future. Program testing in its
current state can be used to discover the gresence
of errors but not their absence. Nevertheless,
program testing has several advantages over program

t which has been gaining

proving. These include a capability for
scrutinizing machine dependent details, and greater
#This work was su ported in part b a General
ggigiggg Board Faculty Award of the Ugiversity of

which describe

all

ilers, program proving,
ption languages, program verification, LI

interpretation is presented.

the effects
suitable
future work are discussed

This method is a
It is useful in demonstratin that programs
thereby improving
interpretation is used to describe the
grogram that is suitable for
he heart of the system and
the program. This process
of machine language instructions
computation model. The highlights and
in a framework of a specific

computations in

program testing15 correctness, symbolic

ease in specifying program correctness - at least
on a conceptual level. Namely, we need only
consider matching input output pairs. However,

this may lead to having to test the program a very
large number of times. This leads us to a need to
develog test criteria. The first criterion_ that
comes to mind is that every code unit should be
executed at 1least once. This test 1is inadequate
for two reasons. First, programs with inaccessible
code segments fail to pass this test. Secondly
and more importantly, a program may be constructe
in such a way that a test may exercise every code
unit, yet not _every path in the program will be
tested. This leads to a stronger criterion which
states that every branch in thé flowchart must be
traversed at least once. Given that a suitable
test criteria has been found we are still faced
with a realization that test case generation is a
considerable problem in its own right.

Decompilation methods could conceivably be used to
verifz the equivalence of a source pro§ram and an
objec program. Such methods are esigned to

" return a representation of the object program in a

492

These
in the

format
methods operate

identical to the source program..
by searching for a syntax

assembly angua%e pro%ram. This is much akin to
pattern recognition. he trouble with such methods
is that they imply that the decompiling program
must know how the various constructs of the high
level languaﬁe are encoded 1in the low level
language. This sets a limit on the variation in
the ob%ect code that can be presented to such a
system. A more serious flaw is the fact that
compilation is a many to many process. Namely, the
object program corresponding to a program written
in a hi%h level language can be encoded in man

different equivalent ways. Similarly, to an objec

program there corresponds more than one equivalent
source program. This is because most high level
gro%ramming languages have built in redundancies
hat allow duplication or non-unique program
Eggg%fication (e.g. internal lambda construct in

2.

We feel that in the case of a compiler there exists
a willingness to settle for proofs that specific
Erograms are correctly translated from a hi% level
anguage to the object language. This willingness
enables us to make use of the notion of program
testing to achieve our goal.

Note that we will be
testing the compiler and not the translations.
Thus there 41is no need

to test the translated

PROGRAM TESTING WITH RESPECT TO COMPILERS

grogram by applying all possible inputs. Instead,
he test case generation problem reduces to testing
the compiler by applying all possible inputs to it
(1.e. all possible” programs in the high level
language of 1issue). At first this seems an
insurmountable task. However, closer scrutiny
reveals that the proof procedure can be embedded in
the compiler as part of the translation process.
In such a case the issue of whether or not all
possible inputs have been tested disappears since
in fact we are only interested in the correctness
of the translation process with respect to the set
of programs being translated. In brief we have
bootstrapped ourselves to a state where an
"effective correctness" can be attributed to the
compiler by virtue of the correct translation of
programs input to it.

)
At this point it is appropriate to define our
notion of program testing for a compiler or, more

generally any translation process be it
mechanicai or manual. The test consists of
demonstrating a correspondence or equivalence

between a program input to the compiler and the
corresponding translated program. he manner in
which we proceed is to ind an intermediate
representation which is common to both the original
and translated programs and then demonstrate their
equivalence. This relies on the existence of such
a representation. Before proceeding any further

let us be more precise in our definition ot
equivalence. Bgeequivalence we mean that the two
programs must capable of being proved to be
structurally equivalent[8], that is they have
identical execution sequences except for certain
valid rearrangements o computations. Note that
this is a more stringent requirement than that
posed by the more conventional definition which
holds that two programs are equivalent if they have
a common domain and range and both produce the same
output for any given input in their common domain.
In the process of demonstrating equivalence no use
is made of the purpose of the program. Thus, for
example, having the knowledge that a high level
program uses insertion sort and a low level program
uses quicksort to achieve sorting of the inpuf is
of no use in provin% equivalence of the two
programs. Recall that the notion of sorting is an
input output pair characterization of an algorithm.

The actual testing rocedure consists of three
steps. First, the high level language program must
be converted to the intermediate representation.
Second, the low level language program must be
converted to the intermediate representation.
Third, a check must be performed of the equivalence
of the two representations. This check may take
the form of a procedure which applies wvalid
equivalence preservin% transformations to the
results of the first two steps in attempting to
reduce them to a common representation.

In the remaining discussion we ex and on the second
step of the testin% rocedure, This step is termed
"symbolic interpretation" and denotes a technique
for obtaining a symbolic representation of the low
level program which reflects all of the
computations performed on all possible program
execution paths rather than just one as in symboliec

execution(7]. The technique differs from
decomEilation methods since their use in
establishing equivalence yields a syntactic

equivalence between the decompiled version™ of the
low level program and the original version of the

1%h level program. However, symbolic
interpretation is based on the run-time equivalence
of computation sequences. The representation

obtained by symbolic interpretation is compatible
with the result of the first step of the testing
grocedgre and combpines with it to form an input to
he third step. Thus we see that the test criteria
roblem alluded to in the discussion of program
esting is solved by the use of the notion of
s¥mbollc interpretation coupled with our definition
of equivalence. 1In addition, the absence of errors
will mean that the program has been correctly
translated thereby removing the objection raised
earlier to program testing that it is only good for
detecting errors.

3. SYMBOLIC INTERPRETATION

The symboliec interpretation process
intermediate representation for the

builds an
low level

program by activatin% a set of procedures
corresponding to the instructions in the low level
program in a manner consistent with the execution
level definition of the high level 1language (quite
similar to interpretation). These ™ procedures
specify how each instruction effects an entit¥
known as_the computation model (e.g. procedura
embedding[17]). This model reflects the contents
of the various data structures relevant to the
execution of the program as well as the values of
the conditions tested. Thus there is a need for a
capability to describe a computer instruction set.
This description must provide for data types as
well as a control structure for the symbolic
interpretation process. By control structure we
mean the ability to invoke various parts of the
assembly language program, as is the case when
prgiessing a condition, a branch, or a function
call.

:In the following three sections we describe the
‘type_of information that comprises the computation
model, a control structure for the symbolie
interpretation process, and an example. However,
in order to have some framework for the discussion,
we must: assume the existence of a suitable
,programming language and an execution level
«definition for the langua§e. Qur high 1level
:language is a subset of LISP[12] which has been
‘shown to have a suitable intermediate
representation[14] in the form of a tree. The low
level langua§e is LAP{12] (a variant of the PDP-
10[2] assembly language). An actual proof system
??gﬁoying the ideas discussed here is described in

Briefly, we are dealing with a subset of LISP which

allows side effects and global variables. There
are two restrictions. First, a function may only
access the values of global variables or the

values of its own local variables - it may not
access another functions local variables. Second,
the target label of a GO in a PROG must not have
occurred physically prior to the occurrence of the
GO to the label.

3.1 COMPUTATION MODEL

In order to be able to symbolically interpret a low
level 1anfuage program we need both an execution
level definition of the high level language as well
as a set of data structures to record the effects
of the various operations. As the symbolic
interpretation process proceeds along a iven
execution path it must maintain a record of the
various assumpﬁions it has made as to the results
of condition testing instructions so that
subsequent tests of related conditions can be
recognized. This is accomplished with the aid of
an eguality data base. We must also maintain an
uptodate model of the contents of all directly
accessible memory locations as well as a record of
all computations” that have been performed so that
true equivalence can be determined.

The equality data base is a set of equivalence
classes for all values computed in the progranm
(e.g. for LISP this includes functions as well as
atoms) where transitivity and functional
application are fully propogated. In addition
built into this data base is knowledge of the fuli
implication of basic constructs of the high level

;an%uage. For example, in the case of LISP this
includes the basic preéicates EQ, EQUAL, ATOM and
their interrelationships; commutativity of

arithmetic operations such as PLUS and TIMES;
antisymmetry of operations such as CONS and XCON§
and LESS and GREAT (e.g. A<B is equivalent to BD>A).
The actual test for equality or nequality of two
operands consists of parsing them and checking if
they are members of the same equivalence class; if
not, then the two operands are assumed to be equal
and if a contradiction is obtained during the
process of Rropo ating the equality through the
data b?se, then the two operands are known to be
unequal.

In the example LISP execution level definition,
memory consists of all of the accumulators, a
stack, the consecutive block of words contain{ng
the object code corresponding to the function being
symbolically interpreted, and cells containing the
values of the global variables. Each cell in
memory has two halves - left and right. A LISP
cell is said to occupy one full word where the left

493

half contains CAR and the right halt contains CDR.
Thus it should be clear that the act of accessing
the left half of a LISP cell corresponds to
computin% CAR and similarly for the right half of a
LISP cell and CDR. We use a wide set of data types
to describe the contents of memor cells. These
types include LISP pointers (all o the locations
containin% the parameters to the function being
symbolically interpreted are initialized to the
szmbolic names of their corresponding parameters),
stack pointers, data (non-LISP numbers and symbolic
addresses), and others.

In order to be able to demonstrate equivalence
between the high and low level programs we must be
able to show that all computations performed in the
high level program have also been performed in the
low level program. Thus all computations in the
low level program that involve LIS constructs are
recorded. This is relatively straightforward since
the LISP computations can be distinguished from
overhead computations (e.g. stack pointer
manipulation, etec.) The only possible stumbling
block is in distinguishing between calculations of
addresses and calculation of data. However

numbers have a distinet representation in LISP
which is not the raw number (i.e. an atom since
otherwise it would be difficult to differentiate
between numbers and pointers) and aggear in the
program as (QUOTE number). Thus ere is a
separation between program and data which differs
from the Von eumann concept{ 1] of
indistinguishability between the two. The task of
recording the LISP computations is performed b% the
memory as well as by a list known as UNREFERENCED.
s a Ero ram ath 1is symbolicall{ interpreted,
UNREFERENCED contains a record of all computations
that have been performed but do not occur as a
subexpression of the contents of at 1least one
memory location (i.e. their result or functions of
their result are no longer accessible to future
operations along the path). This is Erimaril{ for
recording computations performed solely for their
side-effect.

3.2 CONTROL STRUCTURES

The symbolic interpretation process must be able to
cope with the basic control structures of a
language. Some of the effects of these control
structures are described explicitl in the

grocedures corresponding to the instructions in the.

oWw level program and others are implicit in the
sense that when certain events are recognized by
the symbolic interpretation :process as havin

occurred, then corresponding actions are effecte

on the computation model. In this section we
discuss what hapgens in case of a condition test, a
branch, a function call, and encountering an
instruction which has occurred previously on the
path being symbolically interpreted.

As mentioned -earlier, the symbolic interpretation
process corresponds to interpreting a procedure for
each instruction. For most instructions this
consists of simply updatin% the computation model
to reflect the interpretation of the instruction,
For example, a HLRZ instruction is defined to load
the right half of an accumulator with the left half
of the contents of the effective address and to
clear the left half. This instruction is éeseribed
in fig. 1 usinf MLISP[15], a variant of LISP, as
the procedural language.

FEXPR HLRZ: .
LOADSTORE (ACFIELD(ARGS),
EXTENDZERO(
LEFTCONTENTS
EFFECTADDRESS({ARGS))));

Fig. 1 - HLRZ instruction

Some instructions mag require more than one
statement to describe their effect. For example,
the POPJ instruction which 1s used to encode a
return from a recursive call has _a considerably
longer description (see fig. 2). In brief, this
Instruction deallocates the stack entry which was
used to store the return address, decrements the
stack pointer, and returns controi to the address
stored in the address gointed at by the stack
pointer prior to decrementing it.

494

FEXPR POPJ{ARGS);
BEGIN

NEW LAB;
LAB«RIGHTCONTENTS(RIGH

RIGHTCONTENTS(ACFIELD(ARGS)));
DEALLOCATESTACKENTRY(ACFIELD(ARGS))}
SUBX(<ACFIELD(ARGS),X11>);
UNCONDITIONALJUMP(LAB);

END;
Fig. 2 - POPJ instruction

Until now the instructions that we have encountered
desceribe explicitly how the computation model is to
be updated. There are also instructions whose
effects on the computation model are invisible
insofar as their procedural definition. These are
operations that result in function calls. In such
a case the effect on the computation model is
determined by the function being called and also by
the assumed execution level definition of the
language. In our case, upon a function call all
accumulators but those that are known to have their
contents unchanged by the execution of the said
function are considered to have been overwritten
with some unknown value. This causes their
contents (if not previously referenced) to be added
to a 1list of computations known as UNREFERENCED.
Recall that this 1is how we represent computations
executed primarily for their side-effect rather
than their resulting value. When a function call
oceurs the function being called is not
symbollcall¥ interpreted (hence our finite tree
representation); 1instead, the location which has
been defined by the execution level definition of
the language to contain the result is updated to
indicate that it now contains the result of the
said function applied to its arguments which are to
be found in the a set of locations defined by the
execution level definition of the 1angua%e. The
computation model 1is also wupdated to reflect an

possible changes in the bindings of loba

variables and also to include any new equalities or
inequalities that are implied by the execution of
the function. For example, a (RPLACA A B)
operation in LISP implies that subsequent to the
instance of performance of the operation, B and
(CAR A) point to the same list structure.

Some instructions perform control operations such
as conditional branching as well as modify the
computation model. Prior to explaining the role of
symbolic interpretation in evaluatin% conditional
branch instructions we must digress for a moment
and define a predicate and the notion of a valid
test. The basic tgpe of non-arithmetic test that
can be performed by a computer is a check for
equality. All other non-arithmetic tests are
modifications of this primitive using certain data
structures. This equality test is a comparison
against another value or zero. In LISP such tests
translate into the predicate EQ havin two
operands. By valid test we mean that the two
operands of the EQ predicate represent valid data
items of the hi%h level language. If not, then the
value of the est must be known - e.g. address
computation, etc. This means that there must be a
suitable mechanism for converting the data
structures used in the test to a correspondin

meaningful test in the sense of the high leve

lagfua%e. For example instructions, that
manipulate bits (e.g. T NN} by checking if any bits
(denoted by a suitable mask) in a word are one

must be capable of being converted, with the aid of
knowledge about the execution level definition of
the language, to a suitable test in the high level
language. In this example, in an execution level
definition of LISP which represents NIL by zero,
the test would correspond to a check against NIL.

When conditional branchin§ instructions are
encountered, the symbolic nterpretation process
attempts to form a valid test and then determines
if its value is known. In the affirmative case
the apgropriate path is taken and the next
instruction along the path is symbolically
interpreted. Such situations arise when either the
ogerands of the test do not involve data items of
the high level language, or the condition
represents a test whose value has been determined
earlier in the comgutation ath. The latter is
aided bz the equali data ase component of the
computation model. f the condition is a valid
test whose value is unknown, then the two alternate
paths are evaluated in order and the result
returned is a tree as shown in fig. 3.

PREDICATE
/N
/N
/ \
/ \

/ \
CONCLUSION ALTERNATIVE

Fig. 3 - tree representation of a test

Prior to the evaluation of each ath, the
computation model is updated to reflect the assumed
value of the condition. This includes modification
of relevant memory locations as well as propogating
equalities and inequalities, as the case may be,
through the equality data base. This latter step
is crucial to having the caggbility to recognize
the 1occur'r'ence of “dubstitution of equals for
equals. i

An example of a conditional branch instruction is
JUMPE (see fig. 4) which is used to branch to a
specified location 1if the value of a specified
accumulator 1is equal to zero. The description
makes use of several control functions. CHECKTEST
examines the operands and forms a valid test if
possible. Next, if the value of the condition is
alread known, then agpropriate action 1is taken.
TRUEPREDICATE marks the sense of the test (an
instruction branchin% on inequality with zero in
his case would use FALSEPREDICATE).
CONDITIONALJUMP and JUMPALTERNATIVE simply serve to
recursively invoke the symbolic interpretation of
the paths corresponding to the true and false cases
of the condition. One of the parameters to these
routines is the name of another routine which
specifies any further processing that might be
required prior to executing the path. Note that
the actual construction of the tree corresponding
to the result of the symbolic interpretation
process occurs in JUMPALTERNATIVE.

FEXPR JUMPE;
BEGIN

NEW TST;
TST«CHECKTEST(CONTENTS(ACFTELD(ARGS)), ZEROCNST) ;
IF TST THEN RETURN(

IF CDR TST THEN

UNCONDITIONALJUMP(EFFECTADDRESS(ARGS))

ELSE NEXTINSTRUCTION());
TRUEPREDICATE(); :
CONDITIONALJUMPQARGS,FUNCTION JUMPETRUE) ;
JUMPALTERNATIVE({ARGS ,FUNCTION JUMPEFALSE};

D;

FEXPR JUMPETRUE(ARGS);
UNCONDITIONALJUMP(EFFECTADDRESS(ARGS));

FEXPR JUMPEFALSEgARGS);
NEXTINSTRUCTION(

Fig. 4 - JUMPE instruction

Whenever the symbQliec interpretation process is
about to interpret another instruction which has
been greviousl{ encountered along the path bein,

symbolically interpreted, then recursion is assume

to have taken place. In such a case the sgmbolic
interpretation process will attempt ﬁo show that if
a branch had indeed been made to the start of the
program, then the said instruction would have been
‘reached with the same state of the computation
model by virtue of known values for all of the
conditions along some path to the instruction in
question. This means that the condition values
along the path need not be tested since their
values are known. If such a path from the start of
the program exists, then it is unique since a
condition cannot be both true and false.

th%L PROGRAM COUNTER INSTRUCTION

LOOP HLRZ 3 0 1

HRRZ 1 0 1

OO FW N -
(=
c
=
s
=
-
o
-0 0N

DONE POPJ 12)

3.3 EXAMPLE

Tne previous two sections served to highlight
various aspects of the symbolic interpretation
process. At this point it 1s appropriate to show
how the symbolic intergretation process builds an
intermediate representation.

Consider the function NEXT whose LISP1.6[12] and
MLISP{ 15] definitions are given in fi%. 5. . The
function takes as its arguments a 1list L "and an
element X. It searches L for an occurrence of X.
If such an occurrence is found, and if it is not
the last element of the list, then the next element
in the 1list is returned as the result of the
function. Otherwise NIL is returned. For
example, application of the function to the list (A
BCD E5 in search of D would result in E, while a
search for E or F would result in NIL. Fig. 6
contains the LAP encoding for the function which
was obtained by hand coding. Notice that the
encoding is extremely compact - the inner 1loop is
only four instructions long. This is minimal when
we consider the fact that the inner 1loop consists
of four operations - CAR, CDR, EQ test, and
recursion.

(DEFPROP NEXT (LAMBDA (L X)
(COND ((NULL L) NIL)
EEQ (CAR L) X)

COND ((NULL (CDR L

T (CADR L)))

(T (NEXT (CDR L) X))

NEXT(L,X) = if NULL(X) then NIL
else if CAR§L) EQ X then
if NULL(CDR(L)) then NIL
else CADR(L;
else NEXT(CDR\L),X)
Fig. 5 - LISP and MLISP encodings of NEXT

—

3) NIL)
}) EXPR)

When symbolically interpreting the example program

the first instriction that we encounter is JUMPE
which is used to jump to label DONE 1if accumulator
1 contains a zero. The result is shown in fig. 7.
Notice that the test orresgonds to checking if the
list L is NIL - i.e. %EQ L NIL). Since nelther of
the paths corresponding to the true and false cases
of the test have yet been symbolically interpreted

we denote the two subtrees as UNKNOWN-CONCLUSION
and UNKNOWN-ALTERNATIVE. '

(EQ L NIL)
/\
// \\
UNKNOWN-CONCLUSION UNKNOWN-ALTERNATIVE

Fig. 7 - result of s¥mbolic interpretation
of (JUMPE 1 DONE)

The definition of JUMPE in fig. U4 calls for the
path corresponding to the true case of the
condition to be symbolically interpreted. This
corresgonds to updating the eguality data base to
reflect the equality of L and NIL followed by a
branch to the instruction POPJ. At this poinv uue
current execution path is considered to be

" terminated since there is no return address on the

stack corresponding to the current invocation of
the recursive call. Thus in this case the control
structure implicit in the symbolic interpretation
rocess results in a mopup operation. This

ncludes returning a value - L or NIL (they are
equivalent at this point and the proof procedure
which processes the intermediate forms
corresponding to the high and low 1level Erograms
will recognize this fact since-built into it is the

COMMENT

JUMPE 1 DONE) {ump to DONE if L is NIL
oad register 3 with CARéL;
load register 1 with CDR
) skip if CAR(L) is EQ to X
OP; if CDR(L) is not NIL then compute NEXT(CDR(L),X)
NE iump to DONE if CDR(L) is NIL
) oad register 1 with CaR(CDR(L))
return

L

Fig. 6 - LAP encoding corresponding to NEXT

495

same equality data base mechanism as in the
symbolic interpretation Rroeess). In addition, we
must return a list of all of the computations that
were performed but not referenced (i.e.
UNREFERENCED). However, no such computations were
erformed . Fig. 8 shows the state of the
ntermediate representation after symbolic
interpretation of POPJ. Note that only the true
%ase of the test (EQ L NIL) has been resolved so
ar.

(EQ L NIL)
/\
/ N\
/ \
NIL UNKNOWN-ALTERNATIVE
Fig. 8 - result of sgmbolic interpretation
of (POPJ 12)

When symbolic interpretation is resumed we are in
the false case of the condition (EQ L NIL) and the
computation model is updated to reflect the fact
that L is not NIL. The next two instructions, HLRZ
and HRRZ, result in the updating of the contents of
accumulators 3 and 1 to contain (CAR L) and (CDR L)
respectively. In this example HLRZ loads the right
half of accumulator 3 with the 1left half of the
contents of the effective address (indexing via
accumulator 1) and clears the right hal of
accumulator 3. HRRZ is similar to HLRZ except that
the right half of the contents of the effective
address is fetched instead of the left half. Note
that nowhere in the procedural definition of HLRZ
is there any indication that CAR is being computed.
We are able to detect the computation of CAR by
virtue of the act of fetching the left half of the
contents of a LISP pointer.

CAIE is a condition testing instruction which
compares the right half of the specified
accumulator with the effective address and skips
the next instruction if the condition is satisfied.
It is described procedurally in a manner similar to

JUMPE = except for the addition of suitable
primitives or effectin a skip rather than a
Jjump. In our case this test corresponds to

checking if (CDR L) is NIL and returning values of
NIL and (CAR (CDR L)) for the true and false cases
respectively. The intermediate representation
prior to symbolically intergreting the false case
of the (EQ (CAR L) X) condition is shown in fig. 9.

(EQ L NIL)
AN
/ N\
/ \
/ \
/ \
NIL (EQ (CAR L) X)
/\
/ N\
/ \
// \
(EQ (?QR L) NIL) UNKNOWN-ALTERNATIVE
/ A\
/ \
/ \
/ \
NIL (CAR (CDR L))

Fig. 9 - result of symbolic interpretation
of true case of (CAIE 3 0 2)

The false case of the CAIE condition is interesting
in several respects. The immediately following
instruction is a conditional jump which in the true
case proceeds to branch to an instruction that has
been previously enceuntered, while in the false
case we exit from the function. However, this exit
takes advantage of the structure of the program to
enable a tigh encoding. This is accomplished by
recognizing that the next instruction performs a
test which is a no operation for the said execution
ggth (i.e. a test of Pe§ister 1 containin% a 0).

e no operation is easily detected b virtue of
the equalltK data base mechanism whic we recall
keeps track of the values of the various tests
encountered along the execution path. The branch
to LOOP, a 1label freviously encountered along the
execution path, s interpreted as recursion in

accordance with our earller explanation oOI this
concept.

The resulting intermediate representation is shown

in fig. 10 Actually, there is an additional
intermediate representation which indicates a
relative ordering of computing the various

funetions. This is shown in fig. 11. Notice that
the number corresponding to the CDR function in
(CDR L) is less than that of EQ in (EQ (CAR L) NIL)
despite its appearance in the tree below the said
predicate. is ordering 1is necessary for the
proof procedure to be able to adequately handle
cases where the rearranging of the order of
computing functions might 1lead to errors due to
side-effect considerations. The relative
magnitudes of the numbers only serve to indicate a
partial ordering. The actual values of the numbers
are used as indices into a table which indicates at
what instruction and along which execution path
each function was computed. This proves to be very
handy in detecting where in an object program
certain classes of errors occur.

(EQ L NIL)
/\

/ N\
/ \
/ \
/ \
NIL (EQ (CAR L) X)
/\
/ \
/ \
// \\
(EQ (CDR L) NIL) (EQ (CDR L) NIL)
/\ /\
/ \ / N\
/ \ / \
/ \ / \

/ \ / \
NIL (CAR (CDR L)) NIL (NEXT (CDR L) X)

Fig., 10 - symbolic representation

(58 5 0)
/\
/ N\
/ \
/ \
/ \
0 (74 (70 5) 6)
/\
/ N\
/ \
/ \
/ \
(96 (72 5) 0) (144 (72 5) 0)
A\ /\
/ N\ / N\
/ \ / \
/ \ / \

/ \ / \
0 (108 (72 5)) 0 (154 (72 5) 6)

Fig. 11 - numeric representation

4. CONCLUSIONS

The use of symbolic interpretation as a means of
obtainin the intermediate representation in the
second s%ep of the program testing procedure is the
distinguishin factor between our system and
decompllationfSJ methods. We have seen that in our
system, there was no need to specify how a
particular construct is encoded since the internal
representation is simply a record of computations
performed. In other words, the system is built on
the semantics of the various assembly language
instructions in terms of their effect on “a
computation model (recall how the CAR and CDR
operations were recognized).

A system{13] has been implemented which uses the
ideas reported here to prove the correctness of
translation of programs written in LISP1.6 to LAP.
It was successfully used in proving the correctness
of translation of a large number of programs many
of which were hand coded for efficiency. This was
possible because the s¥stem is independent of the
actual translator. t only relies upon_ the
execution level definition of the source high level
language. In particular, the system was able to

496

locate errors "in the translations. as well as
pinpoint in the object code the location where the
error was made. This was accomplished with the aid
of a numeric representation of the symbolic
intermediate representation which recorded tne
value of the program counter and the path for each
computation. These results suggest that the system
would be particularly useful as a compiler debugger
which is a resident part of the compiler. Proofs
would be enabled when there is a reasonable belief
that erroneocus code is being generated. During
this time comgilation would proceed at a slower
pace due to the additional burden of generatin% a
groof; however, this is a small price to pay for
he correctness assurance. '

Some future extensions to the symbolic
interpretation process iaclude the following.
Incorporate a more complete equality checking
mechanism which would be able to cope wit

associativity as well as equalities in the
arithmetic domain - i.e. at the present we can not
detect the equivalence of x=1 and x-1=0.
Currently, the system tries all possible paths.
There is no way for the user to control the paths
to be symbolically interpreted. Such a feature
would be wuseful 1in a situation where certain
execution paths are known to be erroneous and
therefore are to be ignored. This is 1in contrast
with the method of [7] which gives the user full
control over the selection of paths to be explored.
Another wuseful addition is a state save restore
capability wunder the control of the user. This
would mean that when errors occur the symbolic
1nt§rpretation process need not be séarted all over
again.

ACKNOWLEDGEMENT

Special thanks go to Robert E. Noonan for his hel
in improving he presentation of the 1ideas se
forth in this paper.

REFERENCES

{11 - Burks’ AW Goldstine, H.H., and von
Neumann, J., 'Preliminary Discussion of the Logical
Design of an Electronic Computing Instrument" in

Computer Structures: Readings and Examples by
Gorgon Bell d Allen NeweI%, McGraw HQII, New

e an
York, 1971, pp. 92-119.

[2] - "PDP-10 System Reference Manual", Digital
?8%§pment Corporation, Maynard, Massachusetts,

[3] - Deutsech, L.P., "An Interactive Program
Verifier," Ph.D Thesls, Department of Computer
?g%gnce, University of California at Berkeley, May

%4] - "Flgyd, giw., f"Asségningi Me?niggslitg
rograms roceedings of a osium in e

Mathemat{cs,™ VoTume T S Mathematical K§bec€s of
clence, Schwartz J.T. ed.), American Math
Society, 1967, pp. 19-32.

[5] - Hollander, C.R., "Decompilation of Object

Programs," Ph.D. Thesis, Digital Systems Laborator
Technical Report No. 5&, Department of Electrica
Engineering, Stanford University, 1973.

6] - Huan% J.C. "An Approach to Program
esting," A Y Comgutlng Surveys, September 1975,
pp. 11%-128.

7] - Kin§ Jd., "A New Agproach to Program
esting," BM Résearch Repor RC 5037, Yorktown
Heights, New York, September 1974.

[{8] - Lee, J.A.N., Computer Semantics, Van Nostrand
Reinhold,’New Yorﬁ, 19;2, [J: 336—357:

{9] - London, R., "Correctness of Two Compilers for
a LISP Subset," Stanford Artificial Intelligence
Project Memo AfM-151, Computer Science Department,
Stanford University, October 1971.

[10] - London, R.L., "The Current State of Provinﬁ

Programs Correct," 1n_ Proceedings of the ACM 25t
Annual Conference, 1972, pp. 39-56.

497

Funet ions of
Computation by
April 1960,

11] - McCarthy .» "Recursive
ymbolic Expressions and their
Machine,” Communications of the ACM,

pp. 184-195,

912] - Quam, L.H., and Diffie W. "Stanford LISP
.6 Manual," Stanford Artificlal “Intelligence
Project Operating Note 28.7, Computer Science-
Department, Stanford University, 1972.

[13] - Samet, H., "Automaticalli Provi the
Correctness o% Translations Involving Ogt mized
Code," Ph.D. Thesis, Stanford Artificial

Inteiligenee Project Memo AIM-259, Computer Science
Department, Stanford University, 1975.

[14] - Samet, H
Programs," TR-443,
Universiéy of Maryland,
February 1976.

&15] - Smith, D.C., "MLISP," Stanford Artificial
ntelligence Project 'Memo AIﬁ-135 Computer Science
Department, Stanford University, dctober 1970.

.9_ "A Normal Form for LISP
omputer Science Department,
College Park, ryland,

[16] - Suzuki, N, "Verifxing Programs b Algebraic
and Logical ﬁeductions, roceédings of the 1975
International anference on eliable Software,
April 1975, pp. =301,

171 - Winograd, T., "Procedures as _a
epresentation for Data in a Computer Program for
Understanding Natural Language," MAC ~— TR-84,
¥S$?achusetts Institute of Technology, February

