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A method is presented for parsing syntactic constructs that are permitted to appear independently 
anywhere in a program. Some examples include comments, macros, and constructs for conditional 
compilation. Each such construct is defined by its own grammar and parsed by a separate coroutine. 
The coroutine model of parsing allows the program text to be parsed in one pass despite the syntactic 
inconsistencies among the program text and the additional constructs. The usefulness of the model is 
demonstrated by showing how a production language parsing method is extended to handle multiple 
syntax specifications. The implementation of conditional compilation by carrying along two parses in 
a coroutine manner is also given. The utility of the model is further demonstrated by showing its 
adaptation to a recursive descent parser. 
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1. INTRODUCTION 

P r o g r a m m i n g  l a n g u a g e  s y n t a x  is u s u a l l y  spec i f i ed  b y  s o m e  f o r m  of  a c o n t e x t - f r e e  
g r a m m a r  w h i c h  can  b e  p a r s e d  b y  a n y  one  o f  a n u m b e r  o f  t e c h n i q u e s  [10]. 
H o w e v e r ,  in  a d d i t i o n  to  t h e  p r i m a r y  syn tax ,  a p r o g r a m  t e x t  can  o f t en  i n c l u d e  
o t h e r  c o n s t r u c t s  w h i c h  c a n  b e  p l a c e d  b e t w e e n  a n y  two  tokens .  I n  o t h e r  words ,  we 
s a y  t h a t  " t h e y  a r e  p e r m i t t e d  to  o c c u r  a n y w h e r e  in  t h e  p r o g r a m . "  A l t h o u g h  t h e  
g r a m m a r s  for  t h e s e  c o n s t r u c t s  a r e  r e l a t i v e l y  s imp le ,  t h e  s p o n t a n e o u s  n a t u r e  o f  
t h e  c o n s t r u c t s  m a k e s  i t  d i f f icu l t  to  e m b e d  t h e i r  p r o d u c t i o n s  in  p a r s e r s  o f  m o s t  
p r o g r a m m i n g  l anguages .  E x a m p l e s  o f  such  c o n s t r u c t s  a r e  c o m m e n t s ,  ma c ros ,  a n d  
c o n s t r u c t s  for  c o n d i t i o n a l  c o m p i l a t i o n .  I n  t h e  l a t t e r  two  cases ,  e v a l u a t i o n  o f  t h e  
c o n s t r u c t s  y i e l d s  c o m p o n e n t s  o f  t h e  p r i m a r y  syn tax .  

I n  [5] C o n w a y  d e s c r i b e s  t h e  o r g a n i z a t i o n  o f  a c o m p i l e r  t h a t  m a k e s  use  o f  a 
n u m b e r  o f  s t a g e s  w h i c h  i n t e r a c t  in  a c o r o u t i n e  fash ion .  T h e s e  s t a g e s  i n c l u d e  a 
l ex ica l  ana lyze r ,  a p a r s e r  ( " d i a g r a m m e r "  a c c o r d i n g  to  [5]), a code  g e n e r a t o r ,  etc.  
I n  t h i s  p a p e r  we  use  a s i m i l a r  c o r o u t i n e  o r g a n i z a t i o n  to  f a c i l i t a t e  t h e  o n e - p a s s  
p a r s i n g  o f  p r o g r a m  t e x t  c o n t a i n i n g  a m i x t u r e  o f  p r i m a r y  s y n t a x  a n d  e x t r a  l a n g u a g e  
cons t ruc t s .  

T h i s  p a p e r  was  m o t i v a t e d  b y  a des i r e  to  i m p l e m e n t  c o n d i t i o n a l  c o m p i l a t i o n  in  
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Fig. 1. 

A Coroutine Approach to Parsing 

const TEST = false; 
! 

if TEST then {somecode) 

Program segment illustrating conditional compilation. 
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Fig. 2. 

begin 

IFC INTEGER_ARITHMETIC THENC integer 
ELSEC real 
ENDC 
SALARY, COMMISSION; 

end  

Another program segment illustrating conditional compilation. 

a high-level language. Section 2 contains a discussion of this and similar features 
and the merits  of a number  of al ternative implementations.  Sect ion 3 elaborates 
on the coroutine model  of parsing. Sect ion 4 demonstra tes  the utility of the model  
by showing how it can be incorporated in a product ion language system [10, 11]. 
In fact, this is how conditional compilation was implemented in SAIL [16]. 
Although other  parsing methods  have been t rea ted  similarly by the au thor  (e.g., 
recursive descent  [11] as shown in the appendix), product ion language is used 
because of its compact  represen ta t ion)  We conclude our  presentat ion with a 
sample implementa t ion of conditional compilation. 

In the discussion tha t  follows we refer to the syntax of the programming 
language as the p r i m a r y  s y n t a x .  

2. MOTIVATION 

Conditional compilation, the high-level analog of conditional assembly, is a 
facility whereby  the compile-t ime evaluation of a Boolean expression determines 
whether  an associated port ion of program text  is t ranslated by the compiler. 

The  effect of conditional compilation can be achieved using an optimizing 
compiler which evaluates all expressions comprised only of compile-t ime con- 
stants and eliminates unreachable  code. Such a compiler would, for example, 
produce no code for the program fragment  in Figure 1. 

However,  if conditional compilation is achieved in this way, then  it can only be 
obtained for the conditional constructs of the programming language. For  in- 
stance, conditional declarations would normally not  be possible (e.g., Algol 60 
[14]). In addition, the optimization capability m ay  cause considerable compiler 
overhead.  

Another  way to achieve conditional compilation is to introduce a separate  
syntax for this purpose. For  example, Figure 2 uses compile-time directives 
IFC,  T H E N C ,  E L S E C ,  and E N D C  and the compile-t ime variable 

1 Production language is less commonly used today for compiler construction. However, it is the 
subject of much research in artificial intelligence as a basis for rule-driven inference systems 
(e.g., [6]). 
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I teo at" : I    oen"l 
Fig. 3. Coroutine state  diagrams. 

INTEGER__ARITHMETIC.  Here we are declaring variables SALARY and 
COMMISSION to be of type in t ege r  or rea l  depending on whether the compile- 
time variable INTEGER__ARITHMETIC is true or false. 

One can introduce compile-time variables as macros. Alternatively, one can 
have a compiler which always evaluates expressions comprised of constants. Even 
greater generality is possible when the compiler permits a combination of the 
previous two methods. Typically, conditional compilation units can be nested, 
provided that  they are well bracketed. 

Another common approach, as exhibited in PL/ I  [15], is to implement condi- 
tional compilation as a preprocessing phase. This approach, although general, is 
inferior to a one-pass approach because all decisions are made purely on the basis 
of syntactic information. In contrast, the one-pass approach enables decisions to 
be made on the basis of semantic information previously accumulated by the 
compiler. For example, the conditional compilation condition may involve que- 
rying the symbol table as to the type of a variable, whether or not a variable has 
been declared, etc. 

Our solution to the apparently conflicting goals of (1) allowing certain con- 
structs to appear "anywhere in the program" and yet (2) making use of semantic 
information in parsing these constructs is to employ a coroutine-like mechanism 
to parse different languages each having a different and independent grammar. A 
multipass algorithm fulfills the first goal; however, only a one-pass algorithm 
fulfills the second goal. Knuth mentions that  it is often possible to transform a 
multipass algorithm to a one-pass algorithm using coroutines and cites space and 
time advantages of the one-pass solution [12]. Thus the coroutine solution allows 
us to meet both of our goals. This is a stronger solution than a subroutine-like 
interaction which is all that  is necessary to handle comments or macro definitions 
(see [9] for a discussion of related ideas). Note that parse tokens of one syntax 
may be embedded within those of another syntax. For example, the conditional 
compilation syntax c~ll.~ for a conditional expression which is a sequence of parse 
tokens generated by the programming language grammar. In such a case, the 
conditional expression is a recursive instance of the primary syntax. Also observe 
that  if the conditional expression contains conditional compilation statements, 
then there is a further recursive instance of the conditional compilation syntax as 
w e l l .  

3. MODEL 

We view the parse of each syntax as a coroutine. At any point in time, each 
coroutine can be in one of three states: active, suspended, or terminated. The 
transitions between the states are primarily determined by the definition of the 
programming language. Figure 3 contains a state diagram illustrating the possible 
transitions. 
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begin 

IFC A > IFC B > C THENC D 
ELSEC E 
ENDC... 

THENC... 
ELSEC... 
ENDC 

e n d  

Fig. 4. Example  program.  

Assume tha t  there  exist n different syntax specifications corresponding to the 
pr imary  syntax and n - 1 extralanguage constructs. At any instant, only one of 
the syntaxes can have its associated coroutine in an active state. Th e  coroutines 
associated with the remaining n - 1 syntaxes are in the suspended state. Actually 
associated with each syntax is a stack of suspended coroutines. Th e  potential  
need for a stack arises whenever  a coroutine is initiated whose corresponding 
syntax already has a coroutine in an active or suspended state. Th e  stack is 
required should the newly initiated coroutine make a transit ion to a suspended 
state. A coroutine is said to be in a te rminated  state when it can no longer make 
fur ther  transit ions to o ther  states (e.g., its corresponding code segment is exited). 

Whenever  a new syntax is added to a programming language, a set of reserved 
tokens te rmed initiators and resumers  is designated. Init iators signal tha t  a parse 
of the corresponding syntax is to start. Resumers  signal tha t  a suspended 
coroutine of the associated syntax is to be made active (i.e., resumed) while the 
current ly  active coroutine makes a transit ion to a suspended state. As an example, 
IFC is an init iator for conditional compilation and T H E N C  is a resumer.  

A coroutine can be initiated in two ways. One way is implicit and occurs when 
an init iator symbol of a syntax is encountered.  Alternatively, a coroutine may  be 
initiated explicitly by an active coroutine. For  example, the grammar  of the 
language ma y  dictate tha t  the pr imary  syntax coroutine is invoked by the 
coroutine for conditional compilation to obtain a constant  Boolean expression 
following an IFC symbol. The  previously active coroutine enters a suspended 
state. 

A coroutine can be resumed in two ways. Th e  first is implicit and arises when 
a resumer  symbol of a syntax whose coroutine is in a suspended state is encoun- 
tered while a coroutine associated with another  syntax is active. Second, a 
coroutine ma y  be resumed explicitly by an active coroutine. For  example, the 
grammar  of the language may  specify tha t  the coroutine for the pr imary  syntax 
be resumed following the processing of an ELSEC.  In both  cases, the previously 
active coroutine enters  a suspended state. Note  tha t  since coroutine-like inter- 
action is only defined between different syntaxes, we do not  permit  an active 
coroutine to resume a suspended instance of itself. 

As an example of the coroutine control  mechanism, consider the program 
fragment  in Figure 4 which contains a pair of embedded  conditional compilation 
s tatements .  Table  I contains snapshots of the status of the various coroutines as 
the program is being parsed. Suspended S T A C K  1 and coroutines J, K, and L are 
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Table I. Snapshots of the Parse of the Program of Figure 4 

Suspended Suspended 
Step Token Active stack 1 stack 2 Terminated 

1 ° ' '  J 

2 IFC X J 
3 A >  K J 
4 IFC Y K,J 
5 B > C  L K,J 
6 THENC Y K,J 
7 assume B > C true K J 
8 ELSEC Y K,J 
9 ENDC K J 

10 THENC X J 
11 assume A > D true J X 
12 E L S E C . . .  X J 
13 E N D C . . .  J 

X 
X 
Y,X 
X 
Y,X 
X 
X 

L 

Y 
K 

x 

associated with the primary syntax. Suspended STACK 2 and coroutines X and 
Y are associated with the conditional compilation syntax. Initially, coroutine J is 
in the active state, and no coroutines are in the suspended states. For example, 
entry 6 denotes the status of the parse immediately after parsing the first THENC 
symbol. In this case we have the following situation: 

(1) coroutine Y of the conditional compilation syntax is the active coroutine, 
(2) coroutines K and J of the primary syntax are in the suspended state with 

coroutine K on top of the suspended stack; 
(3) coroutine X of the conditional compilation syntax is in the suspended state; 
(4) coroutine L of the primary syntax has just entered the terminated state. 

4. EXAMPLE 

To illustrate the usefulness of our model, we demonstrate how a production 
language parsing system can be extended to handle multiple syntaxes correctly 
with a minimal amount of effort. Production language has been chosen because 
it lends itself easily to a compact description of a programming language and the 
actions to be taken upon successful reductions. We first present a brief overview 
of production language. Next we describe the necessary extension to enable 
multiple syntaxes to be parsed in a coroutine manner. Finally we show how 
conditional compilation is implemented using these extensions. 

4.1 Production Language and Its Implementation 

Production language is primarily a means of describing the syntax of a program- 
ming language and the actions to be taken upon successful reductions. The 
principles of one such system (used in the implementation of SAIL) are illustrated 
by the following production. We use a variant of production language that  also 
enables the specification of semantic action [8]. 

aa: b b c c ~ d d  
EXEC ROUTINE1 ROUTINE2 
SCAN 2 
CALL ee RETURN GO ff ERROR gg 
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aa is the label of the production, bb and cc are the parse tokens that  must be 
on top of the parse stack for the reduction to be made. If a match does occur, 
then bb and cc are replaced by dd and the remaining part of the production is 
executed in sequence. If the ~ symbol is absent, then the occurrence of a match 
means that  the parse stack is unchanged (equivalent to lhs ~ lhs). bb and cc 
may also be specific constants such as 0, 1, true, false, or even reserved words. 

ROUTINE1 and ROUTINE2 are subroutines (usually referred to as EXEC 
routines) which are executed upon a successful match. They  are typically used 
for semantic action such as code generation as well as parser state changing. 

SCAN (number) indicates how many parse tokens must be returned by the 
scanner prior to executing the next production. 

CALL, RETURN,  and GO denote actions to be taken upon a successful match. 
CALL ee indicates that  production ee is to be invoked recursively. It is useful 
when the next syntactic construct is known, and it is desired to resume the 
current parse once the desired construct has been obtained. RETURN is the dual 
of CALL and signals that  the current production exits recursively upon success. 
GO ff indicates the next production to be executed. ERROR gg denotes the next 
production to be at tempted upon failure {i.e., bb and cc do not match the top two 
entries on the parse stack). If ERROR is not used, then the immediately following 
production is at tempted next. 

To completely specify a language, all the symbols used in the reductions must 
be declared. There are four types of symbols: terminal symbols, reserved words, 
nonterminal symbols, and classes. Of these, the first three have their customary 
meaning and classes are sets of symbols. Each class identifier is prefixed with the 
@ character. When a match is at tempted and a class name is seen, then any 
member of the class will match it. 

4.2 Extension to Production Language to Handle Multiple Syntaxes 

Recall from Section 3 that  the coroutines associated with the syntaxes can be 
initiated and resumed either implicitly or explicitly. Implicit initiation and re- 
sumption are achieved by adding two more types of symbols, initiators and 
resumers. Initiators are specified along with the name of their corresponding 
syntax and the label of the production at which the initiated coroutine is to start. 
Both initiators and resumers are treated as reserved words and the symbol table 
is initialized to contain them as well as type bits indicating whether the symbols 
are initiators or resumers. In addition, the symbol table entry of an initiator 
includes the name of the syntax and the label of the associated production. 

Explicit coroutine initiation is achieved by the construct INIT followed by the 
name of the corresponding syntax and the label of the production at which the 
coroutine is to start. This mechanism is analogous to a CALL with the additional 
task of starting a coroutine. Explicit coroutine resumption is achieved by the 
introduction of the RESUME construct followed by the name of a syntax. 
RESUME appears in a production in the same place where SCAN appears and 
has the meaning that  the currently active coroutine is placed in a suspended state 
and a coroutine associated with the designated syntax makes a transition from 
the suspended state to an active state. In addition, the scanner is invoked to 
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IF0: IFC ~ IFC (1) 
IFI: TRUE ~ TRUE1 
IF2: FALSE ~ FALSE1 EXEC SWPOFF 

IF3: @CTRUE ENDC 
TRUE1 ELSEC ~ FALSE2 EXEC SWPOFF 

IF4: IFC ~ NOCOND 
NOCOND ENDC 
FALSE1 ELSEC ~ TRUE2 EXEC SWPON 

@CFALSE ENDC ~ EXEC SWPON 
SG 

CBI: IFC 
CB2: IFC E THENC ~ E (2) 
OUT: 

Fig. 5. 

INIT 1 CB1 GO IF1 ERROR OUT 
RESUME 1 GO IF3 
SCAN GO IF4 ERROR OUT 

ADIEU 1 
SCAN GO IF4 ERROR OUT 
SCAN GO IF4 
SCAN GO IF4 
RESUME 1 GO IF3 

ADIEU 1 
SCAN GO IF4 
SCAN CALL CONBEX GO CB2 ERROR OUT 

ADIEU 2 ERROR OUT 

Conditional compilation productions. 

furnish as many parse tokens as the resumed coroutine had yet to furnish upon 
its most recent transition to the suspended state. 

Coroutine termination is achieved by the construct ADIEU 2 followed by the 
name of a syntax. The effect of this construct is similar to a combination of 
RESUME and RETURN.  The result is that  the currently active coroutine is 
terminated, and a coroutine associated with the designated syntax makes a 
transition to the active state. Once again, the scanner must be prompted to 
furnish as many parse tokens as the resumed coroutine had yet  to furnish upon 
its most recent transition to the suspended state. 

Clearly, each instance of a coroutine that is associated with a syntax will have 
its own parse stack. At times it may be useful for one coroutine to examine, as 
well as manipulate, the parse stack of a coroutine associated with another syntax 
(e.g., the result of parsing the constant Boolean expression in conditional compi- 
lation; see Figure 5). This is achieved by optionally appending to each parse token 
in a production a number corresponding to the syntax (and hence the parse stack} 
to which it belongs. We assume that, when scanning a left-hand side of a 
production to the left, starting with the ~ symbol, the elements are encountered 
in the same order in which they appear on the top of the corresponding parse 
stacks. For example, execution of the production 

A (I) B ~ C (1) 

results in an at tempt to match B with the top of the parse stack corresponding to 
the currently active coroutine. Next, an at tempt is made to match A with the top 
of the parse stack associated with syntax 1. A successful match results in A (1) 
and B being removed from their corresponding parse stacks, and C is placed on 
the parse stack associated with the coroutine corresponding to syntax 1. 

Finally, a capability is needed for selectively disabling and enabling implicit 
coroutine initiation and resumption for certain syntaxes (e.g., between the ELSEC 
and matching ENDC symbols of a conditional compilation statement whose 
constant Boolean expression has the value true). This is accomplished by use of 
EXEC routines named SWPOFF and SWPON whose arguments indicate the 
names of the syntaxes for which implicit coroutine initiation and resumption are 
to be disabled and enabled, respectively. If no arguments are specified, then 

2 This term was first used in CONNIVER [13] .  
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implicit coroutine initiation and resumption are disabled and enabled, respec- 
tively, for all syntaxes. 

4.3 Conditional Compilation 

Conditional compilation has been described in Section 2. The necessary produc- 
tions and symbol declarations for conditional compilation are shown in 
Figures 5 and 6. We label the conditional compilation syntax as syntax 2 and the 
primary syntax as syntax 1. The following is a scenario of the workings of the 
system when an IFC is encountered while in the midst of parsing the primary 
syntax. 

Conditional compilation starts with production IF0 in control having been 
initiated in an implicit manner. Its primary role is to initiate another coroutine 
corresponding to syntax 1 to obtain a constant Boolean expression. Once such an 
expression has been obtained, a return is made to production IF1. Note that the 
IFC has been placed on the parse stack of the coroutine of syntax 1. 

The actual constant Boolean expression is obtained by productions CB1 and 
CB2. CB1 serves to invoke the set of productions associated with parsing a 
constant Boolean expression. The IFC, which has been placed on the parse stack 
by the suspended coroutine, serves as a left context for the expression while the 
SCAN prior to the call to CONBEX provides a one-symbol lookahead to delimit 
the constant Boolean expression from the right so that the end of the expression 
can be detected. Note that  once the constant Boolean expression has been 
obtained, the parse token corresponding to the expression is moved to the parse 
stack of the conditional compilation syntax. Also observe that the coroutine 
associated with obtaining the constant Boolean expression is terminated in 
production CB2 and the currently suspended conditional compilation coroutine 
is made the active coroutine. 

Production IF1 corresponds to the constant Boolean expression being true. 

Therefore, the suspended coroutine (i.e., corresponding to syntax 1) is resumed, 

(INITIATORS) 
IFC 2 IFO 

(RESUMERS) 
ENDC 2 
ELSEC 2 

(RESERVED WORDS) 
THENC 

(CONSTANTS) 
TRUE FALSE 

(NON-TERMINAL SYMBOLS) 
TRUE1 TRUE2 FALSE1 FALSE2 NOCOND 

(CLASSES) 
@CTRUE TRUE1 TRUE2 
@CFALSE FALSE1 FALSE2 

Fig. 6. Conditional compilation symbol declarations. 
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980. 
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whereas the conditional compilation coroutine is placed in a suspended state to 
be resumed at production IF3. 

Production IF2 corresponds to the constant Boolean expression being false. In 
this case, the suspended coroutine (corresponding to syntax 1) remains in a 
suspended state and the productions starting at IF4 are invoked to scan successive 
parse tokens until a matching ENDC or ELSEC is obtained at the same nesting 
level as the IFC. This step is aided by the nonterminal symbol NOCOND. EXEC 
routine SWPOFF results in disabling implicit coroutine initiation and resumption, 
i.e., when the constant Boolean expression is false, coroutines cannot be initiated 
or resumed via the scanner in the program segment between THENC and ELSEC 
or THENC and ENDC. 

When the top two elements of the parse stack are FALSE1 and ELSEC, the 
suspended coroutine is resumed, and the conditional compilation coroutine is 
placed in a suspended state to be resumed at production IF3. When the top 
element of the parse stack is ENDC and the next to the top element is a member 
of class CFALSE, then the current conditional compilation coroutine is termi- 
nated (ADIEU) and the suspended coroutine associated with the primary syntax 
is resumed. Both of the previous cases result in the execution of EXEC routine 
SWPON, which has the opposite effect of SWPOFF. It enables implicit coroutine 
initiation or resumption and thus coroutines can once again be initiated or 
resumed via the scanner. SG is a symbol that  matches all parse tokens. 

The two productions starting at IF3 ensure that  proper action is taken once 
the program segment corresponding to the value of the constant Boolean expres- 
sion has been parsed. When the top element of the parse stack is ENDC, and the 
next to the top element is a member of class CTRUE, then the current active 
conditional compilation coroutine is terminated (ADIEU) and the suspended 
coroutine associated with the primary syntax is resumed. When the top two 
elements of the parse stack are TRUE1 and ELSEC, SWPOFF is executed. Then 
the set of productions at IF4 causes tokens to be skipped until a matching ENDC 
is encountered at the same nesting level. 

The suffixes 1 and 2 on TRUE and FALSE aid in identifying the component of 
the conditional compilation statement that  is currently being parsed, namely, 1 
corresponds to the program segment between THENC and ELSEC or THENC 
and ENDC, whereas 2 corresponds to the program segment between ELSEC and 
ENDC. In particular, the suffixes are useful in determining proper action to be 
taken when an ELSEC is encountered. 

5. C O N C L U D I N G  R E M A R K S  

Similar techniques to those discussed herein have been successfully used to 
implement a conditional compilation facility in the SAIL compiler. In that  
application, use of such methods enabled the construction of a more powerful 
compile-time facility, namely, macros whose definitions could appear anywhere 
in the program text. Other features which were implemented include the compile- 
time equivalents of the following constructs: FOR loops, WHILE statements, 
CASE statements, and FOR loops based on a list of variable bindings rather than 
on an iterative numeric variable. In addition, the concept of two syntaxes enables 
SAIL macros to have recursive definitions. 
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980. 
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Conditional compilation and macros as described here have been used to 
extend SAIL [3] to serve as the data manipulation language in conjunction with 
DBMS-10 [7], a CODASYL-based [4] database management system. The DBMS- 
10 database operations {termed verbs) are implemented by use of macros. The 
close interaction between the compiler and the compile-time facility (i.e., the one- 
pass characteristic rather than a preprocessor) enables the expression of the 
database operations in SAIL to be quite general. For example, the SAIL imple- 
mentation of the verbs provides for their invocation with parameters of different 
type (e.g., string, integer, etc.). The macros corresponding to the verbs perform 
compile-time type checking and generate procedure calls to the actual DBMS-10 
routines with the appropriate parameters. Thus the programmer is provided with 
a greater degree of flexibility than is attainable with conventional data manipu- 
lation languages such as Cobol [1] or Fortran [2]. 

The extension to production language described in Section 4.2 forces the 
specification, for each state transition, of the syntax that is being resumed. A 
more general scheme is one that would also permit a syntax to interact with more 
than one other syntax. Such a scheme can be achieved by letting the special 
symbol R denote the syntax that was most recently suspended. Given syntaxes A 
and B, this is equivalent to saying that once syntax B has been initiated by syntax 
A, all subsequent references to R by productions of syntax B refer to syntax A 
(e.g., INIT R, R E S U M E  R, ADIEU R, and (parse token) (R)). Using such a 
method, for example, permits the conditional compilation syntax to be embedded 
in more than one syntax. 

The concept of multiple syntaxes could also be applied to render scanner 
implementations more comprehensible. In particular, concepts such as lines, 
buffers, and even source file switching a could be implemented as separate syntaxes 
with the appropriate initiators and resumers. For example, in SAIL, source file 
switching is achieved by the command: 

REQUIRE "FILENAME" SOURCE ! FILE; 

Upon encountering the above command, the scanner obtains all subsequent parse 
tokens from file FILENAME. When the special "end of file" character is seen, 
the scanner once again obtains parse tokens from the original file. In SAIL, this 
feature is currently restricted to statement level. However, viewing the REQUIRE 
symbol as an initiator for the source file switching syntax permits source file 
switching to occur anywhere in the program text. The special "end of file" 
character serves as a resumer symbol for implicitly resuming the coroutine 
associated with the source file switching syntax. 

Our method for parsing multiple syntaxes can be applied to other bottom-up 
parsing methods by employing techniques similar to those used in our adaptation 
of production language. To implement our method for a top-down parsing 
technique, such as recursive descent, requires that the parsing technique have a 
coroutine control structure. For an example of an implementation using a recur- 
sive descent parser, see the appendix where the productions given in Figure 5 are 

a Source file switching is a feature which allows the programmer  to specify tha t  parse tokens are to be 
obtained from another  file. 
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encoded using SAIL's multiprocessing capabilities (thereby enabling the imple- 
mentation of coroutines). 

APPENDIX. RECURSIVE DESCENT PARSER 

In this section we present an implementation of conditional compilation for an 
environment employipg a recursive descent parser. Once again, we only use two 
syntax specifications, the primary syntax and the conditional compilation syntax. 
The procedures are encoded in a liberal variant of SAIL. The effect of a coroutine 
is achieved by making use of SAIL's process constructs (e.g., s p r o u t  and r e sume)  
since the coroutine construct is not explicitly present in SAIL. 

It  is assumed that  there exists a procedure named Parser that  encodes the 
remaining productions of the language in which the following conditional com- 
pilation productions are embedded. CONBEX is a procedure that  corresponds to 
a set of productions that  parse a constant Boolean expression. Expression is a 
predicate that  indicates whether or not its parse token argument is an expression. 
GetParseToken is a standard routine that  reads characters from the input buffer. 
In general, the names of the procedures are identical to the labels of the 
productions and the names of the EXEC routines in Figure 5. 

The program makes use of CoroutineTable, a two-dimensional array of type 
Coroutine, to store identifying names 4 for the various coroutine instances that 
may be in the active or suspended states. There is one row per syntax where each 
row is viewed as a stack. CurrentCoroutine is an array that  indicates for each 
syntax the index of the CoroutineTable entry corresponding to the instance of 
the coroutine currently in the active or most recently suspended state (i.e., the 
column number}. ParseStacks is an array of parse token stacks consisting of one 
stack for each syntax. It is accessed by function ParseStack relative to its top; 
e.g., ParseStack(0) and ParseStack(-1)  correspond to the topmost and next to 
the topmost elements, respectively. ParseStackTop is an array of pointers to the 
tops of the parse stacks of the various syntaxes. 

Note that  rather than having one parse stack per instance of a coroutine (recall 
that  there may be active and suspended coroutines associated with each syntax}, 
we have one parse stack per syntax. This can be justified by observing that  once 
a coroutine, say P, corresponding to syntax S is initiated, the parse stack of any 
suspended coroutine associated with syntax S will not be accessed until coroutine 
P has terminated. 

Coroutines are initiated, resumed, and terminated by use of procedures 
SuspendMeAndInitiate, SuspendMeAndResume, and KillMeAndResume which 
correspond to INIT, RESUME, and ADIEU, respectively, of Figure 5. 
SuspendMeAndInitiate is invoked with parameters NewSyntax and Pname, sets 
CurrentSyntax to NewSyntax, and makes use of SAIL's s p r o u t  command to 
start procedure Pname in a coroutine manner. SuspendMeAndResume is invoked 
with parameter  ResumedSyntax, which corresponds to the syntax that  is to be 
resumed. It sets CurrentSyntax to ResumedSyntax and makes use of SAIL's 

4 The names are actually of type item. item in a SAIL data type that is analogous to a pointer. In this 
case, each coroutine (implemented as a SAIL process) has a unique identifying item associated with 
it. i t e m v a r s  are  SAIL variables whose value is of type i t e m .  
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r e s u m e  command  to resume the corresponding coroutine. Ki l lMeAndResume is 
invoked with paramete r  ResumedSyntax  and terminates  the active coroutine, 
sets Cur ren tSyntax  to ResumedSyntax,  and resumes the appropriate  coroutine. 

Note  tha t  procedures  PushParseStack,  PopParseStack,  and ParseStack  are 
act ivated with an optional parameter ,  as signified by the parentheses  following 
the paramete r  declaration. The  value enclosed by the parentheses  denotes a 
default  value when the paramete r  is absent. If the optional parameter  is present,  
then  it denotes  the syntax whose parse stack is to be manipulated or referenced, 
while if absent,  then  the parse stack associated with syntax Curren tSyntax  is 
manipula ted or referenced. 

begin 
/* type definitions*/ 

define ParseToken -- "string"; 
define Syntax = "integer"; 
define Coroutine = "i temvar";  
define CoroutineName = "procedure";  

/* constant definitions*/ 
define MaxNumOfCoroutines = 100; 
define MaxParseStackSize = 50; 
define NumOfSyntaxes -- 2; 

/* storage declarations*/ 
Coroutine a r r ay  CoroutineTable [l:NumOfSyntaxes, 0:MaxNumOfCoroutines]; 
ParseToken a r r ay  ParseStacks [l:NumOfSyntaxes, 0:MaxParseStackSize]; 
p re load  ! with rNumOfSyntaxes] 0; /*initialize ParseStackTop to 0"/ 
in teger  a r r a y  ParseStackTop [1: NumOfSyntaxes]; 
in teger  a r r a y  CurrentCoroutine [1: NumOfSyntaxes]; 
SyntaxCurrent Syntax; 
in teger  I, J ; /*loop variables*/ 
Boolean SwappingOk; 

/* procedure definitions*/ 
recurs ive  p rocedure  IF0; 
begin 

if  ParseStack (0) = IFC then 
begin 

PopParseStack; 
PushParseStack (IFC, 1); 
SuspendMeAndInitiate (1, CB1); 
IF1; 

end 
else OUT; 

end; 

recurs ive  p rocedure  IF1; 
begin 

if  ParseStack (0) -- TRUE then  
begin 

PopParseStack; 
PnshParseStack (TRUED; 
SuspendMeAndResume (1); 
IF3; 

end 
else i f  ParseStack (0) = FALSE then  

begin 
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PopParseStack; 
PushParseStack (FALSE1); 
SWPOFF; 
Scan (1); 
IF4; 

end  
else OUT; 

end; 

r eeu r s ive  p r o c e d u r e  IF3; 
beg in  

ff MemberCtrue (ParseStack (-1)) a n d  ParseStack (0) -- ENDC t h e n  
beg in  

PopParseStack; 
PopParseStack; 
KillMeAndResume (1); 

end  
else i f  ParseStack (-1) ffi TRUE1 a n d  ParseStack (0) -- ELSEC t h e n  

beg in  
PopParseStack; 
PopParseStack; 
PushParseStack (FALSE2); 
SWPOFF; 
Scan (1); 
IF4; 

end  
else OUT; 

end; 

r e c u r s i v e  p r o c e d u r e  IF4; 
beg in  

if  ParseStack (0) -- IFC t h e n  
beg in  

PopParseStack; 
PushParseStack (NOCOND); 
Scan (1); 
IF4; 

end  
else ff  ParseStack (-1) = NOCOND a nd  ParseStack (0) -- ENDC t h e n  

beg in  
PopParseStack; 
PopParseStack; 
Scan (1); 
IF4; 

end  
else i f  ParseStack (-1)  = FALSE1 a nd  ParseStack (0) = ELSEC t h e n  

beg in  
PopParseStack; 
PopParseStack; 
PushParseStack (TRUE2); 
SWPON; 
SuspendMeAndResume (1); 
IF3; 

end  
else i f  MemberCfalse (ParseStack (-1)) a nd  ParseStack (0) ffi ENDC t h e n  

beg in  
PopParseStack; 
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PopParseStack; 
SWPON; 
KillMeAndResume (1); 

end 
else 

begin  
PopParseStack; 
Scan (1); 
IF4; 

end; 
end; 

r ecurs ive  p rocedure  CB1; 
begin  

if  ParseStack (0) ffi IFC then  
begin  

Scan (1); 
CONBEX;/*get  a constant Boolean expression*/ 
CB2; 

end 
else OUT; 

end; 

r ecurs ive  p rocedure  CB2; 
begin  

ParseToken Pt; 
i f  ParseStack (0) ffi THENC and Expression (ParseStack (-1)) and  

ParseStack ( - 2 )  ffi IFC then  
begin  

Pt := ParseStack (-1); 
PopParseStack; 
PopParseStack; 
PopParseStack; 
PushParseStack (Pt, 2); 
KiUMeAndResume (2); 

end 
else OUT; 

end; 

p rocedure  OUT; 
PRINT ("invalid parse token"); 

p rocedu re  SWPOFF; 
SwappingOk := FALSE; 

p rocedure  SWPON; 
SwappingOk :ffi TRUE; 

reeurs ive  p rocedu re  Scan ( integer ScanCount); 
beg in  

ParseToken Result; 
while ScanCount > 0 do 

begin  
Result :-- GetParseToken; 
if  SwappingOk then  

begin  
f f  Result -- IFC then  

begin  
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PushParseStack (IFC, 2); 
SuspendMeAndInitiate (2, IF0); 

end 
else if Result = ELSEC or  Result -- ENDC then  

begin 
PushParseStack (Result, 2); 
SuspendMeAndResume (2); 

end 
else 

begin 
PushParseStack (Result); 
ScanCount :-- ScanCount -1; 

end; 
end 

else 
begin  

PushParseStack (Result); 
ScanCount := ScanCount -1; 

end; 
end; 

end; 

Boolean p rocedure  MemberCtrue (ParseToken Token); 
r e t u r n  (Token = TRUE1 or  Token -- TRUE2); 

Boolean p rocedure  MemberCfalse (ParseToken Token); 
r e t u r n  (Token = FALSE1 or Token = FALSE2); 

p rocedure  PushParseStack (ParseToken Token; Syntax DestSyntax (Current Syntax)); 
begin 

ParseStackTop [DestSyntax] :-- ParseStackTop [DestSyntax] + 1; 
ParseStacks [DestSyntax, ParseStackTop [DestSyntax]] := Token; 

end; 

procedure  PopParseStack (Syntax SourceSyntax (CurrentSyntax)); 
ParseStackTop [SourceSyntax] :-- ParseStackTop [SourceSyntax] - 1; 

ParseToken p rocedure  ParseStack (integer Offset; 
Syntax TokenSyntax (Current Syntax)); 

r e t u r n  (ParseStacks [TokenSyntax, ParseStackTop [TokenSyntax] + Offset]); 

recurs ive  p rocedure  SuspendMeAndInitiate (Syntax NewSyntax; 
CoroutineName Pname); 

begin 
CurrentSyntax :-- NewSyntax; 
CurrentCoroutine [NewSyntax] := CurrentCoroutine [New Syntax] + 1; 
/*run the new coroutine and suspend the currently active coroutine*/ 
sprout  (CoroutineTable [NewSyntax, CurrentCoroutine [NewSyntax]], Pname, 

suspme); 
end; 

recurs ive  p rocedure  SuspendMeAndResume (Syntax ResumedSyntax); 
begin 

CurrentSyntax := ResumedSyntax; 
/*resume the suspended coroutine and suspend the active coroutine*/ 
resume (CoroutineTable [ResumedSyntax, CurrentCoroutine [ResumedSyntax]], 

any ); 
end; 
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recursive procedure Kil lMeAndResume (Syntax ResumedSyntax);  
b e g i n  

Current  Coroutine [CurrentSyntax] := CurrentCoroutine [CurrentSyntax] - 1; 
CurrentSyntax := ResumedSyntax;  
/* terminate  the active coroutine and run the suspended coroutine*/  
r e s u m e  (CoroutineTable [ResumedSyntax,  CurrentCoroutine [ResumedSyntax]] ,  any ,  

killme); 
end;  
/*main  body star ts  here*/  

for I := 1 s t e p  1 u n t i l  NumOfSyntaxes do 
/*al locate  the  CoroutineTable ar ray*/  

b e g i n  
for J :-- 0 s t e p  i until MaxNumOfCoroutines do CoroutineTable [I, J] :-- new;  
CurrentCoroutine [I] :-- O; 

end; 
SwappingOk := TRUE;  
CurrentSyntax :-- 1; 
SuspendMeAndIni t ia te  (1, Parser); 

end; 

ACKNOWLEDGMENTS 

I a m  g ra t e fu l  to  t h e  S t a n f o r d  Ar t i f i c i a l  I n t e l l i ge nc e  L a b o r a t o r y  for  fu rn i sh ing  
t h e  n e c e s s a r y  c o m p u t e r  t ime .  I h a v e  b e n e f i t e d  g r e a t l y  f r o m  d i scuss ions  w i t h  J e r r y  
F e l d m a n ,  J i m  Low,  R o b e r t  N o o n a n ,  J o h n  Re i se r ,  D a n  S w i n e h a r t ,  R u s s  T a y l o r ,  
a n d  R a n d y  Tr igg .  I a l so  t h a n k  S u e  G r a h a m  for  h e r  e d i t i ng  he lp .  

REFERENCES 
1. American National Standard Programming Language COBOL X3.23-1974. American National 

Standards Institute, Inc., New York, 1974. 
2. American National Standard FORTRAN. American National Standards Institute, New York, 

1966. 
3. BUCHANAN, J., FENNELL, R.D., AND SAMET, H. A data base management system for the federal 

courts. Harvard Graduate School of Business Administration, Harvard University, Cambridge, 
Mass. Submitted for publication. 

4. CODASYL Database Task Group. CODASYL Database Task Group Report, April 1971 (available 
from ACM, New York). 

5. CONWAY, M.E. Design of a separable transition-diagram compiler. Commun. ACM 6, 7 (July 
1963), 396-408. 

6. DAvIs, R., AND KING, J. An overview of production systems. Stanford Computer Science Dep., 
Stanford Univ., Stanford, Calif., Artificial Intelligence Project Memo AIM-271, 1975. 

7. DEC system 10, data base management system programmer's procedures manual. Digital Equip- 
ment Corp., Maynard, Mass., Doc. DEC-10-APPMA-B-D. 

8. FELDMAN, J.A. A formal semantics for computer languages and its application in a compiler- 
compiler. Commun. ACM 9, 1 (Jan. 1966), 3-9. 

9. FmHER, D.A. Control structures for programming languages. Ph.D. dissertation, Computer 
Science Dep., Carnegie-Mellon Univ., Pittsburgh, Pa., 1970, p. 163. 

10. FLOYD, R.W. A descriptive language for symbol manipulation. J. ACM 8, 4 (Oct. 1961), 579-584. 
11. GRIES, D. Compiler Construction for Digital Computers. Wiley, New York, 1971. 
12. KNUTH, D.E. The Art of Computer Programming. Fundamental Algorithms, Vol. 1. Addison- 

Wesley, Reading, Mass., 1973, p. 195. 
13. MCDERMOTT, D.V., AND SUSSMAN, G.J. The Conniver reference manual. AI Memo 259, M.I.T. 

Project MAC, M.I.T., Cambridge, Mass. May 1972. 

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980. 



306 Hanan Samet 

14. NAUR, P. (Ed.) Revised report on the algorithmic language ALGOL 60. Commun. A C M  3, 5 
(May 1960), 299-314. 

15. IBM. PL/I  language specifications. Order No. GY33-6033, IBM Corp., New York, 1971. 
16. REISER, J.F. (Ed.) SAIL. Stanford Artificial Intelligence Project Memo AIM-289, Computer 

Science Dep., Stanford Univ., Stanford, Calif., 1976. 

Received April 1979; revised November 1979 and February 1980; accepted February 1980 

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980. 


