28

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 1, JANUARY 1980

Efficient On-Line Proofs of Equ‘alities and

Inequalities of Formulas

HANAN SAMET

Abstract—An algorithm is presented for proving equivalence and
inequivalence of instances of formulas involving constant terms, It is
based on the construction of an equality data base in the form of a
grammar. The algorithm differes from other approaches to the
problem by being an on-line algorithm. Equality between two
formulas can be proved in time proportional to the number of
constant and function symbols appearing within them. An algorithm
is also given for updating the equality data base. It has a worse case
running time which is proportional to the square of the number of
different formulas previously encountered.

Index Terms—Equality, code optimization, hashing, on-line
algorithms, program verification, symbolic execution, theorem
proving. :

I. INTRODUCTION

There exist practical and efficient methods for proving
equality and inequality between instances of formulas in-
volving constant terms. Such methods are crucial in the
implementation of code optimizers [4], program verifiers [8],
[11], theorem provers [3], and symbolic execution systems
[7]. All of these applications require a capability of maintain-
ing a data base to enable the performance of operations such
as: determining whether or not two items are known to be
equal or unequal, updating the data base to include a new
equality or inequality, and ascertaining whether or not a
pair of equalities is consistent with the current set of
equalities and inequalities.

For example, we would like to be able to prove relation-
ships such as

Example 1: Given: fla)=c
fb)=d
a=b»b
Derive: c=d

Example 2: Given: g(a, b) # g(c, d)
a=c
Derive: b+d

The order in which the equalities are encountered is
important in the sense that the algorithms must lend
themselves to a dynamically changing environment (ie.,

Manuscript received January 23, 1978. This work was sponsored in part
by a General Research Board Faculty Award of the University of Mary-
land. Preliminary results were presented in part at the Principles of Pro-
gramming Languages Conference in Tucson, Arizona, January 23-25,
1978. :

The author is with the Department of Computer Science, University of -

Maryland, College Park, MD 20742.

0018-9340/80/0100-0028$00.75

on-line algorithms [2]'). This is especially true in symbolic
execution systems where alternate program paths are
explored, ie., in one path a relationship is assumed to be
true, while in another path it is assumed to be false. In
Example 1 we see that if a = b were encountered prior to
f(a) = c,and f(b) = d, then the equality of ¢ and d would be
quite easy to prove. Our goal is to be able to prove such
relationships regardless of the order in which the data base is
constructed.

In order to aid our exposition, we define some terms using
the following grammar:

{formula) = {atomic formula) |
{compound formula)
atomic formula) = {constant symbol>
{compound formula} = {function symbol»
(Cargument list})
<argument list) = {formula) | {argument list},
{formula)

where {constant symbol) and {function symbol} are drawn
from some suitably defined. alphabet. For the purposes of
our examples we will let

{constant symbol) = a|b|c|d
<function symbol) = f |g|h

Formulas are used to build equalities and inequalities, i.e.,

equality) = {formula) = {formula)
<inequality) = {formula} # <{formula)

I1. SoLuTION

The problem we address, also termed the uniform word
problem, is known to be decidable [1]. Thus our goal is to
demonstrate a solution amenable to an on-line situation.
One potential solution is to use equivalence classes such that
whenever an equality is added to the data base, a set union is
performed on the corresponding classes so that the resulting
class reflects all possible members based on this equality.
Such an approach is unacceptable because all possible
equalities can not be generated [e.g., f(a) = a requires the
equivalence class to contain a, f(a), £ (f(a)), - °].

The previous solution can be termed a generative
approach to the problem. An alternative solution is one
employing reduction methods. An equality grammar, G/,

! Each equality, inequality, or deduction request is fully processed
before attempting the next one.

© 1980 IEEE

SAMET: ON-LINE PROOFS OF EQUALITIES AND INEQUALITIES

{8,> = (atom,)
<8,) = Catom,)

<$‘,> = {atom,>
<8,.> = ((fame,,>{S,, ><S,,> - <8,
<8,> = ({fname,>(5,,><5,,> -+ <S,)

(8, = (<fname, 35, 5¢5.,> -+ (5.,3)

Fig. 1. Sample set of productions for G.

can be constructed where for each equality there is a pair of
symmetric productions. For example, for formulal =
formula2, we have productions:

formulal = formula2
formula2 = formulal

If L(G’) is taken to mean the language generated
(recognized) by the grammar G’, then the equality problem
can be recast as given a pair of sentences of L(G'), determine
if one sentence may be generated from the other. However,
this decision problem is undecidable because G’ is a type 0
grammar,

Our solution is based on the use of an equality grammar G
with the following properties. Each formula is represented
by a production whose left-hand side is a nonterminal
symbol representing the formula and whose right-hand side
is either a constant symbol, or a list containing a function
symbol (ie, <{fname;>) and a sequence of nonterminal
symbols corresponding to its arguments. The terminal
symbols are the constant symbols (i.e, {atom,>) and the
function symbols (i.e., {fname;)). Fig. 1 is an example of a G
where §; and §;; correspond to nonterminal symbols. Note
that we use prefix notation (with parentheses to denote
grouping) and thus the order in which the arguments appear
is important.

As a more concrete example, consider Fig. 2 where the
productions corresponding tof (a), c, f (b), and d of Example
1 are given.

The basic problem to which we address ourselves is that of
finding an efficient method for creating and updating a data
base for equalities so that a simple decision algorithm can be
used to determine if formulal = formula2 given that
formulal and formula2 are in L(G). We make use of an
analogy between nonterminal symbols and equivalence
classes to keep track of all sentences of L(G) known to be
equivalent. In essence, we create a sequence of grammars G ,,
G,, G3, -*- such that the set of formulas seen up to point i is
exactly L(G;). The nonterminal symbols of G, represent the
known equivalence classes up to point i. Moreover, for those
productions of G; that represent compound formulas [e.g,,
g(ab)], the argument lists are written in terms of the
nonterminal symbols of G; which represent them. This has a
couple of important ramifications. First, when aand b are in
the same equivalence class, then so are f(a) and f(b). For
example, with G as

A0=q
A0=b
Al = f(A0),

29

A0=aq

Al = (f A0)
A2=¢
A3=b
Ad=(f A3)
AS=>d .

Fig. 2. Productions for the formulas in Example 1.

a and b being equivalent is shown by having both repre-
sented by A0. Furthermore, Al represents both f(a) and
f(b). Second, our grammar method is recursive thereby
enabling the representation of equalities such as f(a) = q,
ie., a pair of productions of the form:

A0=aq
A0 =f(A0).

Recall that this was a deficiency of the generative approach -
discussed earlier.

For example, if f(a) = ¢, then recalling Fig. 2 we see that
when this equality is processed, the current grammar G;is
modified to become G, ,. In particular, productions of the
form:

A0=a
Al = f(A40)
A2=¢

are created for formulas g, f(a), and c, respectively. The
equivalence of f (@) and c is noted by makingf(40)and c the
right-hand sides of the same nonterminal symbol, say 4,
and replacing all occurrences of A1 and 42 by 4. Note that
instead of creating a new nonterminal symbol we reuse one
of the two nonterminal symbols which are equivalent, e.g.,
Al in this example. As another example, consider the
equality f(a) = a. In this case, the existing grammar, G, ,, is
modified by making a and f(A40) the right-hand sides of the
same nonterminal symbol, say 40, and replacing all occur-
rences of A1 by AO0.

More formally, the process of adding an equality to our
data base consists of the following steps.

Step 1: For each half of the equality, determine the
appropriate nonterminal symbol. This will result in the
creation of productions for formulas that do not appear as
right-hand sides of any production.

Step 2: Replace all occurrences of one of the nonterminal
symbols corresponding to the two halves of the equality by
the other. This is done for both right- and left-hand sides of
all productions.

Step 3: Reapply Step 2 for all equalities that are a direct
consequence of Step 2.

As a clarification of Step 3 consider the grammar of Fig. 2,
say G;. The formulas f (a) and f (b) appear as right-hand sides
of nonterminal symbols A1 and 44, respectively. The addi-
tion of the equality a = b causes the existing grammar G, to
be modified and results in G, ;. In particular, Step 2 implies
that f(a) and f(b) are both represented by the same right-
hand side, i.e.,, f(A40). Step 3 causes the reapplication of Step
2 for nonterminal symbols A1 and A44. This process is

30

continued until there do not remain any different produc-
tions with identical right-hand sides. Our algorithm will be
seen to attempt to perform this step as efficiently as possible
by a judicious selection of data structures.

Step 1 is analogous to parsing a sentence of L(G). The
main problem associated with parsing is that there may bea

‘reduction to be made (in the form of a handle [6]); yet there

is no nonterminal symbol to which this handle is to be
reduced. In our case the problem is alleviated by the fact that
G is always simple precedence [9)?, and thus we always know
when a reduction is desired. Therefore, if no reduction is
possible, then a new production is added with the handle as
its right hand side and a new non-terminal symbol as the left
hand side. Thus, to determine if two formulas are known to
be equivalent, we simply parse them and see if they parse to
the same nonterminal symbol. 7
Our algorithm, called update, for adding an equality to
the data base is given in Fig. 3 using a combination of Lisp
and Algol. Vertical bars are used to clarify the block
structure. The data base is a table, ACL, containing one
entry for each different production. Each entry is uniquely
numbered and has two fields, STRING and N, having the
interpretation VN = STRING. At this point it is useful to refer
to the set of right-hand sides of the productions having the
same nonterminal symbol as their left-hand side, say S, as
the equivalence class of S. This notation will be used in the
remainder of the discussion. In the case of a compound
formula, STRING is a list consisting of the function symbol
followed by pointers to the equivalence classes containing
its arguments. We let the indices into the ACL table serve as
the names of the equvalence classes. In order for all members
of the same equivalence class to be uniquely identified and
referenced, for each equivalence class (i, nonterminal
symbol) we designate one ACL entry to identify all members
of that class (hereinafter termed the head of the equivalence
class). This is facilitated by the vN field which contains the
index of the ACL entry corresponding to the equivalence
class to which the contents of the STRING field belongs. The
table is accessed by hashing on the value of the STRING field.
The speed of update is greatly enhanced by the mainten-
ance of two arrays of linked lists NoDes[1:s] and
FATHERS[1:5], and a list MERGES. In particular, they enable
the avoidance of lengthy searches in Steps 1, 2, and 3.
NODEs[{] links all members of equivalence class i where i is
the index of the ACL entry corresponding to the head of the
equivalence class. FATHERS[i] links all equivalence class
members whose STRING field contains a reference to i (i has
the same meaning as in NODES][i]). MERGES is a list of pairs of
equivalence classes which are to be made equal (ie,
merged). With respect to notation, ({A4,B),{C,D>)> denotes
a list of pairs containing the pairs {4,B) and <{C,D>.
Steps 1 and 2 of update implement set union on equi-
valence classes, while Step 3 assures that set union will be

% The list-like representation in Fig. 1 enables a simple proof of the
simple precedence property, i.c, by Step 3 no two different productions
have the same right-hand sides and there are no conflicts among the
simple precedence relations.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 1, JANUARY 1980

procedure update(1h,rh);
/*¥1h = rh is the equivalence to be added to the data base*/
begin

MERGES ‘= {parse(1h),parse(rh));
/*MERGES is a list of lists which is initialized to the two
equivalence classes which are to be merged*/

while MERGES # NULL do
/*each iteration processes a pair of equivalence classes in
MERGES and propagates the equivalence if the elements of
the pair are not already in the same equivalence class*/
begin

m = ACL[MERGES[1,1]].VN; /*insure that heads of equivalence®/
n = ACL[MERGES[1,2]].VN; /*classes are being merged*/

if m # N then
begin

1. for each j in NoDEs[n] do ACL[j].vN :=m;
/*update the head of the equivalence class. This step
is also performed for deleted nodes since there may
exist elements in MERGES which refer to deleted nodes*/

2. append NODEs[n] to NoDEs{m] and set NODEs[n] to NULL;

3. while FaTHERS[r] # NULL do
/*propagate the equivalence of m and n through all
formulas in which » is a component*/
begin

Jj +=FATHERS[n,1];

/*get the first element in the list FATHERS[n]*/

if not deleted(ACL[}]) then .
begin

delete ACL[;] from the hash table;

substitute m for n in ACL[j].sTRING;

found = hash(ACL[j).sTRING);

/*hash returns the index into ACL of an undeleted
production having the same right hand side; if
no such entry exists, then NULL is returned*/

if found = NULL then
begin
enterhashtable(ACL[/]);
add ACL{/] to FATHERs[m];
end

else if ACL[j}.vN = ACL[found].vN then
mark ACL{;] as deleted

else add (ACL[found).vN,ACL{j].vN) to MERGES;
/*there is no need to add ACL[j] to FATHERS[m]
since at least one formula of the form
ACL[j}STRING must already be on that list
by virtue of found being non-NULL*/

end;

/*delete FATHERS{#,1] from FATHERS[n]*/
FATHERS[n] = tail(FATHERS[n]);

end;

end;

MERGES ‘= tail(MERGES); /*delete MERGES[1] from MERGES*/
end;

end;
Fig. 3. Algorithm to add an equality pair.

performed for all equivalences that are direct consequents of
Steps 1 and 2. In other words, formulas having the same
function symbols and equivalent argument lists are equiva-
lent and thus the heads of their equivalence classes should be
merged. Note that Step 3 is only applied to entries in
FATHERS[n] since only these entries can possibly generate
new - equivalences. The key to the algorithm is that the
occurrence of a success collision upon rehashing in Step 3

SAMET: ON-LINE PROOFS OF EQUALITIES AND INEQUALITIES

{i.e,, the entry was already in the table), indicates that a pair
of equivalence classes has been found that should be merged.
If the two entries are not already in the same equivalence
class®, then the heads of their respective equivalence classes
are added to the end of MERGES. Once Step 3 is completed,
Steps 1-3 are reapplied to any pair of elements of MERGES.

The equality updating algorithm terminates since parsing
1s a process that is limited by the length of the input string
and by the number of productions. Steps 1 and 2 correspond
to a merge of two equivalence classes, and the time they take
is bounded by the number of productions. Step 3 makes use
of FATHERS[n] to determine whether or not a subsequent
merge of two equivalence classes is to occur when the
current merge causes two equivalence classes to have an
element in common. In the affirmative case, each such pair of
equivalence classes is added to MERGEs. In order to perform
the subsequent merge operations, Steps 1-3 are reapplied.
However, when these steps are reapplied, there remains one
less equivalence class and thus by the well-ordering principle
termination is guaranteed. When MERGES is exhausted, the
updating process is finished. Note that if an equivalence
class is found to contain a duplicate occurrence of an
element after a merge, then, by Step 3, the duplicate occur-
rence is not reinserted in the hash table.* This insures that
the equality grammar will always have the property that no
two productions have the same right-hand side. However,
since ACL consists of pointers to other ACL entries in the
form of indices, deleted entries cannot be removed from the
table. Instead, such ACL entries are marked as deleted.

The process of determining the equivalence of two for-
mulas is quite simple from a computational standpoint.
Specifically, in parsing a formula there are exactly as many
reductions to be made as there are constant and function
symbols in the formula. Thus when hashing is used, the
running time of the equivalence determination procedure is
directly proportional to the size of the formulas whose
equivalence is being ascertained (i.c., the number of constant
and function symbols in the formulas).

The running time of the equality updating algorithm
depends only on the efficiency of the hash table search
mechanism. It has a worse case behavior of d**2 where d is
the size of the data base (i.c., the number of formulas). This
bound is attained when an equivalence class, which is
currently being merged, appears as an element in every other
entry in the data base, i.e., | FATHERS[{] | = d for equivalence
class i. Recall that each merge results in adecrease of at least
one in the size of the equality data base. Thus after at most d
steps, the algorithm terminates.

III. ExaMPLE

As an example of the equality updating algorithm,
~ consider:

3 The equality f(a) = £ (b) followed by the equality a = b is an example
where two entries are already in the same equivalence class, i.e., when Step
3 is applied after adding a = b, f(a) and f (b) are found to already be in the
same equivalence class.

* However, the duplicate occurrence is not deleted from ACL since it
may still be referred to by an element of MERGES that has yet to be
processed.

31
Given: h(b) = f(a)
h(c)=f(b)
a=b
c=d
Derive: h(a) = h(d).

* In the following derivation, each numbered line repre-
sents the result of either parsing a sentence or updating the
data base to include a new quality, In the former case, only
the modifications to the data base, ACL, are shown; while in
the latter case, the entire updated data base is shown. Also, in
the former case, the name of the equivalence class containing
the sentence being parsed is returned. Note that deleted
ACL entries have a value of NIL in their VN field.

ACL
Formula INDEX STRING VN Result
1. h(b) yields A0: b A0 returns Al
Al: h(A0) Al
2. f(a) yields A2: a A2 returns A3
A3: f(A42) A3
3. h(b)=f(a) yields A0: b A0
Al: h(A0) A1l
A2: a A2
A3: f(42) Al
4. h(c) yields A4: ¢ A4 returns AS
AS: h(A4) A5
5. f{b) yields A6: . f(A40) A6 returns A6
6. h(c)==f(b) yields A0: b AO
Al: h(A40) Al
A2: a A2
A3: f(A42) Al
A4: c A4
AS: h(A4) A5
A6: f(A0) A5
7 a yields no change returns A2
8. b yields no change returns A0
9.a=b yields A0: b A0
Al: h(A40) Al
A2: a A0
A3: 1(40) Al
A4: c A4
AS: h(A4) A5
A6: f(A0) AS
followed by A0: b A0
a merge of Al: h(A40) Al
Al and AS A2: a A0
: A3: 1(40) Al
A4: c A4
AS: h(A4) Al
A6: 1(40) NIL
10. ¢ yields no change returns A4
11. 4 yields AT: d A7 returns A7
12. c=d yields A0: b A0
Al: h(A40) Al
A2: a A0
A3: 1(40) Al
A4: c A4
A5: h(A4) Al
A6: £(A40) NIL
A7: d A4

At this point we wish to determine if h(a) = h(d).
h(a) gets parsed successively as

1. h(40)
2. 41

and h(d) gets parsed successively as

1. h(A4)
2. Al

Therefore, h(a) = h(d).

>
|
|

/*update NEQL and check for a contradiction®*/
for j =1 step 1 until maxneq do
begin
if NEQL[/].RIGHT = n then NEQL[j].RIGHT =1
else if NEQL[/].LEFT = n then NEQL[j).LEFT = m;
if NEQL[/].LEFT = NEQL[j}.RIGHT then “contradiction”;
end;

Fig. 4. Additional step for testing inequalities.

v IV. INEQUIVALENCE

Inequalities can also be handled. This is accomplished by
maintaining a list of pairs of equivalence classes which are
known to be unequal. The algorithm for proving equalities
needs only a slight modification to be able to cope with
inequalities such as b # d in Example 2. In such a case, the
inequality does not appear explicitly in the data base.
Instead, it is derived by contradiction. Assume that b = d,
and add this relationship to the data base. If b # d is true,
then a contradiction will occur. This contradiction is
detected at the occurrence of a merge of two equivalence
classes which are known to be unequal.

We keep track of equivalence classes which are known to
be unequal by use of a table known as NEQL. Each entry in
this table is accessed by two fields named LEFT and RIGHT
which correspond to indices into ACL for the two inequiva-
lent equivalence classes. Therefore, whenever a merge of two
equivalence classes occurs, this table must also be updated.
NEQL is updated just before Step 1 of update in Fig.3 (i.e, the
first task after testing m + n). Fig. 4 shows the updating step.
maxneq indicates the number of entries in NEQL.

As an example of the utility of an inequivalence capability,
consider Fig. 5—a program fragment in which Example 2
has been embedded. Use of a symbolic execution system in
the context of program verification (e.g., [7]) results in an
attempt to exercise some or all possible program paths. In
case of Fig. 5, one such path may include g(a, b) + g(c, d),
a=c¢, and b=d being true. However, such a path is
impossible by virtue of the inconsistency of g(a, b) # g(c,d)
witha = cand b = d.° Thus the capability to handle inequi-
valences enables a symbolic execution system to avoid
exercising impossible program paths.

Note that the inequivalence algorithm is an in-place
algorithm, i.e., it overwrites the data base. Should a contra-
diction be detected, it is desirable to undo the updating that
has occurred. This is not a problem if the algorithm operates
in a recursive environment where dynamic storage alloca-
tion and garbage collection are available (e.g., Lisp).

V. CoNCLUSION

An algorithm has been presented for the efficient deriva-
tion of proofs for equality and inequality of instances of
formulas involving constant terms. The algorithm differed
from other approaches such as [5] by proceeding in an
on-line manner. This means that the overall time bounds for
the algorithm as presented here may be inferior; however,
the representation lends itself more readily to an on-line

5 1t is assumed that no computations involving side-effects on ab,c
and d have taken place between the computation of g(a, b) # g(c, d) and
the test b = d.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 1, JANUARY 1980

if ga, b) £ glc, d) then
begin

if a = ¢ then
begin

|:f b = d then f(a) /*this case is impossible*/
else g(d); ‘ '

end A
end

Fig. 5. Example of the utility of an inequivalence capabilit)".

environment, i.e., whenever a new equality is added, new
inferences can be made without having to rebuild the entire
equality data base. For other related work, see [10].

Commutativity can also be handled. In such a case, each
time a formula corresponding to a commutative binary
operation is encountered, then when parsing the formula for
the first time, an additinal entry is made into the equality
data base with the arguments interchanged. Associativity is
a more complicated problem.

ACKNOWLEDGMENT

Special thanks go to P. J. Downey, D. F. Martin, and R.
Sethi for helpful discussions.

REFERENCES

[1] W. Ackermann, Solvable Cases of the Decision Problem. Amsterdam:
North-Holland, 1954.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Reading, MA: Addison-Wesley, 1974, p. 109.

[3] C. Chang and R. C. Lee, Symbolic Logic and Mechanical Theorem
Proving. New York: Academic Press, 1973.

[4] J. Cocke and J. T. Schwartz, Programming Languages and their Com-
pilers. New York: NYU Courant Institute, Apr. 1970.

[5] P. J. Downey and R. Sethi, “Variations on the common subexpres-
sion problem,” Tech. Rep., Bell Lab., Murray Hill, NJ, 1977.

[6] D. Gries, Compiler Construction Jfor Digital Computers. New York:
Wiley, 1971.

[7] J. C. King, “Symbolic execution and program testing,” Communica-
tions Assoc. Comput. Mach., pp. 385-394, July 1976.

[8] R. L. London, “The current state of proving programs correct,” in
Proc. ACM 25th Annu. Conf.,, 1972, pp. 39-46.

[9] D. F. Martin, “Boolean matrix methods for the detection of simple
precedence grammars,” Commun. Assoc. Comput. Mach., pp. 685-687,
Oct. 1968.

(10} D. C. Oppen, “Reasoning about recursively defined data structures,”
in Proc. Fifth Annu. ACM Symp. Principles of Programming Langu-
ages, 1978, pp. 151-157.

[11] H. Samet, “Proving the correctness of heuristically optimized code,”
Commun. Assoc. Comput. Mach., pp. 570-582, July 1978.

Hanan Samet (S'70-M'75) received the BS.
degree in engineering from the University of Cali-
fornia, Los Angeles, the M.S. degree in operations
research and the M.S. and Ph.D. degrees in com-
puter science from Stanford University, Stanford,
CA.

Since 1975 he has been an Assistant Professor
of Computer Science at the University of Mary-
land, College Park. His research interests are
data structures, programming languages, code
optimization, data base management systems,
and artificial intelligence.

Dr. Samet is a member of the Association for Computing Machinery,

SIGPLAN, Phi Beta Kappa, and Tau Beta Pi.

