1. INTRODUCTION

Wf;h the growing interest in the field of artificial intelligence has
come an increase in computing involving symbolic expressions, This interest
has been coupled with the development of a variety of programming languages
TONARDS CODE OPTIMIZATION IN LISP ) {BobrowRaphael74], Many of these languages are interpreter-driven and are
B characterized by a small set of basic primitives, The use of an interpreter
has been tolerated by most users by virtue of the smallness of their
application. However, the increasing wuse of these languages in knowledge—
by . based systems (e.g. MYCIN [Shortliffe74]) has led to the resurfacing of the

Hanan Samet : efficiency problem. The most obvious solution to this problem is to use a
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not traditionally lent itself to very efficient code.

In this paper we examine some of the consideration that must be taken
into account when attempting to obtain a code optimizer for a list processing
language. Our presentation consists of three parts, First, we discuss some
of the low level optimization techniques which are seen to have a direct
effect on the amount of space occupied by the program and on the execution
time of the program. Next, we explore the types of optimizations whose effect
is not directly discernible. These optimizations deal with reducing. the
frequency of garbage collection. Finally, we discuss the feasibility and
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problems associated with some of the proposed optimizations.
Code optimization is examined from the viewpoint of the needs of a

list processing language such as LISP. Examination of the structure of In order to illustrate our ideas we use LISP1.6 [Quam72] (a variant of

rograms written in such a language reveals that traditional code optimization LISP [McCarthy60]) as the high level list processing language and T.AP [Quam72]
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techniques have 1little benefit Instead, a collection of low level (a variant of the PDP-10 [DEC69] assembly language) as the object language.
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extensions are proposed which reduce the amount of storage that needs to be address field. The implementation at hand assumes that NIL is represented by

11 ted d h will result in a decrease in the frequency of garbage zero and that a LISP cell occupies one full word where the left half contains
allocated an ence

11 . CAR and the right half contains CDR. The stack is used for passing control
collection.

REsuME

On e€xamine l'optimisation du code pour un langage.de traitement de listes COT-
me LISP. L'examen de la structure des programmes &crits dans un tel'langage l}lonr
tre que les techniques classiques sont de peu @e secours. Au contraire, i}uSti;if
optimisations de bas-niveau conduisent & un gain en tempf et en e?pace. op -
sation est wissi étudiée pour ses conséquences sur }a f¥eqvence d §pp?1 @u ram
se-miettes. Finalement, on propose des extensiong llngulstlgues qui feduliegt
1'espace mémoire devant €tre alloué et donc réduisent la fréquence d'appel du

ramasse-miettes.

between functions. A function of n variables expects to find its parameters
in accumulators l-n. Accumulator 1 1is used to return the result of the

function. Accumulator 12 contains a stack pointer,




2. LOW LEVEL OPTIMIZATION TECHNIQUES

Traditional code optimization work [CockeSchwartz70] is primarily
oriented towards making use of flow analysis to yield common subexpression
elimination and reduction in strength of operators. In most list processing
systems such considerations are not as important. Examination of the
structure of typical programs reveals that they consist of a large number of
small, often recursive, modules. Analysis of the actual programs shows that
most of the execution time 1is spent in setting up the linkages between
functions as well as for recursion, Thus it seems that a substantial payoff
can result from optimizing the linkages and making the recursive step as fast
as possible., The latter means that the execution path which corresponds to an
occurrence of a recursive call is optimized at the possible expense of other

execution paths,

Significant reductions in execution time can be obtained by making use
of an adaptive calling sequence. Recall that we mentioned that we are dealing
with a LISP system where all the arguments to a function are found in the
accumulators, Clearly, this convention must be adhered to when there is
communication between two different functions. However, in the case of
recursion, this is unnecessary. Observation of a large number of programs
reveals that whle preparing for a function call, a stack is used often for
saving values of arguments that have already been computed. Once all of the
arguments have been computed, the accumulators are loaded with the
appropriate values and the function call occurs. However, in most instances,
the first task performed by the function is to save its arguments on the

stack. The amount of extraneous data shuffling should be obvious.

A calling sequence which uses the stack exclusively has its own share
‘of problems, There is a need for more memory to hold the stack and extra
memory operations are necessary when items are accessed from the stack. Data
shuffling remains a problem when functions call other functions with many of
the same variables in the same argument positions, The difficulty is that
room must be made for the return address. A solution is to have a separ%te
parameter stack and control stack, However, this has the disadvantage that

much space must he wused as well as there is a constant need to have the

parameters on the stack, whereas in a calling sequence which makes use of
accumulators, only the parameters needed for future reference are saved on the
stack. The reason a calling sequence which makes use of accumulators appears
so poor is that only rarely is there compliance with the previous criterion.
Most compilers fail to make the distinction between what should and should not

be saved on the stack.
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Fig., 1 - Comparison of Accumulator and Mixed Calling Sequences

We propose that for an internal recursive call, a mixed calling
sequence might be appropriate. In this case some of the parameters are found
on the stack and others are found in the accumulators. In such a case if
there is more computing to be done within the function after the recursive
call, then it is necessary to place the return address on the stack prior to
the placement of the arguments on the stack, For example, consider the
function START of four arguments in fig. 1. On the left is given the normal

LAP encoding while on the right is given an encoding which makes use of a



mixed calling sequence. Note that the order of computing arguments was
rearranged. Such rearranging must be capable of being proved to yield
equivalent results with the original encoding. Also observe a shift in the
location of the parameters to the function at function entry. 1In the case of
entry from outside of the function, accumulators 1-4 will contain the
parameters; whereas, if the entry was from within the function, then only
accumulator 1 contains a parameter, This, again, requires a proof that
accumulators 2-4 are never referenced past the label NEWSTRT with the

assumption that they contain the parameters to the function.

Another variation of calling sequence rearrangement can be seen in
fig. 2 (note the use of MLISP [Smith70] - an ALGOL~like [Naur60] version of
LISP) where a function, REVERSE, to reverse the links of a list is encoded
with the aid of an auxiliary function. However, instead of the customary
formulation of the auxiliary function, we have interchanged the first and
second arguments. Thus the gccumulating variable is the first argument rather
than the second. The LAP encoding, obtained by a hand coding process,
demonstrates an internal calling sequence where L is in accumulator 3 and RL
is in accumulator 1. This is useful because XCONS, like CONS with the
arguments reversed - i,e. XCONS(B,A)=CONS(A,B), is known to leave all
accumulators but 1 and 2 unchanged. Thus there is no need to save L or CDR(L)
while computing CONS(CAR(L),RL). Note that to all external functions,
REVERSEIA still appears to require two arguments in accumulators 1 and 2.

REVERSE(L) = REVERSE1A(NIL,L)
REVERSEIA(RL,L) = if NULL(L) then RL
else REVERSE1A(CONS(CAR(L),RL),CDR(L))
Fig. 2 - MLISP Definition of REVERSE

_ (LAP REV%ESElA SUBR)

KIPN 3 2) load accumulator 3 with L and
skip if not NIL
(POPJ 12) return NIL
REV éHLRZ 203 load accumulator 2 with CAR(L)
CALL 2 (E XCONS)) compute CONS(CAR(L),RL)
(HRRZ 3 0 3) load accumulator 3 with CDR(L)
(JUMPN 3 REV) if CDR(L) is not NIL then compute
REVERSE1A(CONS (CAR(L) ,RL) ,CDR(L))
TAGL (POPJ 12) return

Fig. 3 ~ LAP Encoding Corresponding to Fig. 2

The LAP encoding in fig. 3 serves to illustrate the notions expressed
earlier with respect to optimizing the execution path corresponding to
recursion.

(1) Use is made of known values of predicates in order to enable bypassing °
the start of the program when recursion occurs. .

ions are used which accomplish two tasks at_once. (SKIPN 3 2)
() iggaiggtin a test of the nullness pof L as well as a load of accumulator
3, (JUMPN 3 REV) results in the test of the nullness of L as well as
recursion. Note that in this case the execution path corresponding to
recursion is optimized in the sense that (JUMPN 3 REV) is used instead of

the sequence (EUMPE 3 TAGl) followed by an unconditional branch to REV.

3 g;ggmeigiéXSislis tﬁ:enpgggrgéayain higgfrtiggwi:ége 12h;2e X éﬁgem%g;vgg
accumulators 1 and 2 unchanged enables a shift of a arameter to
accumulator 3 thereby avoiding Ehesggta shuffling which woul have been
inevitable had accumulator 2 been u .

In fig, | the return address is pushed. on the stack prior to the
computation of the parameters to the function call, The same technique can be
used in the following situation. Suppose that a function tests a number of
conditions, and that based on these conditions, other functions are executed
(similar to a CASE statement in ALGOL). Upon termination, all of these
functions must return to a common point and execute a segment of code. For
example, see fig. 4 where a function epilogue is illustrated., This can be
implemented by executing a branch to the desired location of the common code
sequence after each of the function calls. However, a more efficient approach
is to push the address of the common code sequence on the stack prior to
testing the first condition, and then to invoke the functions in the various
cases via simple branch (non stack) instructions. When the invoked functions
terminate, they will return via the stack. Thus the size of the program has
been reduced by a number of instructions equal to one less than the number of
conditions, with virtually no increase in execution time. Actually, the
difference in execution times is the difference between executing a PUSH plus

an unconditional jump and a recursive jump (PUSHJ) plus an unconditional jump.
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Fig. 4 = Function Epilogue

3. GARBAGE COLLECTION-RELATED OPTIMIZATIONS

Unlike most conventional programming languages, LISP does not have an
explicit storage allocation command. Storage is allocated whenever a CONS
operation is performed, in which case a cell is allocated from a heap (i.e.
the free storage list). More importantly, there is no mechanism for releasing
storage, Thus once the free storage 1list is exhausted, we have two
alternatives. One choice . is to quit and emit a message to the effect that
storage is exhausted. The second choice entails determining which of the
cells that have been previously allocated are no longer accessible. This
procedure is known as garbage collection. Such a process 1is rather time
consuming. This is especially true if most of the cells are in use. In such
a case, very little storage is reclaimed and the garbage collection procedure
will have to be reinvoked shortly. Such a situation tends to negate any
effect of optimizations with respect to execution time (savings in the space

occupied by the program are still valid).

The need to do garbage collection is one of the primary deficiencies
of LISP and other similar list processing languages. This is because when
garbage collection takes place, execution of the program is suspended until a
sufficient amount of storage is reclaimed. The suspension of execution is
extremely undesirable in real-time applications, The only alternative is to

possibly . have a second processor whose sole task is to perform garbage
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Until now we have seen how the frequency of garbage collection can be
effected by code optimization. An alternative method of reducing this
frequency is to change the mechanism which is used to obtain storage. A CONS
operation is often performed unnecessarily - i.e. a cell céntaining the
appropriate elements of the pair has already been allocated. For example,
suppose CONS(A,B) has been performed. Subsequently, it is determined that A
is EQ to C. Now, if it is desired to perform CONS(C,B), then there is in fact
no need to do so since such a cell already exists. This can be recognized by
using a hashing [Knuth73) scheme for CONS where the hashing function has as
its arguments the addresses corteéponding to the arguments of the CONS. Of
course, such an implementation means that prior to the allocation of a cell
from the free storage 1list, we must determine if a cell has -already been
allocated with the same components. Also note that when CONS is hashed, the
determination of whether a CONS cell with the same components has already been
used is done at run—time and is unrelated to common subexpression elimination

- a process performed at compile-time.

There are several factors which must be taken into account when

evaluating the hashed CONS method of storage allocation.

(1) 1If side-~effect operations such as RPLACA and RPLACD are allowed, then
there is a potential for disastrous results due to node-sharing.

(2) There is a constant need to check if a cell has already been allocated
with the said components. This may prove to be time consuming. However,
as mentioned earlier, in a real-time application we are more concerned
with predictability of length (i.e, in time) of operations,
Nevertheless, the fact that the amount of time spent to check if a cell
has already been allocated greatly exceeds the -average time per cell
spent in a garbage collection process must be taken into consideration.

(3) There is a need for hash tables and pointers to keep track of the various
cells in use. Therefore, unless there is a high gactor of duplication
(i.e. there are many instances of CONS cells with the same components) we
may find that our available storage has been cut down significantly.
However, these tables need not be part of the free storage list. This
has a significant meaning in an environment with a limited address space,
For example, on certain versions of a minicomputer such as the PDP-11
[DEC73] which support segments, the tables may be kept in a separate
segment. In such a case %here is a premium on non-redundant use of the
free storage area and the use of a hashed CONS aids in maximizing the
available space.

Often a CONS operation - is performed in order to circumvent the

inability to return more than one result from a LISP function. In such a case

a list is formed whose elements are the results of the function rather than by
use of a special construct as is available in the POP2 [Burstall71] language.
In a LISP system which uses an accumulator to return the value of the function
and a stack for the purpose of program control, a return of more than one .
result can be implemented as follows, Return the first result in an
accumulator, and return the remaining results in a contiguous block of storage
immediately above the top of the stack  (which contains the return address).
The only remaining task is to indicate how a multiple result is to be
specified in LISP, We feel that the most natural way is to add the special
form RLAMBDA which we define to be identical to an internal LAMBDA of as many
arguments as there are results being returned and only one binding - i.e. the

function which has more than one result,

For example, see fig., 5 where the function G calls the function H
which returns as its results three values, In this case, the variables 'B, C,
and D in function G are bound to (Hl1 A), (H2 A), and (H3 A) respectively,

(DEFPROP G (LAMBDA §?) ( )
RLAMBDA (B C D
(MB C

H 8))) P
EXPR 1)
(DEFPROP H (LAMBDA (A)
(H1l A)
$H2 A)
H3 A))
EXPR 3)

(DEFPROP SUMDIV (LAMBDA gDIVIDEND DIVISOR)
(RLAMBDA (QUOTIENT REMAINDER)
(*PLUS QUOTIENT REMAINDER))
EXPR 1) (DIVISION DIVIDEND DIVISOR)))

Fig. 5 - Examples of Functions that Return More than One Result

The only distinction with LAMBDA is that the wvalues of all but the
first argument are found on top of the stack, Thus if any other functions are
to be called, then the stack must be adjusted to save these values below the -
stack pointer which points to the top of the stack, A typical solution is to
store the value that was returned in the result accumulator (i.e. accumulator
1) in the location pointed at by the stack pointer (i.e. the stack location
which contained the previous return address), and then increase the stack

pointer by a number equal to the number of results that were returned.



We must also provide a syntactic mechanism for denoting that more than
one result is to be returned., The casiest way to achieve this is to have, in
addition to the property associated with each function denoting its type (e.g.
EXPR when the arguments have been evaluated prior to the function call and
FEXPR if not), a property that indicates the number of results returned by the
function. For example, the function H in fig. 5 1is an EXPR which returns 3
results, The actual act of returning more than one result, say n, is
accomplished by returning the last n values that have been computed which are
not subexpressions of other computations. We also make the stipulation that a

function returns the same number of results in all cases.

As an additional example, consider the function DIVISION which returns
as 1its result the QUOTIENT and the REMAINDER when integer division is
performed on its two arguments - i.e. the first argument is integer-divided by
the second argument, Fig. 5 shows the use of DIVISION in the definition of
the function SUMDIV of two arguments which returns the sum of the quotient and

the remainder when DIVIDEND is integer-divided by DIVISOR.

The above examples lead us to conclude that LISP should provide a
capability for control over the deallocation of cells. The example of how
multiple results are currently handled demounstrates a need for deallocation to
be performed by the function to which multiple results are returned. There is
also a potential need for deallocation at function exit as is done in ALGOL
60. This could be accomplished by use of specialized CONS operations which
leave messages as to the lifetime of the cell that has beé; allocated., We
feel that the determination of cells that can be deallocated in such a manner

would be best achieved by a comprehensive flow analysis package.

4, CONCLUSION

We have presented two views of optimization for a LISP system, The
main thrust of the presentation has been towards obtaining an efficient
compiler-based system., However, several of the optimizations proposed in

section 3 could also be used 1in an interpreter—based system,

A majority of the optimizations proposed in section 2 have a heuristic

flavor associated with them, !MMany are a result of a trial and error code

generation procedure., In such a case, there may be several attempts at
obtaining an optimal encoding; some of which might be incorrect. The
correctness of the translation can be demonstrated by use of a proof system
gsuch as [Samet75] which has as its input a high level language encoding of an
algorithm and a low level language encoding of the same algorithm. Such a
proof system is embedded in the translator and is intended to be the final

step in the code generation procedure.

The optimizations of section 3 are more of a language design nature,
They must be evaluated in light of their effects on programming style.
Clearly, a hashed CONS mechanism implies node-sharing and therefore its use
deprives the programmer of the ability to use RPLACA and RPLACD. However, the
1£troduction of a multiple result feature does not seem to have any drawbacks.
Another factor to consider is the size of the available directly addressible
memory. This is a factor that might lead to the adoption of a hashed CONS

mechanism,
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