INCREASING THE RELIABILITY OF CODE GENERATION
Computer Science, Carnegie~-Mellon University, Pittsburgh, 1976. ‘

by

]| - |
H ‘ [7] C.B. Weinstock, Dynamic Storage Allocation Techniques, Ph.D. thesis, Department of
|
|
i
|

‘ - .. Publishing Company, New York, 1975, ,
' ' Hanan Samet

Department of Computer Science
' University of Maryland
College Park, Maryland 20742

[9] G. Yuval, Is Your Register Really Necessary?, Sofiwara I’racticé and Expn_ricnca
(Short Communications), to appear. ‘

J 5 ~ [8] WA Wulf et al, The Design of an Optimizing Comp,iqu American Elsevier
|

Appendix : Run-time system measurements

: t ' polynomial arithmetic on tree representations, a program performing a Quicksort, a
1l program for the Choleshki decomposition and one for the Householder triangularisation,
! and a program performing the LU decomposition of an array using rational arithmetic.
i We intend to obtain more complete figures from a wider range of programs later.

Abstract

i ,
it The five programs which were investigated were a prbgram performing

method to improve the reliability of code generation is proposed.
articular attention 1is focused on delegating the code generation gnd
ts verification to different individuals and on a two stage compilation
rocess with a capability for enabling and disabling proofs of
‘correctness of translation. Application of such a method to a compiler
ritten in itself results in a proof of the correctness of the
‘bootstrapping process. The highlights of a proof are illustrated by use
of an example. «

}' ‘ Poly Quicksort Choleski Triang Rats
\ ‘ .

Number of run-time support _ . ' o
routines called 64,000 8,000 64,000 100,000 150,000

I : Code sizes in words
Il , without targeting 2378 1386 2142 2494 3392
with targeting 1979 1084 1730 2084 3087

‘w i Number of assignations . : -
total 1450 170 2600 3170 6820

f Keywords and Phrases: compilers, code generation, bootstrapping,
to variables : 870 130 1380 1450 6260 2

| program testing, program correctness

total 3190 660 3430 3660 - 13840
of variables - 1570 400 2400 2100 11940

‘! Assignations to elements of multiples
‘? ‘ pointer count=1 and creation ‘ -
1l counts match 40 40 1230 1690 310

| creation counts do not match , :
il but no need to copy 0 0 330 190 - 140
‘ % N copying required 0 0 - 80 50 0

| 60 0 530 600 . 300

N Number of muitiplés. dereferenced

. 192 | - 193

i Number of dereferences
l

i

|

' too imprecise for proving

1. BACKGROUND AND MOTIVATION

In recent years much
proving the

focused on the
of programs(8]. In [11] a

attention has been
correctness

degcribed for dealing with the problem of proving that a progran!
written in a higher level 1language, a subset of LISP[9], is]
correctly translated to LAP, which is a variant of the PDP-10[1]]
assembly language. In order to demonstrate the feasibility of thig]
methodology a practical system was constructed which performed §
beyond expectations, Part of this work involved identification o

the semantic properties of LISP as well as development of a:

formalism to describe the
a way that the
executed to
program{13].

assembly
description,
obtain a

_ language instructions in such
which was procedural,
representation of the assembly

In this paper we are interested in improving the reliability of code
genegation involving optimized code. We attack this problem with a
combination of program testing[5] and program correctness [8] methods.
Most of the previous work in the area of correctness has been along the
lines of assertions ([3],[6],[15]) about the intent of the program which
are then proved to hold. The difficulties with such methods are
numerous. Most notable are thé problems encountered in specifying the
assertions[2] and the actual proof methods. Proofs using such methods
reduqe' to showing that a set of assertions hold. However, when
examining such proofs we must allow for the possibility that the
qssertions are inadequate to specify all of the effects of the program
in question., Thus we are led to a belief that the concept of intent is
correctness of compilation. We feel that it
is justifiable in proving equivalence between algorithms. Nevertheless,
in the case of computer programs written in a higher level language we

are primarily interested in the correctness of the translation. 1In this
case, there is no need for any knowledge about the purpose of the
program to be translated, As an example of a problem in which wuse is
made of the purpose of the program, consider two methods of computing
the greatest common divisor. In such a case we have defined an input-
output pair relationship (i.e. the greatest common divisor) and we wish
to determine if the two algorithms actually yield the same results for
a;l possible inputs. The problem of proving the equivalence of two
different algorithms is known to be wunsolvable in general by use of

halting problem-like arguments. We do not deal with such problems here,
Notice Fhat we address ourselves to proving the correctness of the
translation. One method of achieving this is to prove that the
translgtor (e.g. a compiler)-is correct - i.e. to prove that there does
not exist a program which is incorrectly translated by the compiler. 1In

194

problem oﬂ
methodology ig]

could be’
language

s case we would revert to the intent characterization of correctness
forth in the previous paragraph. Instead, we use a testing approach
prove for each program input to the translation process, that the
nslated version is equivalent to the original program. Thus, we are
. saying anything about the general correctness of the translation
pcess. A proof will have to be generated for each input to the
nslation process. However, this has several important advantages, -
ecially when the translator is a compiler. First, as long as the
iler does its job for each case input to it, then its correctness is

a secondary nature - i.e, we will have bootstrapped ourselves to the
te where we can attribute an effective correctness to the compiler.
ond, the proof process is independent of the compiler. The latter

used, no difference would result.
translated. This

ns that if another compiler were
s implies that programs could be hand compiled or

g quite important and identifies the proof as belonging to the
emantics of the high and 1low level languages in which the input and
respectively are expressed rather than to the translation

Third, any proof method that would prove a compiler correct
limited with respect to the types of optimizations that it
allow. This is because such a proof would rely on the
entification of all the possible input output pairs for code
This is the type of approach taken in the proof of the
orrectness of LCOM@ and LCOM4 [7].

proof system employed is not based on an assumption of an existence
of a unique relationship between the source code and the object code.
ompilation is viewed as a many-to-many process - i.e., there is no one-
to-one relationship between source code and object code. Thus there is
o reflection of the source level syntax in the object code as is common
in decompilation{4] systems which attempt to reconstruct a program from
the object code. We make no such attempts at reconstructing the
program. Instead use is made of an intermediate representation of the
orogram[12] which reflects all of the computations and decisions that
are performed. In addition, this representation reflects an ordering
“based on the relative times at which the various computations are
executed.

2. METHOD

Our goal is to use the results of [11] to improve the reliability of
code generation. This topic falls in the domain of software engineering
[16] - a rather broad term recently adopted for a field which serves as
a bridge between theory and practice. At the present most of the

195

results have been in the domains of reliability and user interfaces.
Our approach to the reliability of compilers consists of providing a
double check for code generation. Historically, this has taken on the
flavor of a test of some known functions by checking input output pairs.
However, we would 1like to diverge from this path via the following
scenario:

Suppose that a compiler for a high level 1language, say L, is to be
constructed for a machine, say M. The traditional approach_has beer to
decide upon an implementation and then do one of the following:

1. Modify the code generators of an existing compiler for language L to
machine M’ to generate code for the target machine M or:

2. Write a new compiler for language L and machine M.

The actual verification stage has usually been left to the user
community once the compiler has been deemed relatively correct. Formal
methods, with the exception of [7], have not generally been the rule.

We propose a two person programmer team. Both members would initially
decide on the implementation for the language L on the target machine M.
Results of such decisions generally will include the type of calling
seqguences to be used, array implementation, 1location of results from
function calls, etc. Once this has been accomplished, one member of the
team proceeds to write the compiler and the code generators in a manner
outlined in items 1 and 2, while the other member of the team will
provide a description of machine M in a manner consistent with language
L and the decided implementation. This description procedure is in a
‘form comparable to that presented in [11].

Such a system should result in providing a greater degree of flexibili@y
in debugging code generators. This debugging process will proceed in
the following manner:

1. Check the compiler on standard programs.

2. Release the compiler to the user community with the proof procedure
enabled. This will result in a slower compilation time, but users will
be guaranteed that their programs have been properly compiled.

3. When the compiler has been deemed relatively error-free, the proof

feature can be disabled thereby yielding a faster compilation time.
4. 1If errors are detected in subsequent operation, go back to 2,

The advantages of this method of verification are two-fold. First, we

196

I have a means of providing an independent check on the correctness of the
I’ code generation process since the person responsible for the machine
i description phase of the project need not, in general, know how each
i construct in the language L will be encoded in the assembly language of

machine M. This will eliminate many of the unconscious prejudices which
usually enter into proofs of theorems (or correctness of programs)
composed by the person performing the proof, Second, the user also
penefits from the proof procedure employed since once an error is found
and fixed, he may continue to use the compiler (with the proof procedure
enabled) with confidence that if any more errors occur, then they will
‘not go undetected. This is vastly preferable to waiting for a proof, by

whatever means, that the modifications made to the compiler to fix one

error, did not introduce other errors. The previous class of errors is
far more common than one would imagine. An even worse fate is when the
awaited proof is another complaint taking the form of "why did my
program blow up?"

An additional benefit of our method is that it provides a means of
proving the correctness of the bootstrapping process. A common compiler
construction approach is to write a compiler, C, for high level language
I to machine language M using L. This relies on L being available on
some machine M’ via a compiler, say C’. The next step is to 1let C°
compile C to yield C°°, a compiler written in machine language M. Using
our methods we can prove the equivalence of C°° and C. Thus equivalent
code will be generated whether the compiler is executed on machine M or
on machine M°. This result finds important applications when software
is developed on one computer to be eventually used on another computer.
As a result we are enabling the debugging of a compiler on the machine
where it is first implemented without requiring the presence of the
target machine.

In summary, we have presented a two step method:

1. Two man design team.
2. Two stage compiling process.

As a result of using this method we hope to determine the following:
First, is reliability indeed improved by use of the two man teams. This
can be best assessed by examining the type of errors detected by the
proof procedure. Second, the frequency of shuttling between steps 2 and
3 of the debugging procedure should give an indication of the worthiness
of the two stage compilation process, A high frequency will indicate an
overall saving to the user since he is assured of a more reliable
compiler by virtue of not having to worry about the correctness of the
translation of his program unless it has indeed been incorrectly
translated. This is a problem that plagues all users except possibly
the implementors.

197

3. EXAMPLE-

As stated previously a proof system[ll] using the technigues proposed in
this paper already exists for programs written in a subset of LISP
1.6[10] and LAP[10]. 1In this section we give a sample LISP program, a
LAP encoding for this program, and some highlights of a proof.

Consider the function NEXT whose LISP1.6[10] and MLISP[14] definitions
are given in fig. 1. The function takes as its arguments a list L and
an element X. It searches L for an occurrence of X. If such an
occurrence is found, and if it is not the last element of the list, then
the next element in the list is returned as the result of the function.
Otherwise, NIL is returned. For example, application of the function to
the list (A B C D E) in search of D would result in E, while a search
for E or F would result in NIL.

(DEFPROP NEXT (LAMBDA (L X)
(COND ((NULL L) NIL)
((EQ (CAR L) X)
(COND ((NULL (CDR L)) NIL)
(T (CADR L))))
(T (NEXT (CDR L) X)))) EXPR)
NEXT(L,X) = if NULL(X) then NIL
else if CAR(L) EQ X then
if NULL(CDR(L)) then NIL
else CADR(L)
else NEXT(CDR(L) ,X)

Fig. 1 - LISP and MLISP encodings of NEXT

one possible LAP encoding corresponding to the LISP
program of fig. 1. ' The format of a LAP instruction is (OPCODE AC ADDR
INDEX) where INDEX and ADDR are optional. OPCODE is a PDP-10
instruction. The AC and INDEX fields contain numbers between @ and 15
and denote accumulators. ADDR denotes the address field. Our

implementation assumes that NIL is represented by zero and that a LISP
cell occupies one full word where the left half contains CAR and the
right half contains CDR. The stack is used for passing control between
functions. A function of n variables expects its parameters in
accumulators 1-n. Accumulator 1 is used to return the result of the
function.

Fig. 2 represents

198

/ LABEL
I} NEXT

‘Our proof

. predicate.

e effective address and to clear the left half.

& the stack

PROGRAM COUNTER INSTRUCTION COMMENT

_ (JUMPE 1 DONE) jump to DONE if L is NIL

i LOOP" (HLRZ 3 @ 1) load register 3 with CAR(L)

4 (HRRZ 1 @ 1) load register 1 with CDR(L)
(CAIE 3 9 2) skip if CAR(L) is EQ to X

(JUMPN. 1 LOOP) if CDR(L) is not NIL then
compute NEXT (CDR(L) ,X)

jump to DONE if CDR(L) is NIL
load register 1 with CAR(CDR(L))

return

(JUMPE 1 DONE)
(HLRZ 1 0 1)
(POPJ 12)

0~ N O W N

Fig. 2 - LAP encoding corresponding to NEXT

system uses an intermediate representation which is a tree

3). The root denotes a predicate. The left and right
correspond to the true and false cases respectively of the

The same intermediate representation is used for both the
assembly language program and the high level language program.

(see fig.
subtrees

PREDICATE
/\
/ \
/ .\
/ \
/ \
CONCLUSION ALTERNATIVE

Fig. 3 - tree representation of a test

The intermediate representation for the assembly language program is
obtained by use of a process termed "symbolic interpretation.” This
process symbolically interprets procedural descriptions of instructions
to yield the resulting intermediate form. Fig. 4 contains a few sample
instruction descriptions using MLISP. HLRZ is used to load the right
half of an accumulator with the left half of the contents of the
POPJ is used to encode a
return from a recursive call. Its action includes the deallocation of
entry containing the return address, the decrementing of a
stack pointer, and the return of control to the calling function. JUMPE
is a branch on a zero in the designated accumulator, This instruction
also performs a control operation. First, its description provides a
capability for symbolically interpreting both the true and false parts
of the condition - provided its value is not already known (e.g.
instruction 6 when entered via instruction 5 in fig. 2). Second, upon

199

I termination its description provides
tree (the primitive JUMPALTERNATIVE).

for an implicit construction of a

FEXPR HLRZ;
LOADSTORE (ACFIELD(ARGS) ,
EXTENDZERO (LEFTCONTENTS (EFFECTADDRESS (ARGS)))) ;

FEXPR POPJ (ARGS) ;

BEGIN
NEW LAB;
LAB-RIGHTCONTENTS (RIGHTCONTENTS (ACFIELD (ARGS))) ;
DEALLOCATESTACKENTRY (ACFIELD (ARGS)) ;

| SUBX (KACFIELD (ARGS) ,X11>);

i UNCONDITIONALJUMP (LAB) ;

Iy END;

] e FEXPR JUMPE;
1*‘% BEGIN
‘ NEW TST;
w TST-CHECKTEST (CONTENTS (ACFIELD (ARGS)) , ZEROCNST) ;
w i IF TST THEN RETURN (
1 IF CDR TST THEN UNCONDITIONALJUMP(EFFECTADDRESS (ARGS))
LH ELSE NEXTINSTRUCTION()):
TRUEPREDICATE () ; '
CONDITIONALJUMP (ARGS,FUNCTION JUMPETRUE) ;
JUMPALTERNATIVE (ARGS, FUNCTION JUMPEFALSE) ;
END;

FEXPR JUMPETRUE (ARGS) ;
UNCONDITIONALJUMP (EFFECTADDRESS (ARGS)) ;

FEXPR JUMPEFALSE (ARGS) ;
NEXTINSTRUCTION() ;

jnWﬁ Fig. 4 - example instruction descriptions

Fig., 5 shows the result of the symbolic interpretation of the true case

i I of instructions 1 and 8.
] i

|

|

il 200

(EQ L NIL)
/\
/\

/ \
NIL = UNKNOWN-ALTERNATIVE

Fig. 5 - result of symbolic interpretation of (POPJ 12)

The final intermediate representation of the LAP encoding of fig. 2 is
shown in fig. 6. Notice that we used the occurrence of recursion to
halt the symbolic interpretation process. In general recursion is
detected when an instruction is interpreted along an execution path
which has been previously encountered along the path (e.g. instruction 2
via instruction 5 in fig. 2). In such a case the proof system must
prove that the same result would have been obtained had the instruction
been reached via the start of the program. The actual proof consists of
applying transformations to fig. 6 and the intermediate form of fig. 1
to make them identical. :

(EQ L NIL)
/\
/ N\
/ \
/ \
/ \
NIL (EQ (CAR L) X)
/\
/ \
/ \
/ \\
(EQ (CDR L) NIL) (EQ (CDR L) NIL)
/ \ / \
/ \ / \
/ \ / \
/ \ / \

NIL (CAR (CDR L)) NIL (NEXT (CDR L) X)

Fig. 6 - intermediate representation

201

i

i
.

A E) . . : tion," to
e - " ler Testing via Symbolic Interpreta ’
4, REFERENCES ‘ b [13] Samet, H., Compi i
IR : ' S appear in Proceedings of the ACM 29th Annual Conference, 1976

1 y MI Artificial . Intelligence Project
(1] - "PDP-18 System Reference Manual," Digital Equipment Corporation, (14] - sSmith, D.C., "MLISP," Stanford er gtanford University, October
Maynard, Massachusetts, 1969, §i§ Memo AIM-135, Computer Science Department,

19780,

(2] - Deutsch, L.P., "An Interactive Program Verifier", Ph.D Thesis B . . s s b bAl ebraic and ngical
Department of Computer Science, University of California at Berkeley: b [15] - Suzuki, Nori, "Verifying progra? t gatiogal Conference on
May 1973. BB Reductions," Proceedings of the 1975 T nter

: b Reliable Software, April 1975, pp. 473-48l.
[3] - Floyd, R.W., "Assigning Meanings to Programs," Proceedings of a 4 . . " IEEE Transactions on Software
Symposium _in Applied Mathematics, Volume 19, Mathematical Aspects of ' [16] - Yeh, Raymond T., "Edlggg S Note,” 1B ==
Science, (Schwartz, J.T. ed.), American Math Society, 1967, pp. 19-32. I Engineering, March 1975, pp. °

[4] - Hollander, C.R.,, "Decompilation of Object Prdgrams", Ph.D, Thesis,
Digital Systems Laboratory Technical Report No. 54, Department of
Electrical Engineering, Stanford University, 1973.

[5] - Huang. J.C., “An Approach to Program Testing," ACM Comput ing
Surveys, September 1975, pp. 113-128.
"U [6] - King, J., "A Program Verifier," Ph.D. Thesis, Department of 1
il Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 3
1969. ' : '
‘W [7] - London, R., "Correctness of Two Compilers for a LISP Subset",

Stanford Artificial Intelligence Project Memo AIM-151, Computer Science
Department, Stanford University, October 1971.

L "[8] - "The Current State of Proving Programs Correct," in Proceedings ot f}
i the ACM 25th Annual Conference, 1972, pp. 39-46. .

[9] - McCarthy, J., "Recursive Functions of Symbolic Expressions and
their Computation by Machine," Communications of the ACM, April 1960,
pp. 184-195. ‘

[16] - Quam, L.H., and Diffie, W., "Stanford LISP 1.6 Manual," Stanford
Artificial Intelligence Project Operating Note 28.7, Computer Science
Department, Stanford University, 1972. '

[11] - Samet, H., "Automatically Proving the Correctness of Translations 5
Involving Optimized Code," Ph.D. Thesis, Stanford Artificial Eﬂ
Intelligence Project Memo AIM-259, Computer Science Department, Stanford 1
University, 1975,

[12] -~ Samet, 'H., "A Normal Form for LISP Programs," TR-443, Computer

Science Department, University of Maryland, College Park, Maryland,
February 1976. '

203

