
Volume 10, number 2 INFORMATION PROCESSING LETTERS 18 March 1980

PURGING IN AN EQUALITY DATA BASE

Hanan SAMET
Department of Computer Science, University of Maryland, College Park, MD, U.S.A.

Leo MARCUS
Information Sciences Institute, University of Southern CalVoomia, Marina de1 Rey, CA, U.S.A.

Received 27 June 1979; revised version received 7 January 1980

Equality, purging, on-line algorithms

1. Introduction

Equality data bases are important in facilitating
proofs of equality between terns. They are useful in
the implementation of code optimizers [2], program
verifiers [7,9], theorem provers [I], and symbolic exe-
cution systems [S]. In these applications the typical
operations are determining whether or not two terms
are known to be equal and updating the data base to
include a new equality. Some solutions include [3,4,
8,101. In this paper we discuss the problem of
removing information (‘purging’) from an equality
data base and describe an algorithm for carrying this
out. A natural example where purging is useful is sym-
bolic machine execution where register values are
changing.

As an example of the type of operations that we
wish to handle, suppose we are given the set of equali-
ties following from a z b, g(a) f h(c), and f(b) E h(d),
and we wish to remove all information about f(b).
One possible interpretation will result in eliminating
the equation f(a) E h(d), since f(b) E f(a) by a E b.
Another interpretation will be given later.

* This research was supported in part by the Rome Air Devel-
opment Center under contract F30602-784X008 and in
part by the Defense Advanced Research Projects Agency
under contract DAHCLS-72-C-0308. The views expressed are
those of the authors and do not necessarily refieel ihe
views of the sponsoring agencies.

2. Preliminaries

The language contains function symbols and con-
stant symbols considered as zero-place function sym-
bols, but no variable symbols. Thus the data base con-
tains equivalences between constant terms, but cannot
store ‘laws’, i.e., universal equivalences. Terms and
subterms are defined in the usuaI way. We assume a
standard enumeration of all terms to, tr, . ..) where for
all i, tt appears after all its proper subterms. Equiva-
lence (between terms) is denoted E, identity is
denoted =.

The equivalences will be coded by a ‘congruence
function’.

Let N denote the set of natural numbers, and let T
be a finite set of terms.

Definition 1. A congruence function on T is a function
E : T -f N such that E(sJ = E(sf) for all i implies

E(f(s,, sn)) = E(f(s;, .,., sA>) if the two terms on
the right-hand side of the implication are in Dam(E) =
T. In the following E (or E with sub- or superscripts)
will always denote a congruence function.

Defimition 2. s =E t means E(s) = E(t).

Claim 1. + is an equivalence relation on Dam(E)
satisfying substitutivity, i.e., a congruence relation.

Definitian 3. If sl, s, are disjoint (occurrences of)
subterms of s and s:, s)n are any terms, then the

89

Volume 10. number 2 INFORMATION PROCESSING LETTERS 18 March 1980

j~~~~(aneu~~s substitution of si for si is well defined

and denoted s(s;/si). Thus we allow that Si is the same

/PFW X, PO, ION SOIIIC i, j, but the occurrences are dis-

joim .

U&t 2. Ifs , , _.,, s, are disjoint (occurrences of) sub-
tcrrn?i (PC s, E(si) = E(s;) and S’ = S(sl/si), then ‘E(S) =
E4s’).

finirion 4. s is E-trivially equivalent to t ifs =

-, ra), t = ffr;, ..,, r’,) and E(ri) = E(ri). Thus, if
l-,(b), then f(a, a) is E-trivially equivalent to

. ~(IP. 3 9, t’(I-r. h), and f(a, a).

I.PI cI(S, E, T) = {s E T: s is E-trivialiy equivalent

ISI ;sn element of S).

Clearly. E-trivia1 equivalence is an equivalence rela-

trtrn refining E+,, S L ;1(S, E, T), and ifs is an atom,

fhcn s E S iff s E cl(S, E, Tj.
If S is a set of terms, SUB(S) is the closure of S

~~~~der strlPterm and SUP(S) is the closure of S (in T) 
~rnder supcrWrnts. 

ff II : f -, N is a congruence function and T’ >_ T 
15 a firGtc set closed under subterms, the (deductive, 
JS WC shall see in Corollary I below) closure of E in 
‘I”‘, CUL. T’), is the function E’ : T’ +N defined as 
fittlows: 
.Slr*tl II: ifs E T, then E’(s) = E(s) 
.%rrr/~ i: let 5 hc the it” term in the standard enumera- 
114~~ I’crr which E’(s) is not yet defined. Ifs = f(rl, . . ..Q. 
rlr~ t’(r,) is already defined. If there are ri such that 
.‘(r:) is already defined, and E’(f(r’,, . . . . rk)) is already 
c&led, and E’iri) = E’(ri) for all i, then define 

L’dftr I. . . . . rn $) = E’(f(r’,, ,.., r:)). Otherwise (including 
?he case w!lere s is an atom) E’(s) = max( {E’(t) : E’(t) 
dk already defined j L Rajl(E)) + 1. 

Definition 5. The index of s with respect to S in T, 
IMs. S. T) = ifs E S, then 0. else tile i such that s is 
?l~i‘ 1”’ term of T not in S, by the standard enumera- 
iI<J!! 

Claim 3. If ll is a congruence function and T’ 2 T is a 
:11;rtc WI cl:)scJ under subterms, then E’ = CL(E, T’) is 

3 +..osqguence functioig. 

Lemma 1. If E(s) = E(t), then there are subterms 
e 

G/4 , . . . . ti/sz) and E(s:) = E(tr) for all i, but not 
E-trivially. 

Proof. Ifs and t are not E-trivially equivalent, then 
we are done. If they are, then s = f(s,, . . . . s,), t = 

f(t , , . . . . t,,) and E(si) = E(ti). Now break down these 
equations until non-trivial equivalences are reached 
(as they must finally, since equivalence between 
atoms is non-trivial). 

Definition 6. Let E,, E, be two congruence functions 
defined on the same domain. E1 - Ez if 
E,(s) = E,(t) Q Ez(s) = E*(t). 

Of course, E, E E, means that except for naming 
of equivalence classes, E, and E, contain the same 
information. 

Definition 7. Let E : T + N, S E T, s, t E T. t is an S- 
step from s if there are s1 a subterm of s and t, a sub- 
term oft, such that E(s,) = E(t,), s,,tl E S, t = s(t,/s,). 
That is, t is obtained from s by substituting a term in 
S for an occurrence of an E-equiv;llent subterm of s in 
S. An S-chain from s to t is a sequence so = s, ~1, . . . . 
s, = t, where each Si+ 1 is an §-step from Sia 

Definition 8. If S C_ Dam(E), -then E I S is the restric- 
tion of E to S. 

Lemma 2. Let S 5 T = Dam(E), E, = CL(Ei S, T). Let 
s, t ET. E,(s) = E,(t) iff 

(1) s and t are E,-trivially equivalent or 
(2) there are s’, t’ E S, E(s’) = E(t’), such that there 

are S-chains from s to s’ and t to t’. 

Proof. *: Assume (2). E,(s) = E,(s’) and E,(t) = E,(t’) 
since S-stepping preserves E,. Also E,(s’) = E,(t’) 
since s’, t’ ES. Thus E,(s) = E,(t). 

=? By induction on the index. Assurne E,(s) = 
E,(t), E,(t) was defined before E,(s), and the claim is 
tree for all equations containing only terms defined 
beTore E,(s). Ifs and t are not E,-trivially equivalent, 
then ?!le only way for them to be equivalent is for s = 

f(r , , . . . . rn) and there is S* = f(r;, . . . . ri) such that 
E,(rr) = E,(ri), E,(s*) = E,(t), where all the E,(r;) 
and E, (s*) were defined earliet. Now for each E,(ri)= 
E,(ri) equation, by Lemma 1, we i:an find subterms of 
r? and ri which are E, -equivalent but not trivially. For 



Volume IO, number 2 INFORMATION PROCESSING LETTERS 18 March 1980 

ease in notation assume that already E,(r:) = E,(ri) 
non-trivially for all i. Now by induction hypothesis 
for E,(s*) = E,(t) there is B finite S-chain from s* to 

some S’ E S such that the rest of tlie conclusions hold. 
In addition, by using the inductiori ‘hypothesis for 
each E,(rr) = Er(ri), there are finite S-chains from ri 
to rf E S and from rf to r;’ E S, such that Efrf) = 
E(rr’) (and of course E,(rf) = E,(riQ’)). 

NOW we shall exhibit an S-chain from s to s’: 

s = f(rr , r2, . . . . rn) -+ -a- + f(ri, r2, . . . . r*) 

--f f(r;*, rz9 . . . . r”) -+ .-- + fCri, r2 , **-, hl) 

--f v+- + f(ri, r;, . . . . rn) + f(ri, r{‘, . . . . rJ 

+ -0. -+ f(r’;, . . . . rf) = s* -+ . . . + s’. 

In particular, 

Corollary 1. Under the conditions of Lemma 2, E,(s) = 
E,(t) iff this follows by equational logic from E 1 S. 

3. Purging 

Now we come to the central concept of the paper. 
Given an equality data base, that is, a set of terms with 
equivalences among them (perhaps coded by a con- 
gruence function, as in Section 2), we view these 
equivalences as true in the ‘current’ state. A state 
change can consist of two aspects, positive and nega- 
tive. The positive aspect says that we now !;now what 
the new values of some terms are. The negative aspect 
says we no longer know what the values of some 
terms are, thus we must destroy (‘purge’) all old infor- 
mation dependent on these terms It is this latter 
aspect we concentrate on here l. There are two differ- 
ent kinds of purging we consider: 

(1) ‘by name’: given a term s, throw out all equiva- 
lences containing s (and close the resulting relation 
back up to a congruence relation). Of course, the 
trivial equivalences containing s will be restored, even 
after s is purged; 

(2) ‘by value’: given a term s = f(s,, . . . . s,), we 

1 Another possibility, brought to our attention by Chee Yap, 
is to focus on the equivalences themselves, rather than on 
the terms. Thus, after a state change we may know that cer- 
tain equivalences are now true or that certain others are 
now false. We do not deal at all with this kind of state 
change, 

plead ignorance as to the effect off on the v&es 
represented by s ], , . . . . s,. Thus we throw out all equiv- 
alences containing f(s’,, . . . . sk) for all sf z si. Here 
again, trivial equivalences containing s will be restored, 
but there will be fewer of these than jn the name- 
purging case, since more equivalences were thrown 
out. 

We claim that both name-purging and value-purging 
are concepts worthy of study, in that both have valid 
uses in the appropriate contexts. 

As an example, assume a z b, g(f(a))*r c. Then 
after name-purging a we have only g(f(b)) 3 c (this 
was true before, it does not contain a, so it remains 
true). The same effect results from value-purging a. 
Name-purging f(a) or f(b) results in no change in the 
original data base; however, value-purging f(a) or f(b) 
results in a = b (and so of course, f(a) q f(b) and 
g(f(a)) = g(f(b)), but not g(f(a)) s c). 

We shall show that name-purging a set of terms is 
equivalent to value-purging a subset of those terms. 
Now for the formal definitions. 

Definitions 9. If T IF closed under subterms and E is a 
congruence function on T and S 5 T, then 
NPURGE(S, E) is the function E’ : T + N defined by 
E’ = CL(E I (T-SUP(S)), T). Thus, we throw out of T 
all those terms having subterms in S, and close the 
resulting restricted function. 

Definition IO. VPURGE(S, E) = CL(E 1 T- 
(SUP(cl(S, E, T))), T). Thus, we first close S under E, 
then under superterms, throw these out of T and close 
the resulting restricted function under deduction. 

We now proceed to show that for every E : T + N, 
S 5 T, there is S’ C_ S such that NPURGE(S, E) = 
VPURGE(S’, E). 

Theorem 1. For every E : T + N, S C_ T, there is S’ 2 
S such that NPURGE(S, E) s VPURGE(S’, F). 

Proof. Let $; C_ T, S’ = {s E S: for all t E T E-trivially 
equivalent to s there is an element of S which is a sub- 
term oft). 

Let St = T-SUP(S), Sa = T-SUP(cl(S’, E, T)), Fi = 

CL(E I Si, T) for i = 1,2. Then we must prove E i s E, . 
First we need the following lemmas: 

Lemma 3. S, C_ S 2’ 

91 



to, ;iiimbcr 2 INFORMATION PROCESSING LETTERS 18 March 198iO 

Proof. it is sufficient to prove SUP(cl(S’, E, Tji) C_ 
StJP(cl(S’, E, T)). Then s has a sub- 

term ft such that sI E cl(S’, E, T). Thus sI is trivially 
tu an element of S’. Thus s, has a sub- 

in S. Barr then so does s, and s E SUP(S). 

ma 4. (S, is not necessarify C_ S,, but) if s E S,, 
there is an &-chain from s to an element of S,. 

63 ;rrrf. If 8 E s, * we are through. So assume s B S, a 

‘Tim s has a sublcrm s’ S. Let S’ be a minimal such 
fcrm, Let s’ = f(s’,, . . . . si>. (Note that s* cannot be 

a con$tam symbol, i.e., n > 0, since otherwiw it 
w~~~~d M!:Iw s’ E S’ which contradicts s E S,.) By the 

~~~rn~~~~v of s’, si E S,. Since s E S,, s’ is not E-trivi- 
aily ~qMiva~ent lo anything in S’. Thus s’ $ S’, Thus
there is t = f(t , , t,) E-trivially equivalent to s’, t
has no subterm in S. Thus t E S, _ Substituting t for S‘
in s ir equivalent to substituting ti for sf for all i. Each
of” these is an S, -step (&s;) = Qti) by the above).
Thus rhe ~u~~titution s* = s(t/s’) can be accomplished
by an 5% -chain. Ifs* CG S, we are through. If not con-
tinue ZB before; this process terminates since we never
have I(3 deal with subterms of previously considered
subtean:s, and those terms always grow; that is, s $6 S,,
btrr t C; 5,. When the process terminates, the result is
in S,”

;*\ow we return to the proof of the theorem. We
shall prove that E,(s) = E,(t) iff E,(s) = E*(f) for alt
s, t.

“: BY Lemma 3, S, 2 S,, and so certainly E,(s) =
E, 0) * EJsI = E&t).

(=: If E,(s) = E,(t), then either
(I) s and t are El-trivially equivalent, or
It) there is an S, -chain from s, t to s’, t’ E S,,

E(s’) = E(t’) by Lemma 2.
The proof is by induction on the structure of s, t.

If t I) holds, use !he induction hypothesis on the sub-
KY:;;; tif s, ‘s which make them E, trivially equivalent.

IFI the case of (2), assume the S,-chain from s goes

s -+ s1 -+ _. + s’, w’iere si is obtained from s by

exchanging s, E S, with s; E S,, and of course
E,is;)= E,(ss,), and so E(sy) = E(s,), By Lemma 4,
there are S, chains sy -+ . . . + s2 E S,, pi; 3 . . . 3
5; E S,. It foi!ows tha! E(ss,) = E(sa), and since both
arc in S,, E,&) = E,(s~).

Kow it is easy to construct an S,-chain from s to

92

sl, as in the proof of Lemma 2. Continuing this pro-
cess, we can construct an S,-chain from s, through s’,
to an element of S,, and likewise for t. Thus, by
Lemma 2, E,(s) = E,(t).

Of course, NPURGING a set of terms is not neces-
sarily equivalent to NPURGING them one at a time,
but:

Claim 4. For all terms s and sets of terms S,
VPURGE(S u (~3, E) = VPURGE({sf, VPURGE(S, E)).

In the remainder of the paper, we give the algorithm
for implementing VPURGE({s), E).

4. Algorithm

In brief, the data base is represented as a finite set
of equivalence classes, that is, a function E from a
finite set of terms to equivalence class names, say
E : T + N, where T is some finite set of terms and N is
the natural numbers. Of course, it is possible to fini-
tely store the equivalence information of infinitely
many terms, for example by (f(a) E a}, but we are
really interested in only finitely many of them at one
time. Then E(s) = E(t) iff s z t. VPURGE({s}, E) is
accomplished by assigning a new (common) equiva-
lence class number to every term trivially equivalent
to s (thus ifs is atomic, no other atoms will. be
changed). Subsequently, new class numbers are
assigned to terms containing subterms for which new
class numbers have already been assigned, in such a
way that substltutivity is preserved.

Our algorithm for implementing purging relies on a
variation of the representation used in [lo] for on-line
proofs of equalities and inequalities of terms. In that
method an equality data base was constructed con-
sisting of pairs of entries which were analogous to pro-
ductions of an equality grammar, where the equiva-
lence classes corresponded to non-terminal symbols.
Determining if two terms are known to be equivalent
was reduced to parsing the two terms and examining
whether they were in the same equivalence class. In
the following we present the data structure, the
revised algorithm for adding an equality to the data
base, and the necessary steps required to implemtint
purging.

Volume 10, number 2 INFORMATIONPROCESSlNGLETTERS 18 March 1980

The algorithm, calle3 update, for adding an equal-
ity to the data base is given in Fig. 1 using a combina-
tion of LISP and ALGOL. Vertical bars are used to
clarify the block structure. The data base is a table,
ACL, containing one entry for each different term
(i.e., a constant symbol or a function symbol and its
arguments), Each entry is uniquely numbered and has
two fields, STRING and VN, having the interpretation
VN * STRING. STRING is either a constant symbol
or a list consisting of a function symbol followed by

prncrdurc updatellh.rhl:

/alh-rh io thr equivalrnce to be added to the data basea/
bry i n
I
I HFRGtS1.<<tlareeIthl.parseIrhl.s:
I /alWlCfS is a list of lists uhich is initialized to the tuo

I
oquivatence cIasse9 uhich are to be morgednl

I uhilr RERLXS w NULL do
frcach iteration processes a pair,of equivalence classes in

I tRAGES and propagates the equivalence if the elements of
I the pair are not already in the game equivalence class*/

I I
hcyin

I 1.
I I

m:=IlI~AGESII.II: Ininsure that the classes lo be merged areel
n:=nEHCES11.21: lnnot already equivalenta/

t I uhi I c ttCRGF0 [ml l NULL do m: 4ltflCEO In1 i
I I uh i Ic IKRCEO In1 l NULL do n: =ttERCEO In1 :
I I
I I if n l n thrn
I t begin
I I t
I I 12.
I I I
I I I
I I 13.
I I I
I I I
I I I
I I 14.
I I I
I I I
I I I
I I I
I I I
I I I

I I t
I I

I t I
I I

I I I

I I I
I I I
I 1 I
I I I
t I I
I I I
I I I
I I I
t I I
t I I
I I I
I I I

I I I
I I I
I I I
I I I
I I I
I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

lor each j in NDOCSlnl do ACLIjl.VN:-m:
/*update the erwivalenc~ class field*/

nllpcnd NOOCSlnJ to NUOESlml:
NOOI S In1 : -NULL:
nERGr0 In1 : ml;
uhi IP FATHERSIn c NULL do

Inpropagate the equivalence of m and n through al I
formulas in uhich n is a componentnf

begin
I
I j:.cATHERSln.ll:
I lsget the first element in the list FATMRSfnln/

I if no, deletedlACLtjll then
I beqin
I I
I I d.Iete ACI ljl from the hash table:
I I sl,stitute no for n in ACLIjl.SlRING:

I I f:.und:-ha~hlACLljl.SlAINGl:
i I I&ash returns thr index into ACL of 8” undeleted
I I entry havinq the same ACI.ljl.SlRING value: if
I I no wth entry crists. then NULL iB returnedal
I I
I I if found I NIILL then
I I hrg i n
I I I enterhashtablelACLIjJ1:
/ I I add ACLI il to FATHFRSIml:
I I end

i
I
I et80

I I IrmJ i ”
I I I mark ACI I;1 a~ deleted:
I I I if ACI [jl.VN e ACLtfoundl.VN then
I I I <add ~ACLIto”~dl.VN,ACLI,l.VN> to nFRGES:
I I I />sthere is no need to add ACL tjl to FATHERSIml
I I I since at least one formu!a of the form
I I I ACLljI.STRING must already be on that list
I I I by virtue of found being non-NULL*>/
I I end:
I wd:
I FAlHFRSlnl:-taiIlFAIHFRSlnll:
I lcrdelete fATHFRSIn.11 Iron FAlHERSInl>?/

I I end:
I I IIFRGFC:.tai I WERCESI: /srlelete IILRGESIII f om flEAGFSb/
I end:
end:

Fig. 1. Algorithm to add an equality pair.

pointers to the equivalence classes containing its argu-
ments. The indices into the ACL table also serve as
the names of the equivalence classes. For each equiva-

lence class, one ACL entry is designated to identify
all members of the equivalence class. VN contains the
index of the ACL entry corresponding to the equiva-
lence class to which the term represented by the
STRING field belongs.

The speed of update is greatly enhanced by the
maint%ince of two arrays of linked lists NODES[1 : s]

and FATI-iEkS[l : s], an array MERGED[l : s], and
a list MERGES. In particular, they enable the avoid-
ance of lengthy searches in Steps 2,3 and 4.
NODES [i] links all ACL entries that are members of
the same equivalence class, i. FATHERS [i] links all
ACL entries whose STRING field contains a reference
to i. MERGED [i] indicates if equivalence class i has
been merged into another equivalence class, and if so,
then it contains its value; otherwise, it contains NULL.
MERGES is a list of pairs of equivalence classes which
are to be merged. With respect to notation, ((A, B),
(C, D)) denotes a list of pairs containing the pairs
(A, B) and (C, D).

Step 1 insures that merges that have taken place
since the placement of the pair of equivalence classes
in MERGES are taken into account. This is also aided
by Step 3 which records in MERGED the name of the
equivalence class which has been subsumed. Steps 2
and 3 implement set union on equivalence classes,
while Step 4 insures that set union will be performed
for all equivalences that are direct consequences of
Steps 2 and 3. In other words, terms having the same
function symbols and equivalent arguments are equiv-
alent and thus their equivalence classes should be
merged. Note that Step 4 is only applied to entries in
FATHERS [n] since only these entries can possibly
generate new equivalences. The key to the algorithm
is that the occurrence of a success collisior upon
rehashing in Step 4 (i.e., the entry was aiready in the
table), indicates that a pair of equivalence classes has
been found that should be merged. If the two entries
are not already in the same equivalence class, then
their equivalence classes are added to the end of
MERGES. Once Step 4 is completed, Steps l-4 are
reapplied to any pair of elements of MERGES.

The equality updating algorithm terminates since
parsing is a process that is limited by the length of the
input string and by the number of productions. Step 1

93

Volume 10. numlxr 2 INFORMATION PROCESSING Li, ‘ERS 18 March 1980

is 3 list traversal of a subset of the equivaIence classes
and the time it takes is bounded by the number of
productions. Steps 2 and ,1 correspond to a merge of
two equivalence classes, and the time they take is
bounded by the number of productions. Step 4 makes
M* of FATHERS [n] to determine whether or not a
subsequent merge of two equivalence classes is to
ttcc’ur when the current merge causes two eqUiVdenCe

classes 10 have an element in common. 13 the affirma-
tive Cdse, each such pair of equivalence classes is added
IO FMERGES. In order to perform the subsequent
merge operations, Steps I - 1 are reapplied. However,
when 1 hese steps are reapplied, there remains one less
e~i~i~;!~~r,ce class and thus by the well-ordering prin-
ciple termination is guaranteed. When MERGES is
exhausted, the updating process is finished. Note that
if an equivalence class is found to contain a duplicate
occurrence of an element after a merge, then, by Step
4. the duplicate occurrence is not reinserted in the
hash table *, This insures that the~equality grammar
will always have the property that no two productions
have the same right-hand side.

The process of determining the equivalence of two
ferrns is quite simple from a computational standpoint.
Sj9ecifically, when-parsing a term there are exactly as
VW) reductions to be made as there are atoms and
function symbols in the term. Thus when hashing Is
IIW_!, the running time of the equivalence determina-
tlon procedure is directly proportional to the size of
t:ie terms whose equivalence is being ascertained (i.e.,
the number of atoms and operators in the terms).

The running time of th< equality updating algo-
rithm depends only on the efficiency of the hash
iahlc search mechanism. It has a worse case behavior
of d*, where d is the size cf the data base (i.e., the
number of terms). This bound is attained when an
equivalence class, which is currently being merged,
:~grpc’;crs as an element in every other entry in the data

be i.e., I FATHERS [i] I = d for equivalence class i.
iiecal! tl:dt each merge results in 2 decrease of at least

’ Note that we mark deleted ACL entries as deleted rather
tP#an ph).sically deleting ihem. This is only done in the inter-
~51 of’ saving time. If the ACL entries were to be physically
dclctcd and their space re!tsed, then NODES and FATHERS
cntrics would IIWC to be purged of references to deleted
node<. This can be done when one has truly run out of
<PJCC by using Wxge collection techniques [6].

1. Let p be the index of the ACL entry corresponding to t;
2. Remove p from NODES [ACL[pj.VN];
3. Allocate A ,icw equivalence class, say q;
4. Insert p in NODES [y];
5. ACL[p].M := q;
6. FATHERS [q] := NULL;

Fig. 2. Algorithm for purging an equality.

one in the size of the equality data base. Thus after at
most d steps, the algorithm terminates.

The algorithm for purging the equalities associated
with a certain term, say t, is now quite straightforward.
Let p be the index of the ACL entry containing term
t. All that is required is to remove p from its equiva-
lence class (i.e., delete it from NODES[ACL[p] .VN]),
allocate a new equivalence class, say q, and insert p in
NODES[q]. All FATHERS [i], where i is an element
of RCL[p] . STRING, remain the same since t remains
in ACL[p]. Fig. 2 shows the algorithm in greater
detail.

The key to the purging algorithm is that once the
equalities associated with a particular term, say t,
have been purged, all new terms which will be encoun-
tered in which t is a subterm will appear in different
equivalence classes than previously. This is because t is
now in a different equivalence class and thus the ACL
entries in which it appeared earlier as a subterm are no
longer accessible.

5. Example

As an example, consider the following three equa-
lities :

f(a) = c, f(b) = d, a=b.

Once the equalities have been processed, the equality

Table 1

Term Index ACL VN
STRING

a 1 al
f(a), f(b) 2 F(al) a2

:
3 a2
4 : al

d 5 d a2

Volume 10, number 2 INFORMATION PROCESSING LETTERS 18 March 1980

Table 2

Term Index ACL VN
STRING

or histories; i.e., there is no way for f(a) to mXmber

that it equals h(c) ‘because of g(b).

a 1 a al

f(a), f(b) 2 f(a1) a3

:
3

fi
a2

4 al
d 5 d a2

data base has the form as in Table 1, where ai corre-
sponds to equivalence class i.

If f(a) is to be purged, then we get the equality data
base in Table 2.

Note that f(a) is still equal to f(b) and likewise for
c E d and a z b; however, the equivalence of f(a) with
c and d has been purged as a result of the lack of
knowledge about the value of f(a) and likewise for
the equivalence of f(b) with c and d. This is not sur-
prising since despite lack of knowledge with respect
to the actual value off applied to a, the fact that a 5
b means that f(a) is still equal to f(b).

As another example, suppose we are originally
given the equality pair f(a) 5 a. This implies that
f(f(a)) - a, f(f(f(a))) 3 a, etc. If f(f(a)) were to be
purged, then the equality of f(a) with a is also affected
because f applied to f(a) is the same as f applied to a
and thus lack of knowledge about the value of f(f(a))
is equivalent to lack of knowledge about f(a) and
thus we no longer have f(a) G a.

Finally, note well the following phenomenon,
which was mentioned earlier. Suppose we have the
equalities f(a) s g(b) and g(b) q h(c). This implies
that f(a) z h(c), a relationship that is still true after
g(b) is purged. This is because with no variables in the
data base, there is no way to remember laws, axioms,

Acknowledgment

The suggestion to add purging as an operation to
equality data bases was made by Steve Cracker, with
whom we had many helpful discussions. We also wish
to thank Randy Trigg for finding an error in a previous
version of this paper.

References

[l] C. Chang and R.C. Lee, Symbolic Logic and Mechanized
Theorem Proving (Academic Press, New York, 1973).

[21 J. Cocke and J.T. Schwartz, Programming languages and
their compilers, Courant Institute, New York University
(1970).

[31 P.J. Downey, H. Samet and R. Sethi, Off-line and on-
line algorithms for deducing equalities, Proc. Fifth An-
nual ACM Symposium on Principles of Programming
Languages (1978) 158-170.

[4] P.J. Downey and R. Sethi, Variations on the common
subexpression problem, Technical Report, Bell Labom-
tories, Murray Hill, NJ (1977).

[51 J.C. King, Symbolic execution and program testing,
Comm. ACM (July 1976) 385-394.

[6] D.E. Knuth, The Art of Computer Programming, Vol. 1,
Fundamental Algorithms (Addison-Wesley, Reading,
MA, 2nd ed., 1973).

[71 R.L. London, The current state of proving programs
correct, Proc. ACM 25th Annual Conference (1972)
39-46.

[S] D.C. Oppen, Reasoning about recursively defined data
structures, Proe. Fifth Annual ACM Symposium on
Principles of Programming Languages (1978) 15 l-157.

[9] H. Samet, Proving the correctness of heuristically opti-
mized code, Comm. ACM (July 1978) 570-582.

[lo] H. Samet, Efficient on-line proofs of equalities and
inequalities of formulas, IEEE Trans. Comput. (March
1980).

95

