TUWAKD AUTOMATIC DEBUGGING OF COMHMPILERS*

lanan Samet *
. Computer Science Department
University of iaryland
College Park, Maryland 20742

I Abstract

- “~~Automatic debugging <4is examined in the
- context -of compiler correctness. A system is
described whose goal is to Erove the correctness of
translations involving heuristically optimized

code. : ; ;
corrected using such a system is also discussed.

Keywords and phrases: debugging, compilers, error
detection, error correction, program verification

INTRODUCTION

In [Samet77a]l we describe the use of a
compiler testing systew [Samet75] in detecting
errors in heuristically optimized code as well as
the prospects for automatically correcting them.
This wor is motivated bK the realization that
often there is no a priori knowledge of how certain
computer programs are to be optimized. In such a
case, there may be a need to resort to heuristics;
thereb necessitating a mechanism for verifyin
that tKe various attempts at optimization do indee
function properly. .

Compiler testinf is a technique of proving
e

that given a compiler (or any translation
procedute) and a program to be compiled, the
translation has been correctly performed. Compiler

testing relies on the existence of an intermediate
representation common to both the source and object
programs. This representation reflects all of the
computations performed on all possible execution
paths. Given the existence of such a
representation, the testing grocedure consists of
three —steps. First, the ‘'high level language
program is converted to the intermediate
representation via the wuse of a suitable set of
syntactic transformations [Samet77b]. Second, the
low level program must be converted to the
intermediate representation. This is achieved by
use of a process termed symbolic interpretation
[Samet76] which interprets procedural descriptions

of low level machine operations to build the
intermediate representation. Third, a check must
e performed of the equivalence of the two
representations., This check is in the form of a
procedure which applies equivalence preserving
transformations to the results of the first two
steps in attempting to reduce them to a common

representation. This technique has been applied to
LISP and PDP-10 assembly language.

ERRORS
Errors in the translated program that are
caused by the translation process are categorized
Into four classes. Errors of the first class are
detected by the symbolic interpretation procedure
vhile the” remaining three classes are detected
during the roof procedure as computations are
eing matched in the two intermediate
representations.

(1) Errors pertaining to the well-formedness of the

program include improper calling sequences,
illegal stack pointer formats, illegal
operations on certain high level data
structures, etc.

(2) A11 of the computations in one of the
intermediate representations were found to
exist in the other representation, but the

*This work was supported in part by the Advanced
Research Projects Agency of the Department of
Defense under Contract DAHC 15-73-C-~0435. The
views expressed are those of the author.

The class of errors that can be detected - -and---

reverse is not true. Such an error may arise
when certain side effect computations occur in
one of the programs and not in the other.

Altermatively, .this may also arise when certain
tests are performed in one program and not in
the other.

There are occasions when each of the
intermediate representations reflects the
perforumance of the same computations along each
eXecution path, yet, the two representations
are not identical. This occurs when the
results of the execution paths are different.

(3>

(4) The actual proof procedure may reach a point at
which it cannot continue. This is the case
... when _a function in the intermediate
representation of the 1low lével program can not
be matched with a function in the intermediate
representation corresponding to the original

high level program.

Error correction is a difficult task. 1In
[Samet77a] we show how the following heuristics are

used to debug an incorrectly translated complex
function (105 instructions). Whenever an error
occurs in a function, we determine if the error is

caused by the wrong function being applied to a set
of arguments or the correct function being applied
to the wrong set of arguments. Our approach is
first to attempt to correct the function. Next, an
attempt is made to correct the arguments. When
correcting arguments, we know the~ accumulators
which must contain the arguments and thus we can
work backwards to determine where and when the
wrong values were computed and loaded into the
accunulators. Often the debugging process is aided
by the presence of instructions that manipulate
data that will no longer be referenced in the
program. Such instructions often serve as
candidates for removal and replacement by the
correct instruction. Errors also occur frequently
in testing the wrong sense of a condition. his is
especially common with arithmetic relatidns such as
less than and. greater than. Such occurrences are
signaled by the presence of errors in both subtrees

of a condition in close proximity (in terms of the
logical flow of the program) to the instruction at -
which the condition is tested. This can be

corrected in the following manner. Reverse the
sense of the test. If all of the errors disappear,
then the diagnosis is clearly correct. If some of
the errors disappear, then the diagnosis 1is quite
likely to be valid. The previous 1is especially
true "if at least one error in each subtree
disappears after making the change. Note that
changing the sense of the test may lead to new
errors. However, as long as some of the current
errors disappear, the correction is likely to be
valid.

a manual
We believe

The above heuristics were used in
process to debug the erroneous program.
that many of these errors could be corrected
automatically. However, there is a need to
continue exercising the groof system with erroneous
encodings to determine if any more error correction
heuristics can—-be-discovered, - -

REFERENCES
[Samet75] - Samet, H., "Automatically Proving the
Correctness of Translations Involving Optimized
Code," Ph.D. Thesis, Stanford = Artificial
Intelligence Project Memo AIM~259, Computer Science
Department, Stanford University, 197s.
[Samet76] - Samet, H., '"Compiler Testing Via
Symbolic Interpretation," P edings of the ACM
- 2%¢h Annual Con erence, 1976, pp. 492-497.

H,, "A Study in Automatic
,'" TR=545, Computer Science
of Maryland, ollege Park,

[Samet77a] - Samet,
Debugging of Compilers
Department, University

Maryland, 1977.

[Samet77b] Samet, H., "A Normal Form for Comgiler
Testing,” Proceedings GART -

S ; 5O i 2

rogramming Languages, 1 .

Auto. Prog;—l: Samet

379

