CAR-TR-974 EAR-99-05844
CS-TR-4340 11S-00-86116
UMIACS-TR-2002-22 July 2002

Evaluation of the SoftPOSIT
M odel-to-lmage Registration Algorithm

Philip David!+?, Daniel DeMenthon!, Ramani Duraiswami®,
and Hanan Samet!

!University of Maryland
Institute for Advanced Computer Studies
College Park, MD 20742
2Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1197

Abstract

The problem of pose estimation arises in many areas of computer vision, including object recognition,
object tracking, site inspection and updating, and autonomous navigation when scene models are avail-
able. We present a new agorithm, called SoftPOS T, for determining the pose of a 3D object from a
single 2D image when correspondences between model points and image points are not known. The
algorithm combines Gold's iterative softassign agorithm [20, 21] for computing correspondences and
DeMenthon’'siterative POSIT algorithm [14] for computing object pose under afull-perspective camera
model. Our algorithm, unlike most previous a gorithmsfor pose determination, does not have to hypoth-
esize small sets of matches and then verify the remaining image points. Instead, all possible matches
are treated identically throughout the search for an optimal pose. The performance of the algorithm is
extensively evaluated in Monte Carlo simulations on synthetic data under a variety of levels of clutter,
occlusion, and image noise. Thesetests show that the algorithm performswell in avariety of difficult sce-
narios, and empirical evidence suggests that the algorithm has an asymptotic run-time complexity that is
better than previous methods by a factor of the number of image points. The algorithm is being applied
to anumber of practical autonomous vehicle navigation problemsincluding the registration of 3D archi-
tectural models of a city to images, and the docking of small robots onto larger robots.
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1 Introduction

This paper presentsan algorithmfor solving the model -to-imageregistration problem, whichisthetask of
determining the position and orientation (the pose) of athree-dimensional object with respect to acamera
coordinate system, given amodel of the object consisting of 3D reference points and asingle 2D image
of these points. We assume that no additional information is available with which to constrain the pose
of the object or to constrain the correspondence of model features to image features. Thisisaso known
as the simultaneous pose and correspondence problem.

Automatic registration of 3D models to images is an important problem. Applications include object
recognition, object tracking, siteingpection and updati ng, and autonomous navigati on when scene model s
are available. It isadifficult problem because it comprises two coupled problems, the correspondence
problem and the pose problem, each easy to solve only if the other has been solved first:

1. Solvingthe pose (or exterior orientation) problem consists of finding the rotation and trand ation of
the object with respect to the cameracoordinate system. Given matching model and imagefeatures,
one can easily determinethe pose that best alignsthose matches. For threeto five matches, the pose
can be found in closed form by solving sets of polynomial equations [18, 24, 26, 40]. For six or
more matches, linear and nonlinear approximate methods are generally used [14, 17, 25, 27, 31].

2. Solving the correspondence problem consists of finding matching image features and model fea-
tures. If the object pose is known, one can relatively easily determine the matching features. Pro-
jecting the model in the known pose into the original image, one can identify matches among the
model features that project sufficiently close to an image feature. This approach istypically used
for pose verification, which attempts to determine how good a hypothesized pose is[23].

The classic approach to solving these coupled problemsisthe hypothesize-and-test approach [22]. Inthis
approach, asmall set of image feature to model feature correspondences arefirst hypothesized. Based on
these correspondences, the pose of the object is computed. Using this pose, the model points are back-
projected into the image. If the original and back-projected images are sufficiently similar, then the pose
is accepted; otherwise, anew hypothesisisformed and this process isrepeated. Perhapsthe best known
example of this approach isthe RANSAC agorithm [18] for the case that no information is available to
constrain the correspondences of model pointsto image points. When three correspondences are used to
determine a pose, a high probability of success can be achieved by the RANSAC agorithmin O(J*K)
time when there are J image points and X model points® (see Appendix A for details).

The problem addressed here is one that is encountered when taking a model-based approach to the
object recognition problem, and as such has received considerable attention. (The other main approach
to object recognition is the appearance-based approach [34] in which multiple views of the object are
compared to the image. However, since 3D models are not used, this approach doesn’t provide accurate
object pose.) Many investigators (e.g., [10, 11, 16, 28, 30, 36]) approximate the nonlinear perspective
projection via linear affine approximations. This is accurate when the relative depths of object features
are small compared to the distance of the object from the camera. Among the pioneer contributionswere
Baird's tree-pruning method [ 1], with exponential time complexity for unequal point sets, and Ullman’s
alignment method [38] with time complexity O(J*K®log K).

1Some authors use N and M instead of Jand K, respectively, to denote the numbers of image and model points.
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The geometric hashing method [30] determines an object’s identity and pose using a hashing metric
computed from a set of image features. Because the hashing metric must be invariant to camera view-
point, and because there are no view-invariant image features for general 3D point sets (for either per-
spective or affine cameras) [ 7], this method can only be applied to planar scenes.

In [13], we proposed an approach using binary search by bisection of pose boxes in two 4D spaces,
extending the research of [1, 9, 8] on affine transforms, but it had high-order complexity. The approach
taken by Jurie [29] wasinspired by our work and belongs to the same family of methods. Aninitia vol-
ume of pose space is guessed, and all of the correspondences compatible with thisvolume arefirst taken
into account. Then the pose volume is recursively reduced until it can be viewed asa single pose. Asa
Gaussian error model is used, boxes of pose space are pruned not by counting the number of correspon-
dences that are compatible with the box asin [13], but on the basis of the probability of having an object
model in the image within the range of poses defined by the box.

Among the researchers who have addressed the full perspective problem, Wunsch and Hirzinger [39]
formalize the abstract problemin away similar to the approach advocated here as the optimization of an
objective function combining correspondence and pose constraints. However, the correspondence con-
straints are not represented analytically. Instead, each model feature is explicitly matched to the closest
lines of sight of the image features. The closest 3D points on the lines of sight are found for each model
feature, and the pose that brings the model features closest to these 3D points is selected; thisalows an
easier 3D to 3D pose problem to be solved. The process is repeated until a minimum of the objective
function is reached.

The object recognition approach of Beis [2] uses view-variant 2D image features to index 3D object
models. Off-linetraining is performed to learn 2D feature groupings associated with large numbers of
views of the objects. Then, the on-line recognition stage uses new feature groupings to index into a
database of learned model -to-image correspondence hypotheses, and these hypotheses are used for pose
estimation and verification.

The pose clustering approach to model-to-imageregistrationis similar to the classic hypothesize-and-
test approach. Instead of testing each hypothesisasit isgenerated, al hypotheses are generated and clus-
tered in a pose space before any back-projection and testing takes place. This later step is performed
only on poses associated with high-probability clusters. Theideais that hypotheses including only cor-
rect correspondences should form larger clusters in pose space than hypotheses that include incorrect
correspondences. Olson [35] gives arandomized algorithm for pose clustering whose time complexity
iISO(JK).

Themethod of Beveridgeand Riseman [3, 4] isalso related to our approach. Random-start local search
iscombined with ahybrid pose estimation al gorithm empl oying both full- perspective and weak-perspective
cameramodels. A steepest descent search in the space of model-to-image line segment correspondences
isperformed. A weak-perspective pose agorithmis used to rank neighboring pointsin this search space,
and afull-perspective pose a gorithmisused to update the model’ s pose after making amoveto anew set
of correspondences. The time complexity of thisagorithm was empirically determined to be O(.J2K?).

When there are ./ image pointsand K model points, the dimension of the solution space for this prob-
lemis K + 6 since there are K correspondence variables and 6 pose variables. Each correspondence
variable has the domain {1,2,...,.J,0} representing a match of a model point to one of the .J image
points or to no image point (represented by ), and each pose variable has a continuous domain deter-
mined by the allowed range of model trandations and rotations. Most algorithms don’t explicitly search
this K + 6-dimensional space, but instead assume that poseis determined by correspondences or that cor-
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respondences are determined by pose, and so search either an A -dimensiona or a 6-dimensional space.
The SoftPOSIT approach is different in that its search alternates between these two spaces.

The SoftPOSIT approach to solving the model-to-image registration problem applies the formalism
proposed by Gold, Rangargjan and others[20, 21] when they solved the correspondence and pose prob-
lem in matching two images or two 3D models. We extend it to the more difficult problem of registra-
tion between a 3D model and its perspective image, which they did not address. The SoftPOSIT a go-
rithmintegratesan iterative pose technique called POSIT (Pose from Orthography and Scaling with | Ter-
ations) [14], and an iterative correspondence assignment technique called softassign [ 20, 21] intoasingle
iteration loop. A global objective function is defined that captures the nature of the problem in terms of
both pose and correspondence and combines the formalismsof both iterative techniques. The correspon-
dence and the pose are determined simultaneously by applying a deterministic annealing schedule and by
minimizing this global objective function at each iteration step.

Figure 1 shows an example computation of SoftPOSIT for amodel with 15 points. Noticethat it would
beimpossible to make hard correspondence decisionsfor theinitial pose (frame 1), where the model im-
age does not match the actual image at al. The deterministic annealing mechanism keeps all the options
open until the two images are amost aligned. As another example of SoftPOSIT, Figure 2 shows the
trajectory of the perspective projection of a cube model being aligned to an image of a cube.

In the following sections, we examine each step of the method. We then provide pseudocode for the
algorithm. We then evaluate the algorithm using Monte Carlo simulations with various levels of clutter,
occlusion and image noise, and finally we apply the algorithm to some real imagery.

2 POSIT Algorithm

One of the building blocks of the new algorithm isthe POSIT algorithm, presented in detail in [14]. We
summarizethisalgorithmbelow initsoriginal formwith known correspondences, and then present avari-
ant of the algorithm, still with known correspondences, using the closed-form minimization of an objec-
tivefunction. Itisthisobjectivefunctionwhichismodifiedinthe next sectionto analytically characterize
the global pose-correspondence problem (i.e., without known correspondences) in a single equation.
Consider apinhole camera of focal length f and an image feature point p with Euclidean coordinates
x and y and homogeneous coordinates (wz, wy, w). Thispoint p is the perspective projection of the 3D
point P with homogeneous coordinates (X, Y, Z, 1) in the frame of reference of an object with origin P;.
In our problem, there is an unknown coordinate transformation between the object and the camera,
represented by arotationmatrix ? = [R; R, R3]” and atrandationvector T = (7., T}, T.). Thevectors
RT RI, R aretherow vectorsof therotation matrix; they arethe unit vectors of the cameracoordinate
system expressed in the model coordinate system. The trandation vector T isthe vector from the center
of projection O of the camerato the origin P, of the object expressed in the camera coordinate system.
The coordinates of the perspective projection p can be shown to be rel ated to the coordinates of the world

point P by
wr
wy =
w

where P, P = (X,Y, Z)T isthe vector from P, to P. The homogeneous image point coordinates are
defined up to amultiplicative constant; therefore the validity of the equality isnot affected if we multiply
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Figure 1. Evolution of perspective projections for a 15-point object (solid lines) being aligned by the
SoftPOSIT agorithm to an image (dashed lines) with one occluded point and two clutter points. The
iteration step of the algorithm is shown under each frame.



Figure 2: The trajectory of the perspective projection of a cube model (solid lines) being aligned by the
SoftPOSIT algorithm to an image of a cube (dashed lines), where one vertex of the cube isoccluded. A
simple model is used for the sake of clarity.

all the elements of the perspective projection matrix by 1/7'.. We aso introduce the scaling factor s =
f/T. (thereason for this terminology becomes clear below). We obtain

wr SRiF sT, PP
_ [ R &)
wy sR;  sT, 1
with
TU:Rg'PPO/TZ+1. (2)

In the expression for w the dot product R3 - Py P represents the projection of the vector P, P onto
the optical axis of the camera. Indeed, in the world coordinate system where P isdefined, R ; isthe unit
vector of theoptical axis. When the depth range of the model along the optical axis of thecameraissmall
with respect to the model distance, R; - Py P is small with respect to 7', and therefore w is close to 1.
In this case, perspective projection gives results that are similar to the following transformation:

T | st sT, PP
[y]_[ng sTy [1 ]
This expression defines the scaled orthographic projection p’ of the 3D point P. Thefactor s isthe scal-
ing factor of this scaled orthographic projection. When s = 1, this equation expresses a transformation
of pointsfrom aworld coordinate system to a camera coordinate system, and uses two of thethree world
point coordinates in determining the image coordinates, thisis the definition of a pure orthographic pro-
jection. With afactor s different from 1, thisimage is scaled and approximates a perspective image be-

cause the scaling isinversely proportional to the distance 7', from the camera center of projection to the
object origin Py (s = f/T.).

(3)




The general perspective equation (1) can be rewritten as

:[w;r: wy]. (@)

(X v 7 1}[5R1 SRQ]

sT, sT,

Assumethat for each image point p with coordinates » and y the corresponding homogeneous coordi-
nate w has been computed at a previous computation step and is known. Then we are able to calculate
wz and wy, and the previous equation expresses the rel ationshi p between the unknown pose components
sRy, sRy, sT%, sT,, and the known image components wz and wy and known world coordinates X, Y/,
7 of PyP. If weknow K world points P, & = 1,..., K, thelr corresponding image points p;, and
thelr homogeneous components w;,, then we can then write two linear systems of K equations that can
be solved for the unknown components of vectors sR;, sR; and theunknowns s, and s}, provided the
rank of the matrix of world point coordinatesis at least 4. Thus, at least four of the points of the model
for which we use the image points must be noncoplanar. After the unknowns sR; and sR, are obtained,
we can extract s, R1, and R, by imposing the condition that R; and R, must be unit vectors. Then we
can obtain R3 asthe cross-product of R, and R,:

s = (|sRq||sRy|)*/? (geometric mean),
R1 = (SRl)/S, R2 = (SRQ)/S,
R3 = R1 X RQ,

T, = (sTy)/s, Ty = (sT,)/s, T. = [/s.

An additional intermediary step that improves performance and quality of results consists of using unit
vectors R/ and R, that are mutually perpendicular and closest to R, and R in the least square sense.
These vectors can be found by singular value decomposition (SVD) (see the Matlab code in [19]).

How can we compute the w; components required to compute the right-hand side rows (wyx, wrys)
corresponding to image point p;. ? We saw that setting w; = 1 for every point isagood first step because
it amountsto solving the problem with ascaled orthographic model of projection. Once we havethe pose
result for thisfirst step, we can compute better estimates for the w;, using equation (2). Then we can solve
the system of equations (4) again to obtain arefined pose. This processis repeated, and the iteration is
stopped when the process becomes stationary.

3 Geometry and Objective Function

We now look at ageometric interpretation of thismethod in order to propose a variant using an objective
function. As shown in Figure 3, consider a pinhole camera with center of projection at O, optical axis
aligned with Oz, image plane 11 at distance f from O, and image center (principal point) a ¢. Consider
an object, the origin of its coordinate system at 7, apoint P of this object, a corresponding image point
p, and theline of sight L of p. Theimage point p’ isthe scaled orthographic projection of object point P.
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Figure 3: Geometric interpretation of the POSIT computation. Image point p’, the scaled orthographic
projection of world point P, iscomputed by one side of the POSIT equations. Image point p”, the scaled
orthographic projection of point P;, onthelineof sight of p, iscomputed by the other side of the equation.
The equations are sati sfied when the two points are superposed, which requiresthat the world point P be
on the line of sight of image point p. The plane of the figureis chosen to contain the optical axis and the
line of sight .. The points P, P, P, and p’ are generaly out of this plane.



Theimage point p” is the scaled orthographic projection of point 7, obtained by shifting P to theline of
sight of p inadirection parallel to the image plane.
One can show (see Appendix B) that the image plane vector fromc to p’ is

Cp, = S(Rl . P()P —|—Tz,R2 . P()P—|—Ty)

In other words, the | eft-hand side of equation (4) represents the vector ¢p’ in the image plane. One can
also show that the image plane vector from ¢ to p” isecp” = (wz,wy) = wep. In other words, the
right-hand side of equation (4) represents the vector e¢p’ in the image plane. The image point p” can be
interpreted as a correction of the image point p from a perspective projection to a scaled orthographic
projection of apoint Pr, located on the line of sight at the same distance as P. P ison the line of sight
L of p if, and only if, the image points p’ and p” are superposed. Then cp’ = ¢p”, i.e. equation (4) is
satisfied.

When we try to match the object points P, to thelinesof sight 7, of image pointsp;, itisunlikely that
all or even any of the pointswill fall on their corresponding lines of sight, or equivalently that cp; = cp),
or pyp, = 0. Theleast squares solution of equations (4) for pose enforces these constraints. Alterna-
tively, we can minimize a global objective function £ equal to the sum of the squared distances d; =|
p,. Py |* between image points p, and p}:

2
E = dez:Zk‘CPk_CPﬂ (5)
= > (M-S —wizr)® + (N - S — wrys)?)
where we have introduced the vectors M, N, and S ,with four homogeneous coordinates to smplify the
subsequent notation:

M = (M17M27M37M4) (Rl? )7
N = (N, Ny, N3, Ny) = 5(Ry, T),
Sy = (PoPg,1).

We call M and N the pose vectors.

Referringagainto Figure3, noticethat p’p"” = sP’'P" = sP Py. Thereforeminimizing thisobjective
function consists of minimizing the scaled sum of squared distances of model points to lines of sight,
when distances are taken along directions paralel to the image plane.

This objective function is minimized iteratively. Initially, the w, areal set to 1. Then the following
two operations take place at each iteration step:

1. Compute the pose vectors M and N assuming the terms w;, are known (equation (5)).
2. Compute the correction terms w;, using the pose vectorsM and N just computed (equation (2)).

We now focus on the optimization of the pose vectorsM and N. The pose vectorsthat will minimizethe
objectivefunction £ at agiven iteration step arethosefor which al thepartial derivativesof the objective
function with respect to the coordinates of these vectors are zero. This condition provides4 x 4 linear
systems for the coordinates of M and N whose solutions are

Z SkST Z wixESy), (6)



Z SkST Z WrYrES)- (7)

Thematrix L = (37, S;S}) isa4 x 4 matrix that can be precomputed.

With either method, the point p” can be viewed astheimage point p “ corrected” for scaled orthographic
projection using w computed at the previous step of the iteration. The next iteration step finds the pose
such that the scaled orthographic projection of each point P isas close as possible to its corrected image
point.

4 Pose Calculation with Unknown Correspondences

When correspondences are unknown, each image feature point p; can potentially match any of the model
feature points P, and therefore must be corrected using the value of w specific to the coordinates of Py.:

Therefore for each image point p; and each model point 7, we generate a corrected image point p’,,
aligned with the image center ¢ and with p;, and defined by

cp, = wiep;. €C)

We make use of the squared distances between these corrected image points p’, and the scaled ortho-
graphic projections p;, of the points 7, whose positions are provided by

M-S
cp;c N - S: :| (10)
These squared distances are
& = |pipp] = (M- Sy, — wyaj)? + (N - Sy — wyy;)?, (12)

where z; and y; are the image coordinates of the image point p;, S; isthe vector (Si1, Sk2, Sk3, Ska) =
(PP, 1), and M and N are pose vectors introduced in the previous section and recomputed at each
iteration step. Theterm w;, is defined by equation (8).

The simultaneous pose and correspondence problem can then be formulated as a minimization of the
global objective function

E = Z] lzk lmﬂk d]k (12)
= E] 1 Ek k(M- Sy — wkm]) + (N - S — wkyj)Z)

where them ;; are weights, equal to O or 1, for each of the squared distances d?,, and where J and K are
the number of image and model points, respectively. The m ;;, are correspondence variables that define
the assignments between image and model feature points. Note that when all the assignments are well-
defined, this objective function becomes equivalent to the objective function defined in equation (5).
This objective function is minimized iteratively, with the following three operations at each iteration
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1. Compute the correspondence variables assuming everything elseis fixed (see below).
2. Compute the pose vectors M and N assuming everything else isfixed (see below).

3. Compute the correction terms w; using the pose vectors M and N just computed (as described in
the previous section).

This iterative approach isrelated to the genera expectation-maximization (EM) algorithm [32]. In EM,
given aguessfor the unknown parameters (the pose in our problem) and aset of observed data (theimage
pointsin our problem), the expected value of the unobserved variables (the correspondence matrix in our
problem) is estimated. Then, given this estimate for the unobserved variables, the maximum likelihood
estimates of the parameters are computed. This processis repeated until these estimates converge.

41 PoseProblem

We now focus on finding the optimal poses M and N, assuming the correspondence variables m j;, are
known and fixed. Asin the previous section, the pose vectors that will minimize the objective function
E at agiven iteration step are those for which al the partial derivatives of the objective function with
respect to the coordinates of these vectors are 0. This condition provides4 x 4 linear systems for the
coordinates of M and N whose solutions are

Z mkSkST Z Z mpwrx;Sy), (13)

7=1 k=1

J
N=( mSS)"(Y ) muww;S), (14)

with mj, = ijl m;r. Theterms S, S! are4 x 4 matrices. Therefore computing M and N requiresthe

inversionof asingle4 x 4 matrix, L = (3.1, m/ S, S]), afairly inexpensive operation (note that because

the term in column % and slack row .J + 1 (see below) is generally greater than 0, m), = Z;]:l mx IS
generaly not equal to 1, and L generally cannot be precomputed).

4.2 Correspondence Problem

We opti mize the correspondence variables m ;. assuming that the parameters d* “x iIntheexpression for the
objectivefunction £ are known and fixed. Our amistofind azero—oneassgnment matrix, M = {mx},

that explicitly specifies the matchings between a set of ./ image points and a set of A model points, and
that minimizesthe objectivefunction £. M has one row for each of the./ image pointsp; and one column
for each of the K model points P,. The assgnment matrix must satisfy the constraint that each image
point match at most one model point, and vice versa(i.e.,, ¥,m;; = ¥;m;; = 1 foral j and k). A slack
row.J + 1 and adack column K + 1 areadded. A 1inthedack column K + 1 at row j indicates that
image point p,; has not found any match among the mode! features. A 1inthesack row ./ + 1 at column
k indicates that the feature point P, isnot seen in the image and does not match any image feature. The
objectivefunction £ will be minimum if the assignment matrix M matchesimage and model pointswith
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the smallest distances d7,. This problem can be solved by the iterative softassign technique [20, 21].
The iteration for the assignment matrix M begins with a matrix M, in which element m?k isinitialized
to exp(—p(d3;, — «)), with 3 very small, and with &l elementsin the slack row and slack column set to
asmall constant. The parameter o determines how far apart two points must be before considering the
pointsunmatchable. See[21] for an analytical justification. The continuous matrix M, convergestoward
the discrete matrix M due to two mechanisms that are used concurrently:

1. First, atechnique dueto Sinkhorn [37] is applied. When each row and column of a square corre-
spondence matrix is normalized (severa times, alternatingly) by the sum of the elements of that
row or column respectively, the resulting matrix has positive elements with all rows and columns
summing to 1.

2. Theterm 3 isincreased as the iteration proceeds. As 3 increases and each row or column of M,
isrenormalized, the terms m?k corresponding to the smallest dfk tend to convergeto 1, while the
other terms tend to converge to 0. Thisis a deterministic annealing process [19] known as Soft-
max [6]. Thisisadesirablebehavior, sinceit |leadsto an assignment of correspondencesthat satisfy
the matching constraints and whose sum of distances in minimized.

This combination of deterministic annealing and Sinkhorn’stechniquein an iterationloop was called sof -
tassign by Gold and Rangargjan [20, 21]. The matrix M resulting from an iteration loop that comprises
thesetwo substepsistheassignment that minimizestheglobal objectivefunction £ = 377 S my d%.
Asthefollowing pseudocode shows, thesetwo substeps areinterleavedin theiterationloop of SoftPOSIT,
along with the substeps that optimize the pose and correct the image points by scaled orthographic dis-
tortions.

4.3 Pseudocodefor SoftPOSIT
The SoftPOSIT agorithm can be summarized as follows:
Inputs:
1. Alistof J image featurepointsp; = (z;,y;).
2. Alistof K world pointsS; = (X, Yi, Zk, 1) = (Po Py, 1) in the object.

Initializedack elementsof assignment matrix Mtoy = 1/(max{.J, K}+1), 3t0 3, (5 isaround 0.0004
if nothing is known about the pose, and is larger if an initial pose can be guessed).
I nitialize pose vectors M and N using the expected pose or arandom pose within the expected range.
Initialize w;, = 1.
Do A until 3 > Bfinar (Bfina @ound 0.5) (Deterministic annealing loop)

o Compute the squared distances d3, = (M - Sy — wyz;)* + (N - S — wyy;)?

o Computem$, = v exp(—p(d3;, — a))

e Do B until AM small (Snkhorn’s method)

— Update matrix M by normalizing across al rows: m!, = m?%,/ S5 mo,
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— Update matrix M by normalizing across al columns: m$%, = m}, / E;]j mi

e End DoB

o Computed x 4 matrix L = (3, m,SiS]) withmj, = 37 my

e ComputeL™'

o Compute M = L~ (327 S0 mjpwi 2;S))

o ComputeN = L' (3>7_, S0 mjpuwy y;Sk)

o Computes = ||(My, My, Ms)||, Ry = (My, My, Ms)/s, Ry = (Ny, Ny, N3)/s, Ry = Ry xR,
e Computew;, = Rz - Py P/ T, + 1

® 3= Bupdate (Bupdare iS@oOUNd 1.05)

End Do A
Outputs: A rotation matrix R = [R; Ry R;]7, atrandation vector T = (7., 7, T%.), and an assignment
matrix M = {m ;. } between the list of image points and the list of world points of the input.

5 Random Start SoftPOSIT

The SoftPOSIT algorithm described above performs a deterministic annealing search starting from an
initial guess at the object’spose. Because thisisalocal search, thereis no guarantee of finding the global
optimum. The probability of finding the globally optimal object pose and correspondences starting from
an initial guess depends on anumber of factorsincluding the accuracy of theinitial guess, the number of
model points, the number of image points, the number of occluded model points, the amount of clutter
in the image, and the image measurement noise. A common method of searching for a global optimum,
and the one used here, isto run the search algorithm starting from a number of different initial guesses,
and keep the first solution that meets a specified termination criterion. Our initial guesses range over the
range|[—, = | for the three Euler rotation angles, and over a3D space of trand ations known to contain the
true trandation. In this section, we describe our procedure for generating initial guesses for pose when
no knowledge of the correct pose is available, and then we discuss our termination criterion.

5.1 GeneratingInitial Guesses

Givenaninitia pose that liesin avalley of the cost function in the parameter space, we expect the algo-
rithm to converge to the minimum associated with that valley. To examine other valleys, we must start
with pointsthat lieinthem. One possibility for generating new starting posesisto useamulti-dimens onal
pseudo-random number generator.

However, thisleadsto aset of problems. First, apseudo random number generator will generate points
that may cluster together or be far apart in the parameter space. Thus we may revisit some regions of
the space that have aready been studied, or we may miss some regions altogether. A possible solution
isto allow for rejection of some of the generated initial parameter values. However, this adds a layer

12



of complexity to the software, and also does not provide a mathematical guarantee that the space isin
some sense being optimally covered. Indeed, since each search for correspondence and poseisrelatively
expensive, we would like to have a mathematical statement that allows us to make the clam that, for a
given number of starting points, our starting points sample the parameter space in some optimal manner.

Another problem with such searches is that sometimes the minima may liein valleys that are likely
to be of complex shapes, or some of the minima may be embedded in alower-dimensiona manifold in
the space. If the sampling isto be successful in recovering these minima, not only must the distributions
of theinitial guesses sample the parameter space well, but so must their lower-dimensional projections.
Intuitively, the points must be distributed such that any subvolume in the space should contain pointsin
proportionto itsvolume (or other appropriate measure). This property must also hold for projectionsonto
amanifold.

Fortunately, there exists a set of deterministic points that have such properties. These are the quasi-
random, or low-discrepancy, sequences. These points are optimally self-avoiding and uniformly space
filling. Uniformity of adistribution of points can be characterized by the mathematical definition of dis-
crepancy. Let aregion with unit volume have N points distributed in it. Then for uniform point distri-
butions, any subregion with volume o should have o N pointsinit. The difference between this quantity
and the actual number of pointsin the regioniscalled the “discrepancy.” Quasi-random sequences have
low discrepancies and are a so called low-discrepancy sequences. The error in uniformity for a sequence
of V pointsin the k-dimensional unit cubeis measured by its discrepancy, whichisO((log N)* N~1) for
aquasi-random sequence, as opposed to O((log log N)'/? N~1/2) for a pseudo-random sequence [33].

Figure 4 compares the uniformity of distributions of quasi-random points and pseudo-random points.
Figure 4a shows a set of random pointsgenerated in (0, 1)* using a pseudo-random number generator. |f
the distribution of pointswere uniform one would expect that any region of arealarger than 1/512 would
have at least one point init. As can be seen, however, many regions considerably larger than this are not
sampled at all, while pointsin other regionsform rather dense clusters, thus oversampling those regions.
Figure 4b shows the same number of quasi-random points for the same area. These points do not clump
together, and fill the spaces left by the pseudo-random points.

We use a standard quasi-random generator [12] to generate quasi-random 6-vectors in a unit 6D hy-
percube. These points are scaled to cover the expected ranges of trandation and rotation.

5.2 Search Termination

|deally, one would like to repeat the search from a new starting point whenever the number of model-to-
image correspondences determined by the search is not maximal. With rea data, however, one usually
does not know what this maximal number is. Instead, we repeat the search when the number of model
points that match image points is less than some threshold ¢,,. Due to occlusion and imperfect image
feature extraction algorithms, not all model pointswill be detected as featuresin an image of that object.
Let the fraction of detected model features be

number of model points detected as image features
total number of model points '

Pd =

In the Monte Carlo smulations described below, p, is known. With rea imagery, however, p, must be
estimated based on the scene complexity and on the reliability of the image processing algorithm in de-
tecting model features.
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Figure 4: 512 pointsin (0, 1)? generated with (a) a pseudo-random number generator, and (b) a quasi-
random number generator.

We terminate the search for better solutionswhen the current solution is such that the number of model
pointsthat match any image point isgreater than or equal to thethreshold¢,, = pps K, where p determines
what percent of the detected model points must be matched (0 < p < 1), and K is the total number of
model points, so that p; K isthe number of detected model points. p accountsfor measurement noise that
typically prevents some detected model featuresfrom being matched even when agood poseisfound. In
the experiments discussed below, we take p = 0.8. Thistest is not perfect, asit is possible for a pose to
be very accurate even when the number of matched pointsis less than this threshold; this occurs mainly
in cases of high noise. Conversely, awrong pose may be accepted when the ratio of clutter featuresto
detected model pointsis high. It has been observed, however, that these situations are relatively uncom-
mon.

We note that Grimson and Huttenlocher [23] have derived an expression for a threshold on the num-
ber of matched model points necessary to accept aloca optimum,; their expression is a function of the
numbers of image and model points and of the sensor noise, and guarantees with a specified probability
that the globally optimal solution has been found.

5.3 Early Search Termination

The deterministic annealing loop of the SoftPOSIT agorithm iterates over arange of values for the an-
nealing parameter 5. In the experiments reported here, 5 isinitialized to 3, = 0.0004 and is updated
accordingto # = 1.05 x 3, and the annealing iteration ends when the value of 5 exceeds 0.5. (Theiter-
ation may end earlier if convergence is detected.) This means that the annealing loop can run for up to
147 iterations. It isusually the case that, by viewing the original image and, overlayed on top of it, the
projected model points produced by SoftPOSI T, a person can determinevery early (e.g., around iteration
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30) whether or not the algorithm is going to convergeto the correct pose. It isdesired that the agorithm
make this determination itself, so that whenever it detectsthat it seems to be heading down an unfruitful
path, it can end the current search for alocal optimum and restart from a new random initial condition,
thereby saving a significant amount of processing time.

A smpletest is performed at each iteration of SoftPOSIT to determineif it should continue with the
iterationsor restart. Atiteration: of SoftPOSIT, thematch matrix M* = {m’ , } isusedto predict thefinal
correspondences of model to image points. upon convergence of SoftPOSIT, one would expect image
point j to correspond to model point k if m!, > mi,  foralu # jandal v # k (though thisis not
guaranteed). The number of predicted correspondences at iteration ¢, n;, isjust the number of pairs(y, )
that satisfy thisrelation. We then define the match ratio at iteration: asr;, = n,/(psK) where p, isthe
fraction of detected model features as defined above.

The early termination test centers around this match ratio measure. This measure is commonly used
[23] at the end of alocal search to determineif the current solution for correspondence and pose is good
enough to end the search for the global optimum. We, however, use this metric within the local search
itself. Let C denote the event that the SoftPOSIT agorithm eventually converges to the correct pose.
Then the algorithm restarts after the i iteration if P(C | r;) < aP(C), where0 < o < 1. That is, the
search isrestarted from a new random starting condition whenever the posterior probability of eventually
finding a correct pose given r; drops to less than some fraction of the prior probability of finding the
correct pose. Notice that a separate posterior probability functionisrequired for each iteration : because
the ability to predict the eventual outcome using r; changes as the iterations progress. Although thistest
may result in the termination of some local searches which would have eventually produced good poses,
it isexpected that the total time required to find a good pose will be less. Our experiments show that this
isindeed the case; we obtain a speedup by a factor of 2.

The posterior probability function for the: ™ iteration can be computed from P(C'), theprior probability
of finding acorrect pose on one random local search, and from P(r; | C') and P(r; | C), the probabilities
of observing a particular match ratio on the ;™ iteration given that the eventual pose is either correct or
incorrect, respectively:

PC)P(ri | C)

Pl = B pe 0y % PO P T

P(C), P(C), P(r; | C),and P(r; | C) are etimated in Monte Carlo simulations of the algorithmin
which the number of model vertices and the levels of image clutter, occlusion, and noise are al varied.
The details of these simulations are described in Section 6. To estimate P(r; | ') and P(r; | C), the
algorithmisrepeatedly run on random test data. For each test, the values of the match ratio r; computed
at each iteration arerecorded. Once a SoftPOSI T iteration iscompleted, ground truth information isused
to determine whether or not the correct pose was found. If the poseis correct, the recorded values of r;
are used to update histograms representing the probability functions P(r; | C'); otherwise, histograms
representing P(r; | C') are updated. Upon completing thistraining, the histogramsare normalized. P(C)
iseasly estimated based on the percent of the random tests that produced the correct pose. We aso have

P(C) =1- P(C). Two of these estimated probability functions are shown in Figure 5.
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Figure5: Probability functions estimated for (a) thefirst iteration, and (b) the 31st iteration, of the Soft-
POSIT agorithm.

6 Experiments

The two most important questions related to the performance of the SoftPOSIT algorithm are (a) How
often doesit find a“good” pose? and (b) How long does it take? Both of these issues are investigated in
this section.

6.1 MonteCarlo Evaluation

Therandom-start SoftPOSIT algorithm has been extensively evaluated in Monte Carlo simulations. The
simulations and the performance of the algorithm are discussed in this section. The simulationsare char-
acterized by the five parameters. ny, K, pq, p., and o. n, isthe number of independent random trialsto
perform for each combination of values of theremaining four parameters. K isthe number of points(ver-
tices) ina3D model. p, isthe probability that the image of any particular model point will be detected as
afeaturepoint intheimage. p, takesinto account occlusion of the 3D model pointsaswell asthefact that
real image processing algorithms do not detect all desired feature points, even when the corresponding
3D points are not occluded. p. isthe probability that any particular image feature point is clutter, that is,
is not theimage of some 3D model point. Finally, o isthe standard deviation of the normally distributed
noise in the = and y coordinates of the non-clutter feature points, measured in pixelsfor a 1000 x 1000
image, generated by a ssimulated camera having a 37-degree field of view (afocal length of 1500 pixels).
The current tests were performed with n, = 100, K € {20, 30,40, 50, 60, 70,80}, ps € {0.4,0.6,0.8},
p. € {0.2,0.4,0.6}, and o € {0.5,1.0,2.5}2. With these parameters, 18,900 independent trials were

2Because one of our main application is autonomous navigation in cities, and because image corner points of the type
produced by buildings can be located with an accuracy of 1/10th of a pixel [5], these values of o are larger than what is
expected in real imagery.
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performed.

For each trial, a3D modd is created in which the K model vertices are randomly located in a sphere
centered at the origin. Because the SoftPOSIT algorithm works with points, not with line segments, itis
only the model verticesthat are important in the current tests. However, to make the images produced by
the algorithm easier to understand, each model vertex is connected by an edge to the two closest of the
remaining model vertices. These connecting edges are not used by the SoftPOSI T algorithm. The model
is then rotated into some arbitrary orientation, and trandated to some random point in the field of view
of the camera. Next, the model is projected into the image plane of the camera; each projected model
point is detected with probability p;. For those points that are detected, normally distributed noise with
mean zero and standard deviation o isadded to both the = and y coordinates of the feature points. Finally,
randomly located clutter feature points are added to the true (non-clutter) feature points, so that 100 x p.
percent of thetotal number of featurepointsare clutter; to achievethis, K pip./(1—p.) clutter pointsmust
be added. The clutter pointsarerequired to liein the general vicinity of the truefeature points. However,
to prevent the clutter points from replacing missing true feature points, each clutter point must be further
than /20 from any projected model point, whether or not the point was detected. Figure 6 shows afew
examples of cluttered images of random models that are typical of those used in our experiments.

In our experiments, we consider apose to be good whenit allows80% (p = 0.8 in Section 5.2) or more
of the detected model pointsto be matched to some image point. The number of random starts for each
trial was limited to 10,000. Thus, if agood pose is not found after 10,000 starts, the algorithm gives up.
Figures 7 and 8 show anumber of examples of poses found by SoftPOSIT when gquasi-random 6-vectors
are used as theinitial guesses for pose.

Figure 9 shows the success rate of the algorithm (percent of trialsfor which agood pose was found in
10,000 starts, given no knowledge of the correct pose) as a function of the number of model points for
o = 2.5 and for all combinations of the parameters p; and p.. (The algorithm performs alittle better for
o =0.5ando = 1.0.) It canbeseenfromthisfigurethat, for morethan 92% of the different combinations
of simulation parameters, agood poseisfoundin 90% or moreof the associated trials. For the remaining
8% of the tests, a good pose is found in 75% or more of the trials. Overall, a good pose was found in
96.4% of thetrials. Asexpected, the higher the occlusion rate (lower p,) and the clutter rate (higher p.),
the lower the success rate. For the high-clutter tests, the success rate increases as the number of model
points decreases. Thisis due to the algorithm’s ability to more easily match a smaller number of model
pointsto clutter than alarger number of model pointsto the same level of clutter.

Figure 10 shows the average number of random starts required to find a good pose. These numbers
generally increase with increasing image clutter and occlusion. However, for the reason given in the pre-
vious paragraph, the performancefor small numbersof model pointsisbetter at higher levelsof occlusion
and clutter. Other than in the highest occlusion and clutter case, the mean number of starts is about con-
stant or increases very slowly with increasing number of model points. Also, there does not appear to be
any significant increase in the standard deviation of the number of random starts as the number of model
pointsincreases. The mean number of startsover al of thetestsis approximately 500; the mean exceeds
1100 startsonly in the single hardest case. Figure 11 shows the same data but plotted as a function of the
number of image points. Again, except for the two highest occlusion and clutter cases, the mean number
of startsis about constant or increases very slowly as the number of image pointsincreases.
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Figure 6: Typical images of randomly generated models and images. The black points are projected
model points and the white points (circles) are clutter points. The black lines, which connect the model
points, are included in these picturesto assist the reader in understanding the pictures; they are not used
by the agorithm. The number of pointsin the modelsare 20 for (a), 30 for (b), 40 for (c), 50 for (d) and
(e), 60 for (f) and (g), 70 for (h), and 80 for (i). In al cases shown here, p; = 1.0 and p. = 0.6. This
isthe best case for occlusion (none), but the worst case for clutter. In the actual experiments, p,; and p.
vary.
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Figure 7: Some projected models and cluttered images for which SoftPOSIT was successful. The small
circlesaretheimage points (including projected model and clutter) to which the model s must be matched.
The light gray points and lines show the projections of the modelsin the initial poses (random guesses)
which lead to good poses being found. The black points and lines show the projections of the modelsin
the good poses that are found. The black pointsthat are not near any circle are occluded model points.
Circlesnot near any black point are clutter. Again, the gray and black lines areincluded in these pictures
to assist the reader in understanding the pictures; they are not used by the algorithm. The Monte Carlo
parametersfor thesetestsare p; = 0.6, p. = 0.4, 0 = 2.5, K = 30 for (@) and (b), K = 50 for (c) and
(d).

19



(© (d)

Figure 8: More projected models and cluttered images for which SoftPOSIT was successful. The Monte
Carlo parametersfor thesetestsarep; = 0.6, p. = 0.4, 0 = 2.5 and K = 70 for (a) and (b), K = 80 for
(c) and (d).
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Figure 11: Number of random starts required to find a good pose as a function of the number of image
pointsfor fixed valuesof p; and p.. (a) Mean . (b) Standard deviation.

6.2 Algorithm Complexity

The run-time complexity of asingleinvocation of SoftPOSIT isO(.J K') where .J isthe number of image
pointsand K isthe number of model points; thisis because the numbers of iterations on al of the loops
in the pseudocode in Section 4.3 are bounded by a constant, and each lineinside aloop is computed in
timeat most O(.J K'). Asshown in Figures 10 and 11, the mean number of random starts (invocations of
SoftPOSIT) required to find agood pose, to ensure a probability of success of at least 0.95, appearsto be
bounded by afunction that islinear in the size of the input. That is, the mean number of random startsis
O(.J), assuming that K < .J, asisnormally the case. Then the run-time complexity of SoftPOSIT with
random startsis O(.JJ* K). Thisisafactor of .J better than the complexity of any published algorithm that
solves the simultaneous pose and correspondence problem under a full perspective camera model.

6.3 Experimentswith Images
6.3.1 Autonomous Navigation Application

The SoftPosit agorithm is being applied to the problem of autonomous vehicle navigation through acity
where a 3D architectural model of the city is registered to images obtained from an on-board video cam-
era. Thus far, the algorithm has been applied only to imagery generated by a commercial virtual reality
system. Figure 12 shows an image generated by this system and a world model projected into that im-
age using the pose computed by SoftPOSIT. Image feature points are automatically located in the image
by detecting corners along the boundary of bright sky regions. Because the 3D world model has over
100,000 data points, we use a rough pose estimate (such as might be generated by an onboard navigation
system) to cull the majority of model pointsthat don’t project into the estimated field of view. Then the
world pointsthat do fall into this estimated field are further culled by keeping only those that project near
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Figure12: (a) Original image from avirtual reality system. (b) World model (white lines) projected into
thisimage using the pose computed by SoftPOSIT.

the detected skyline. Sofar, theresults have beenvery good. Although thisisnot real imagery, thevirtual
reality system used is very sophisticated, and as such, should give a good indication of how the system
will perform on real imagery, which we are currently in the process of acquiring.

6.3.2 Robot Docking Application

The robot docking application requiresthat a small robot drive onto a docking platform that is mounted
onalarger robot. Figure 13 showsasmall robot docking onto alarger robot. 1n order to accomplish this,
the small robot must determine the relative pose of the large robot. Thisis done by using SoftPOSIT to
align a3D model of the large robot to corner points extracted from an image of the large robot.

The model of the large robot consists of a set of 3D pointsthat are extracted from atriangular faceted
model of the robot which was generated by a commercial CAD system. To detect the corresponding
pointsin the image, lines are first detected using a combination of the Canny edge detector, the Hough
transform, and a sorting procedure used to rank the lines produced by the Hough transform. Cornersare
then found at the intersections of those linesthat satisfy simple length, proximity, and angle constraints.
Figure 14 shows thelines and corner points detected in oneimage of the largerobot. Inthistest thereare
70 points in the model; 89% of these are occluded (or not detected in the image), and 58% of the image
points are clutter. Figure 15a shows the initial guess generated by SoftPOSIT which led to the correct
pose being found, and Figure 15b shows this correct pose.

7 Conclusions

We have developed and evaluated the SoftPOSIT algorithm for determining the poses of objects from
images. The correspondence and pose cal cul ation combines into one efficient iterative process the soft-
assign algorithm for determining correspondences and the POSI T algorithm for determining pose. This
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Figure 13: A small robot docking onto alarger robot.
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Figure 14: Animage of the large robot as seen from the small robot’s point of view. Long straight lines
detected in the image are shown in white, and their intersections, which ideally should correspond to
verticesin the 3D model, are shown in black.
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Figure 15: The initial guess at the robot’s pose (a) that leads to the correct pose as shown in (b).
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algorithm will be used as a component in an object recognition system.

Our evauation indicates that the algorithm performswell under avariety of levelsof occlusion, clutter,
and noise. The algorithm has been tested on synthetic datafor an autonomous navigation application, and
wearecurrently collectingreal imagery for further testswith thisapplication. Theagorithmhasalso been
tested in an autonomous docking application with good results.

The complexity of SoftPOSIT has been empirically determined to be O(J2K). Thisis better than any
known agorithm that solves the simultaneous pose and correspondence problem for a full perspective
cameramodel. More data should be collected to further validate this claim.

Future work will involve extending the SoftPOSIT algorithm to work with linesin addition to points.
We are also interested in performing a more thorough comparison of the performance of SoftPOSIT to
that of competing algorithms.

Appendix A The Complexity of the Hypothesize-And-Test Approach

The asymptotic complexity of the general hypothesi ze-and-test approach to model-to-imageregistration
isderived in this appendix. Wefirst define afew parameters. Let

J be the number of image points,

K be the number of 3D model points,

pq bethe fraction of model pointsthat are present (non-occluded) in the image,
R be the desired probability of success (i.e., of finding a good pose).

Given a set of data with outlier rate w, it is well known [18] that the number & of random samples of
the data of size n that must be examined in order to ensure with probability = that at least one of those
samplesisoutlier-freeis

_ log(1 — z)
log(1 = (1 —w)")’

We need to determine how this number of samples dependson K, .J, p4, and R for the hypothesi ze-and-
test algorithm for large values of .J and K.

Because we assume that the hypothesize-and-test algorithm has no apriori information about which
correspondencesare correct, correspondencesare formed from randomly chosen model and imagepoints.
We assume that three correspondencesare used to estimate the object’'spose. Let S = p, K bethe number
of detected (non-occluded) model points in the image. For a correspondence to be correct, the model
point must be non-occluded and the image point must correspond to the model point. The probability
that the n™ (n = 1,2, 3) randomly chosen correspondence is correct given that all previously chosen
correspondences are also correct is

S—n-+1 1
K—-n+1 J—n+1

Then the probability that any sample consists of three correct correspondencesis

S(S—1)(S —2) S pas
K(K—1)(K —2)J(J—1)(J=2)  K3J3 2
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The probability that each of 7" random samplesisbad (i.e., each includes at |east oneincorrect correspon-
dence) is

(1= (5"

Thusto ensurewith probability Rthat at |east one of therandomly chosen samples consistsof three correct
correspondences, we must examine T samples where

Pd\3\T
1—-(1-5)T>R
(1= (5))
Solving for T, we get
log(1 — R)

Notingthat (p,/.J)* isalwayslessthat 10~* in our experiments, and using theapproximationlog(1 —z) ~
—z for z small, the number of samples that need to be examined is

J 1
T =~ (—)’log(——).
()" log( =)

Since each sample requires O(.J K') time for back-projection and verification, the complexity of the gen-
era hypothesize-and-test algorithmis

J 5
—)°1

) x O(JK) = O(J*K).

Appendix B Scaled Orthographic Image Points

Here we give ageometric interpretation of the relation between perspective and scaled orthographicim-
age points. Consider Figure 3. A plane 1T’ parallel to the image plane II is chosen to pass through the
origin P, of the object coordinate system. This plane cuts the cameraaxisat H (OH = T.). The point
P projectsinto P’ on plane IT’, and theimage of P’ ontheimage planell iscaled p'.

A plane 11", dso parallel to the image plane I1, passes through point P and cutsthe line of sight 7. at
Pr. The point P, projects onto the plane 11’ at P”, and the image of P” on the image plane 11 is called
p//.

The plane defined by line . and the camera axis is chosen as the plane of the figure. Therefore, the
image points p and p” are also in the plane of the figure. Generally P, and P are out of the plane of the
figure, and therefore p’ is also out of the plane of thefigure.

Consider again the equations of perspective (equations (1, 2)):

wr | SRf sT, PP
[wy]_[ng sTy][l ] (15)

withw = R3 - PoP/T, + 1. Wecan seethat ep’ = s(Ry - PoP + T,,Ry - PoP + T,). Indeed, the
termsin parentheses are the z and y camera coordinates of P and therefore also of P’, and the factor s
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scales down these coordinates to those of the image p’ of P’. In other words, the column vector of the
right-hand side of equation (15) represents the vector ¢p’ in the image plane.

On the other hand, ep” = (wz,wy) = wep. Indeed the z-coordinate of P in the camera coordinate
systemisR; - PoP + T, i.e. wT,. Itisaso the z-coordinate of P;,. Therefore OP; = wT,0p/f.
The z and y camera coordinates of F;, are also those of P”, and the factor s = f /7, scales down these
coordinatesto those of theimage p” of P”. Thus ¢p” = wep. In other words, the column vector of the
left-hand side of equation (15) represents the vector cp” in the image plane. The image point p” can be
interpreted as a correction of the image point p from a perspective projection to a scaled orthographic
projection of apoint P, located on the line of sight at the same distance as P.
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