1 TWO DATA ORGANIZATIONS FOR
STORING SYMBOLIC IMAGES IN A
RELATIONAL DATABASE SYSTEM

Aya Soffer and Hanan Samet

Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Science
University of Maryland at College Park
College Park, Maryland 20742

aya@umiacs.umd.edu and hjs@umiacs.umd.edu

Abstract: A method is presented for integrating images into the framework of a
conventional database management system (DBMS). It is applicable to a class of images
termed symbolic images in which the set of objects that may appear are known a priori.
The geometric shapes of the objects are relatively primitive and they convey symbolic
information. Both the pattern recognition and indexing aspects of the problem are
addressed. The emphasisis on extracting both contextual and spatial information from
theraw images. A logical image representation that preservesthisinformation is defined.
Methods for storing and indexing logical images as tuples in a relation are presented.
Indices are constructed for both the contextual and the spatial data, thereby enabling
efficient retrieval of images based on contextual as well as spatial specifications. Two
different data organizations (integrated and partitioned) for storing logical images in
relational tables are proposed. They differ in the way that the logical images are stored.
Sample queries and execution plans to respond to these queries are described for both
organizations. Analytical cost analyses of these execution plans are given.

INTRODUCTION

Images (or pictures) serveasan integra part in many computer applications. Examples
of such applications include CAD/CAM (computer aided design and manufacturing)
software, document processing, medical imaging, GIS (geographic information sys-
tems), computer vision systems, office automation systems, etc. All of these applica-

1

tions store various types of images and require some means of managing them. The
field of image databases deals with this problem [8]. One of the mgjor requirements
of an image database system is the ability to retrieve images based on queries that
describe the content of the required image(s), termed retrieval by content. Anexample
query is“find all images containing camping sites within 3 miles of fishing sites’.

In order to support retrieval by content, the images should be interpreted to some
degreewhenthey areinsertedinto thedatabase. Thisprocessisreferredtoasconverting
an image from a physical representation to a logical representation. The logical
representation may be a textual description of the image, a list of objects found in
the image, a collection of features describing the objects in the image, a hierarchical
description of theimage, etc. Itisdesirablethat thelogical representation also preserve
the spatia information inherent in the image (i.e., the spatia relation between the
objects found in the image). We refer to the information regarding the objects found
in an image as contextual information, and to the information regarding the spatia
rel ation between these obj ects as spatial information. Both thelogical and the physica
representation of the image are usually stored in the database. An index mechanism
based on the logical representation can then be used to retrieve images based on both
contextual and spatial information in an efficient way.

There are many image database systems (e.g., Virage [18], QBIC [11], Photo-
book [13], FINDIT [17] aswell as others [2, 5, 6, 12]). Most systems treat theimage
as awhole, and index the images based mainly on color and texture. A few systems
try to recognize individual objectsin an image. These systems do not, however, ad-
dress the issues of spatial relationship between the objects. Other systems deal with
indexing tagged images (images in which the objects have already been recognized
and associated with their semantic meaning) in order to support retrieval by image
content.

In our work, we have chosen to focus on images where the set of objects that may
appear are known a priori. In addition, the geometric shapes of these objects are
relatively primitiveand they convey symbolicinformation. Our gpplicationisthemap
domain where many graphical symbols are used to indicate the location of various
sites such as hospital s, post offices, recreation areas, scenic areas etc. Wecall thisclass
of images symbolic images. Other similar terms found in the literature are graphical
documents, technical documents, and line drawings. Limiting ourselves to symbolic
images simplifies object recognition enabling using well-known methods in document
processing.

In this paper, we present methods for integrating symbolic images into a conven-
tional database management system (DBMS). In our application, we make use of a
relational DBM S although our ideas are applicable to other DBMS's. These methods
offer solutionsfor both the pattern recognition and indexing aspects of the problem.
We describe how to incorporate the results of these methods into an existing spatia
database based on therelational model. Our emphasisis on extracting both contextual
and spatial information from the raw images. Thelogica image representation that we
define preserves thisinformation. Thelogical images are stored astuplesin arelation.
Indices are constructed on both the contextual and the spatid data, thus enabling effi-
cient retrieval of images based on contextual aswell as spatial specifications. It isour

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 3

view that an image database must be able to process queries that have both contextual
and spatial specifications, in addition to any traditional query.

We proposetwo different data organi zations, termed integrated and partitioned, for
storing images in relational tables. They differ in how logical images are stored. All
of the examples and experiments in this paper are from the map domain. However,
images from many other interesting applications fall into the category of symbolic
images. These include CAD/CAM, engineering drawings, floor plans, and more.

The main contribution of this work liesin demonstrating how atraditional DBMS
can be used to store and retrieve images and how partitioning this data effects the
performance of the database. While the database and pattern recognition techniques
that we use are well-known, the novelty of this work is in adapting and integrating
these techniques into one system that provides a comprehensive solution for storing
and retrieving images in a DBMS. We suggest solutions for al of the steps that are
involved in this integration. These steps include: image acquisition, interpretation,
storage, indexing, and retrieval. The main issues that need to be resolved are:

1. finding an image interpretation procedure whose results can be stored as entries
in a traditional database in such a way that both the contextual and spatial
information inherent in the image will be preserved.

2. what dataorganizationis most suitablefor the types of queriesthat are common
inthis application.

3. determiningwhat strategiesto usewhen computing answersto queries(i.e., how
to use the double indexing on both contextual and spatial data efficiently).

4. finding ways to compute their costs.

The rest of this paper is organized as follows. We first present definitions as well
as the notation used. Next, we outline the image input system used to convert images
fromtheir physica representation to their logical representation asthey areinput to the
database. We continue by describing how images are stored in a database management
system using the two data organi zations that we propose including schema definitions
and examplerelations. Thisisfollowed by sample queries along with execution plans
and cost estimates for these plans. We conclude with some observations as well as
directionsfor future research.

DEFINITIONS AND NOTATIONS

Below we define some terms and the notation used in the remainder of the paper.
A general image is a two-dimensional array of picture elements (termed pixels)
Po,P1,---,Pn- A binary image is a generd image where each pixel has one of
two possiblevaues (usually 0 and 1). Onevaueis considered the foreground and the
other the background. A general image isconverted into abinary image by means of a
threshold operation. A symbol isagroup of connected pixelsthat together have some
common semantic meaning. In agiven application, symbolswill bedivided into valid
symbols and invalid symbols. A valid symbol is a symbol whose semantic meaning
is relevant in the given application. An invalid symbol is a symbol whose semantic
meaning is irrelevant in the given application. A class is a group of symbols all of

which have the same semantic meaning. All invalid symbolsbelong to a special class
caled the undefined class.

A symbolicimageisagenera image I for which the following conditionshold: 1)
Each foreground pixel p; in I belongsto some symbol. 2) The set of possible classes
C1,Cs,...,C, for the application is finite and is known a priori. 3) Each symbol
belongsto some class. 4) There existsafunction f which when given a symbol s and
aclass C' returns ava ue between 0 and 1 indicating the certainty that s belongsto C'.

Images can berepresented in oneof twoways. Inthe physical imagerepresentation,
an image is represented by a two-dimensional array of pixel values. The physica
representation of an image is denoted by 7,,5,.. Inthelogical image representation,
an image [isrepresented by alist of tuples, one for each symbol s € I. Thetuples
areof theform: (C, certainty, (x,y)) where C' Zundefined, (z, y) isthelocation of s
inl,and0 < certainty < 1 indicatesthe certainty that s € C.

IMAGE INPUT

Conversion of input images from their physical to their logica representation is per-
formed using methods common in document analysis[9]. These methods use various
pattern recognitiontechniquesthat assign aphysical object or an event to oneof several
pre-specified classes. Patternsare recognized based on somefeatures or measurements
made on the pattern. A library of features and their classifications, termed thetraining
set library, is used to assign candidate classifications to an input pattern according
to some distance metric. Each candidate classification is given a certainty value that
approximates the certainty of the correctness of this classification.

We have adapted these methods to sol ve the problem of converting symbolicimages
from aphysical to logical representation. Figure 1.1 is ablock diagram of the image
input system that we have developed for this purpose. It is driven by the symbolic
information conveyed by theimage. That is, rather than trying to interpret everything
in the image, it looks for those symbols that are known to be of importance to the
application. Any other symbol found in the image is labeled as belonging to the
undefined class. This system is described in detail in [15]. In this paper we show
how to integrate this system into a DBMS, thus we only give a short overview of the
imageinput system here. A symbolicimage I, iSinput to thesystem initsphysical
representation. It isconverted into alogica image by classifying each symbol s found
in I,nys using the training set library. An initial training set library is constructed
by giving the system one example symbol for each class that may be present in the
application. In the map domain, the legend of the map may be used for this purpose.

The system may work in two modes. In user verification mode, users verify the
classifications before being input to the database. The training set is modified to
reflect the corrections that the user made for erroneous classifications. In automatic
mode, classifications are generated by the system and input directly to the database.
The user determines the mode in which the system operates. In general, the system
should operate in user verification mode until the recognition rate achieved is deemed
adeguate. Then, the system can continueto process the input images automatically.

The output of applying the conversion process to 1,5, is a logica image where
the tuples are of the form (C, certainty, (x, y)) where C' # undefined, 0 < certainty

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 5

LEGEND ACQUISITION PHASE

| |
I I
| |
i Legend I
| Tile |PREPROCESSING FEATURE USER LIBRARY [
! AND ——= !
} SEGMENTATION EXTRACTION LABELING CONSTRUCTION | |
I
| Initial | Training !
il Set yLibrary |
SYMBOL CLASSIFICATION PHASE Modiﬁe(]'rraining
Current Training Set] Library
Set Library
LIBRARY
MODIFICATION
Modified Classifier Parameters ‘ ¢

USER
VERIFICATION

User Verified
Classifications

Set of
Triplets:

1

I

|

|

I

|

|

|

|

I

|

|

I

|

|

I

1

| Initial/Default
| Classifier Parameters
|
|
I
|
|
|
|
I
|
|
I
|
|
I
|
|
|
|
I
|
|
I
|

=1 (class,
FEATURE L] OBJECT certainty,
EXTRACTION CLASSIFICATION point) INFORMATION

SYSTEM

System
Generated
Classifications

Non-

Legend

Tile xy |PREPROCESSING
— | AND

SEGMENTATION

Tile Image

Figure 1.1 Image input system

< 1 indicating the certainty that s € C, and (z, y) isthe location of s in I,,,. For
each image, a set of such tuplesisinserted into a spatial database as described in the
following section. In addition, the raw image I,y (i.e, the image in its physica
representation) is also stored.

IMAGE STORAGE

Images and other information pertaining to the application are stored in relational
tables. The database system that we use for this purpose is SAND [1, 3] (denoting
gpatial and non-spatia database), developed at the University of Maryland. Itisa
home-grown extension to arelational database, in which the tuples may correspond to
geometric entities such as points, lines, polygons, etc. having attributeswhich may be
both of alocationa (i.e., spatial) and a non-locational nature. Both types of attributes
may be designated as indices of the relation. For indicesbuilt on locationa attributes,
SAND makes use of suitable spatial data structures. Attributesof typeimage are used
to store physical images. Query processing and optimization is performed following
the same guidelines of relationa databases extended with a suitable cost model for
accessing spatia indices and performing spatial operations.

We propose two different data organizations for storing the images in relationa
tables. They differ in the way logical images are stored. In the integrated organi-
zation, al tuples of the logical images are stored in one relation. In the partitioned
organi zation, the tuples are partitioned into separate rel ations resulting in a one-to-one
correspondence between relations and classes of the application. For example, tuples
(C, certainty, (x,y)) of alogica image for which C' = (4 are stored in a relation
corresponding to C,. The motivation for the partitioned organization is that many
gueriesinin an application using symbolic images need to access al symbolsthat are
assigned thesame classification. The part of thequery that selectsall tuplesthat belong
to the same classification is repeated each time such a query is posed. The partitioned
organization makes this repetitive selection at query time unnecessary by providing
the option to partition the logical images relation. The partitioned organization isonly
suitable for applicationsin which the number of classesisrdatively smal, asthereis
one relation for each class and a proliferation of relations would make the database
too complex. In the case of symbolic images, thisis a reasonable assumption. The
number of different symbolsused to convey symbolicinformation (which corresponds
to the number of classes) will most likely not be very large, otherwiseit would be hard
to keep track of or look up the semantic information that is conveyed by each symbol.
For example, in the map domain this information must be contained in the legend of
the map which is limited in space. Hence, the partitioned organization seems to be
reasonable for a database that stores symbolic images. The partitioned organization
also enables efficient use of spatia indiceswhile processing spatial queries by using a
spatial join operator (e.g., [14]).

Integrated Organization

(CREATE TABLE classes (CREATE TABLE physical_images
name STRING PRIMARY KEY, img_id INTEGER PRIMARY KEY,
semant STRING, descriptor STRING,
bitmap IMAGE); upper_left POINT,

raw IMAGE);

(CREATE TABLE logical_images
img_id INTEGER REFERENCES physical_images(img_id),
class STRING REFERENCES classes(name),
certainty FLOAT (CHECK certainty BETWEEN O AND 1),
loc POINT,
PRIMARY KEY (img_id,class,loc));

Figure 1.2 Schemas for the relations classes, physical_images, and
logical_images.

The schema definitions given in Figure 1.2 define the relations in the integrated
organization. We use an SQL-like syntax. The classes relation has one tuple for
each possibleclassintheapplication. Thename field storesthe name of theclass (e.g.,
star), the semant field stores the semantic meaning of the class in this application
(eqg., site of interest). The bitmap field stores a bitmap of an instance of a symbol

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 7

cl ass senmantics bi t map
S har bor Q]
square hot el @
sceni c sceni ¢ view a
T cust ons @
R rest aur ant ®
P post office ™
M miseum @)
K cafe ®©
waves beach a
triangle canmping site @&
B filling station
arrow hol i day canp -
Ccross first aid station ®
fish fishing site =
H service station &)
i nf tourist information (3]
pi picnic site ®
air airfield)
star site of interest *
tel ephone | public tel ephone @
box yout h host el u
U sports institution @)

Figure 1.3 Example instance for classes relation.

| image_id| descriptor | raw | upper_left |

tile 003.012 of Finnish road map
tile 003.013 of Finnish road map

Fig. 1.5 | (6144,1536)

image_1
Fig. 1.6 | (6656,1536)

image_2

Figure 1.4 Example instance for physical_images relation.

representing this class. It is an attribute of type IMAGE. The classes relation is
populated using the same data that is used to create the initial training set for the
image input system (i.e., one example symbol for each class that may be present in the
application aong with its name and semantic meaning). See Figure 1.3 for an example
instance of the classes relation in the map domain.

The physical_images relation has one tuple per image / in the database. The
img_id field is an integer identifier given to the image / when it isinserted into the
database. The descriptor field stores an aphanumeric description of the image
that the user giveswhen inserting / (thisis meta-data). The raw field stores the actual
image / initsphysical representation. Itisan attributeof type IMAGE. Theupper left

G *
1@ Jokelan srkat O@ /‘@ Kepsunjarvi
© *
44

Golf
o « (

66
® * Koski l

\/a!lnq\ @
65 oz B 17

30 /’Aﬂ '
y é : 18,4

®

-

Tykkimaki

a2
6,0

Figure 1.5 Example: image_1. Figure 1.6 Example: image_2.

field stores an offset value that |ocates the upper left corner of image 7 with respect to
the upper left corner of some larger image J. Thisis useful when alargeimage J is
tiled, as in our example map domain. Subtracting this offset value from the absolute
location of s in the the non-tiled image J yields the location of s in the tile / that
containsit. Itisan attribute of typePOINT. Any additiona meta-data that the user may
wish to store about the images such as how they were formed, camera angles, scale,
etc. can be added as fields of thisrelation. See Figure 1.4 for an example instance of
thephysical_images relationin the map domain.

The logical_images relation stores the logical representation of the images. It
has one tuple for each candidate class output by the image input system for each
valid symbol s in each image /. The tuple has four fields. The img_id field is the
integer identifier given to 7 when it was inserted into the database. It is a foreign
key referencing the img_id field of the tuplerepresenting / inthephysical_images
relation. The class and certainty fields store the name of the class C' to which the
image input system classified s and the certainty that s € C'. The 1oc field stores the
(z,y) coordinate values of the center of gravity of s relative to the non-tiled image.
See Figure 1.7 for an example instance of the logical_images relation in the map
domain for theimages givenin Figures 1.5 and 1.6.

Constructing Indices Indices are defined on the schemas defined above as follows
(in SQL-like notation):

CREATE INDEX cl_sem ON classes (semant);

CREATE INDEX cl_name ON classes (name);

CREATE INDEX pi_id ON physical_images (img_id);

CREATE INDEX pi_ul ON physical_images (upper_left);
CREATE INDEX li_cl ON logical_images (class certainty);
CREATE INDEX 1li_loc ON logical_images (loc);

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES

image_id class certainty | location

image_1 M 1 (6493,1544)
image_1 P 0.99 (6161,15486)
image_1 H 0.99 (6513,1566)
image_1 U 1 (6167,1583)
image_1 star 0.99 (6332,1586)
image_1 P 0.99 (6432,1622)
image_1 K 1 (6416,1636)
image_1 fish 1 (6411,1661)
image_1 scenic 0.99 (6630,1662)
image_1 square 1 (6422,1693)
image_1 star 0.99 (6540,1712)
image_1 pi 0.99 (6396,1741)
image 1 | triangle 1 (6475,1784)
image_1 star 1 (6474,1814)
image_1 cross 0.79 (6291,1854)
image_1 box 0.74 (6357,1862)
image_1 inf 1 (6226,1937)
image_1 box 1 (6280,2011)
image 2 arrow 0.99 (6861,1544)
image 2 scenic 0.72 (6803,1565)
image 2 pi 0.99 (6849,1756)
image_2 R 0.71 (6849,1756)
image_2 P 0.99 (6858,1771)
image 2 H 0.99 (6827,1775)
image 2 U 0.79 (6827,1775)
image 2 pi 0.99 (6800,1807)
image_2 0.99 (6800,1807)

9

Figure 1.7 Example instance for the logical_images relation in the map domain.

The tuples correspond to the symbols in the images of Figures 1.5 and 1.6.

clsem and clname are aphanumeric indices. They are used to search the

classes relation by semant and name, respectively. The pi_id index is dso a-

phanumeric. It isused to search thephysical_images relation by img_id. pi_ul is
a spatial index on points. It isused to search the physical_images relation by the

coordinates of the upper Ieft corner of theimages. 1i_c1 isan aphanumericindex. It
isused to search thelogical images relationby class. It hasasecondary index on
atribute certainty. Thus, tuplesthat have the same class name are ordered by cer-
tainty valuewithinthisindex. 1i_loc isaspatia index on points. It isused to search
thelogical_images relation by location (i.e., to deal with spatial queries regarding

the locations of the symbols in the images such as distance and range queries). The

gpatial indices are implemented using a PMR quadtree for points[10].

10

li_cl: index on class
B-trre)

class |certainty| li_tid

Cl

C1l

C1
c2
Cc2

C'z logical_images

class |certainty| location|image id

: 11

Cn . . .
physical_images

Cn i - - -

< image _id | descriptor | lower_left|raw

11
Cn g 12

i; .-

li_loc: index on location
(PMR-tree)
location| li_tid

Figure 1.8 File structures for logical and physical images using the integrated organi-
zation.

Observe that the file structures resulting from the integrated organization are very
similar to the file structures used by inverted file methods for storing text [4]. An
inverted file consistsof two structures. A vocabulary list whichisasorted list of words
found in thedocuments, and aposting fileindicating for each word thelist of documents
that containit and information regarding its positionin the document. The vocabulary
listisactually anindex on thepostingfile, and isused tolocate the record of theposting
file corresponding to a given word on disk. In our organization, the logical_images
relation corresponds to the posting file. The index 1i_c1 on this relation plays the
role of the vocabulary list. The main difference from text is that as we are dealing
with 2-dimensiona information rather than 1-dimensional information, we need more
elaborate methods to store and index the locationa information. In particular, just
storing the location, as is donefor text data, isinsufficient. In order to answer spatia
queries efficiently, these locations must be sorted by use of aspatia index. Figure 1.8
illustratesthefile structures used following the integrated organi zation that correspond
to similar file structures used for text data.

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 11

Partitioned Organization

In the partitioned organization, tuples are partitioned into separate relations resulting
in a one-to-one correspondence between relations and classes of the application. For
example, tuples(C', certainty, (z,y)) of alogical imagefor which C' = 4 are stored
in a relation corresponding to €. Figure 1.9 gives schema definitions for relations
of the partitioned organization corresponding to the logical_images relation of the
integrated organization. Both the classes and physical_images definitions are
identical to those in the integrated organization. The only difference between the
organizationsisthe way thelogica images are stored. In the partitioned organization,
thereisonerdation, c1_part foreachclasscl intheapplication. Eachrelationcl_part
contains the logical images tuples (C, certainty, (x,y)) for which C' = ¢l. Thisis
equivaent to the result of a selection operation: SELECT FROM logical_images
WHERE class = c¢/. See Figure 1.10 for example instances of relations star _part,
P_part, scenic_part, and pi_part for theimagesin Figures1.5 and 1.6.

for each class cl in application
(CREATE TABLE cl_part
img_id INTEGER REFERENCES physical_images(img_id),
certainty FLOAT (CHECK certainty BETWEEN O AND 1),
loc POINT,
PRIMARY KEY (img_id,loc));

Figure 1.9 Schemas for the c1_part relations in the partitioned organization.

Constructing Indices Indices are defined on the separate class schemas of the par-
titioned organi zation as follows (in SQL-like notation):

for each class cl in application
CREATE INDEX cl_cert ON cl_part (certainty);
CREATE INDEX cl_loc ON cl_part (loc);

Each instance of the c1_part relation has an aphanumeric index on certainty
and a spatial index on 1oc. The spatial index is used to dea with queries of the type
“find al images with sites of interest within 10 miles of a picnic area’ by means of
a spatia join operator. Figure 1.11 illustrates the file structures for the partitioned
organization corresponding to file structures used for text data.

RETRIEVING IMAGES BY CONTENT

As mentioned above, we distinguish between contextual information and spatial in-
formation found in images. Similarly, we distinguish between query specifications
that are purely contextual and those that also contain spatial conditions. A contextual
specification defines theimagesto be retrieved in terms of their contextual information
(i.e., theobjectsfoundin theimage). For example, supposewe want to find all images
that contain fishing sitesor campgrounds. A spatial specificationfurther constrainsthe

12

star part:
image_id | certainty | location |
image_1 0.99 (6332,1586)
image_1 0.99 (6540,1712)
image_1 1 (6474,1814)

scenic_part:

| image_id | certainty | location |
image_1 0.99 (6630,1662)
image 2 0.72 (6803,1565)
Ppart:
| image_id | certainty | location |
image_1 0.99 (6161,1546)
image_1 0.99 (6432,1622)
image 2 0.99 (6858,1771)
pipart:
image_id | certainty | location |
image_1 0.99 (6395,1741)
image 2 0.99 (6849,1756)
image 2 0.99 (6800,1807)

Figure 1.10 Example instances of relations star _part, scenic_part, P_part, and
pi_part. The tuples correspond to the symbols in the images of Figures 1.5 and 1.6.

required images by adding conditions regarding spatia information (i.e., the spatial
rel ations between the objects).

In order to describe the methods that we use for retrieving images by content, we
first present some example queries. Next, we demonstratethe strategiesused to process
these queries. We conclude by analyzing the expected costs of these strategies (termed
plans) and compare the data organizations (i.e., integrated and partitioned).

Example Queries

The example queries in this section are first specified using natural language. This
is followed by two equivaent SQL-like queries. The first assumes an integrated
organi zation and the second assumes a partitioned organi zation.

Query Q1: display all images containing ascenic view .

display PI.raw

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 13

Cl_loc C1 _class
location | li_tid certainty | location |image_id
C2_loc C2_class physical_images
location | li_tid certainty | location |image id image_id | descriptor | lower_left | raw
>< I
12
Im
Cn_loc Cn_class
location | li_tid certainty | location [image Ad

Figure 1.11 File structures for logical and physical mages using the partitioned orga-
nization.

from logical_images LI, classes C, physical_images PI
where C.semantics = '"scenic view'" and C.name = LI.class
and LI.image_id = PI.image_id;

display PI.raw
from scenic_part SC, physical_images PI
where SC.image_id = PI.image_id;

Notice that in order to write SQL-like queries for the partitioned organization, the
names of the relations corresponding to each partition must be known. Thiscan easily
be overcome by having the system assign names to these relations. These names are
derived fromtheclass attributeof relation c1lasses. Two functionsthat perform this
name conversion are provided. get_rel name returns the name of arelation given
the class name. get_class returnsthe class name given arelation name. Thus, there
isno need for the user to know the names assigned by the system to these relations.

Query Q2: display al images containing ascenic view within5 milesof apicnic site.

display PI.raw

from logical_images LI1, logical_images LI2, classes Ci,
classes C2, physical_images PI

where Cl.semantics = '"scenic view"
and C2.semantics = '"picnic site"
and Cl1.name = LIl.class and C2.name = LI2.class
and distance(LI1.location,LI2.location) < 5
and LI1.image_id = LI2.image_id
and LI1.image_id = PI.image_id;

display PI.raw

14

from scenic_part SC, pi_part PIC, physical_images PI
where distance(SC.location,PIC.location) < 5

and SC.image_id = PIC.image_id

and PIC.image_id = PI.image_id;

The function distance takes two geometric objects (e.g., two points) and returns a
floating point number representing the Euclidean distance between them.

Query Processing

The following plans outline how responses to queries Q1 and Q2 are computed using
the two data organizations. These plans utilize the indexing structures available for
each organization. Indices on aphanumeric attributes are capable of locating the
closest value greater than or equal to a given string or number. Indices on spatia
attributes are capable of returning the items in increasing order of their distance from
a given point (thisis termed an incremental nearest neighbor operation) [7]. This
operation may optionally receive a maximum distance, DD, and it will stop when the
distance to the next nearest neighbor is greater than D. Thus, it returns all neighbors
within D of aquery point inincreasing distance. Direct addressing of atuplewithina
relation ispossible by means of atupleidentifier (or tid for short). All index structures
have an implicit attribute that stores thistid. The X' plan, labeled Pz, uses the
integrated organization. The X ** plan, labeled Pz p, uses the partitioned organi zation.

Query Q1: display al images containing a scenic view.
Plan P1;: Search using an aphanumericindex on class.

Get all tuples of logicalimages which correspond to “scenicview”
(use index licl)
For each such tuple t
display the physical image corresponding to t

Plan P1p Search the scenic view partition sequentially

For each tuple t of the “scenicview” partition
display the physical image corresponding to t

Query Q2: display al images containing ascenic view within5 milesof apicnicsite.
Finding a suitable plan for query Q2 gives rise to many query optimization issues.
Most of these issues are also applicable to spatial databases (e.g., [1]). To see the
complexity of these issues, we give two different plans for computing an answer to
guery Q2 using each organization. Thefirst uses only a phanumericindices, whilethe
second uses an a phanumeric index and a spatia index.

Plan P2A; Search picnic tuplesand scenic view tuples using the a phanumeric index
on class. For each picnic tuple, check all scenic view tuples to determine
which ones are within the specified distance.

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 15

get all tuples of logical.images corresponding to “picnic
(use index licl)
for each such tuple tl
get all tuples of logical.images corresponding to “scenicview”
(use index licl)
for each such tuple t2
if distance between tl and t2 < 5 miles
and they are in the same image then
display corresponding physical image

Plan P2B; Search for “picnic” tuples using an aphanumeric index on class and
search for “scenic view” tuplesusing a spatial index on loc.

get all tuples of logical.images corresponding to “picnic
(use index licl)
for each such tuple t
get all points within 5 miles of t.loc
(using the incremental nearest neighbor operation)
for each one of these points p
if p is a ‘‘scenic view’’ and in same image then
display the corresponding physical image

Plan P2Ap Search both the picnic and scenic view partitions sequentially.

for each tuple tl of the “picnic’ partition
for each tuple t2 of the “scenicview” partition
if distance between tlloc and t2loc < 5 miles
and they are in the same image then
display the corresponding physical image

Plan P2Br Search the picnic partition sequentially, and search the scenic view parti-
tion using the spatial index on loc.

for each tuple tl of the “picnic’ partition
get all points within 5 miles of tl.loc
in the “scenicview” partition
for each one of these points p
if p is in the same image as tl then
display the corresponding physical image

Cost Analysis

In order to estimate the costs of each plan, we must make assumptions about the
datadistributionand the costsof thevariousoperations. Table 1.1 containsatabulation
of the costs of basic operations used to process queries. The cost of many of these
operations is a function of the relation on which they operate. c,,) is the cost of
performing operation = on relation or index y. 11 standsfor logical_images. The

16

| Name | Meaning

Cr accessing atuple by tid (random order)

Csq accessing atuple in sequential order

Csqf accessing thefirst tuple of arelation

Caf “findfirst” operation on an alphanumeric index

Can “find next” operation on an aphanumeric index

Cisf “find nearest neighbor” operation on alocation space index
Clan “find next nearest neighbor” operation on alocation spaceindex
crsy | “find nearest neighbor” operation on afeature spaceindex
Cfsn “find next nearest neighbor” operation on a feature space index
Csc string comparison

Clsd distance computation in location space

Cfsd weighted distance computation in feature space

Table 1.1 Costs of basic operations used in query processing.

cost of accessing the physical _images relation to retrieve the result image and the cost
of the “display” operation are not included as it is dways the same regardless of the
selected execution plan. Let V,;. and N, bethenumber of tuplesfrom class*picnic”
and “scenic view”, respectively. Let B,;. and B,, be the number of disk blocks
containing tuplesfrom class “picnic” and “scenic view”, respectively.

Equations1.1, and 1.2 estimate thecost of respondingto query 1 usingtheintegrated
and partitioned organizations, respectively.

Ci; = caf(iicety + Now X (ris) + Canii_er)) (1.1)
Clp = Ng X Csq(sv_part) (12)

One difference between €1, and €', ,. isthat intheintegrated organization, thereisan
“aphanumeric find” operation on index 1i_c1 that is not necessary in the partitioned
organization. It isrequired in order to find the first scenic view tuplein thisindex. In
addition, one more random access is required for each scenic view tuple in order to
get the img_id fromthe logical _images relation. The other difference isthat there
are N, aphanumeric next operations in the integrated organization compared with
N, sequential access operationsin the partitioned organizations. The reason for this
isthat in the partitioned organization, the relation is scanned directly, whereas in the
integrated organi zation, the index is scanned.

Coa; = Caj(iicety + Npic X (Cris) + Can(ii_en)) + (1.3)
Bypic X [cafti_ety + Nso X (Crs) + Can(ii_eny)] +
Npie X Ny X €54

Caap = Npic X Csq(pipart) + (1.4)
Bypic X [€sqf(sv_part) + Nsv X Csg(sv_part)] +
Npie X Ny X €54

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 17

Equations 1.3 and 1.4 estimate the cost of responding to query 2 with plan A using the
integrated and partitioned organi zations, respectively. In both equations, thefirst line
isthecost of reading all pictuples, thesecond lineisthe cost of reading all sv tuplesfor
each block, and thelast lineisthe cost of checking the distance between each (pic,sv)
pair. Nr,c, denotes the average number of tuplesin the circular range specified in
query 2 (Cs). Nsy_rnc, denotes the average number of scenic view tuplesin Cs.
Assuming a uniform distribution of symbolsin space (i.e., thereisan equal number of
symbolsin any given area), then Ny, = %@ x N, where IV isthetotal number
of tuplesin the logical_images relation, A isthe area covered by these tuples, and
(5 is the circular range specified in query 2. Assuming a uniform distribution of
classificationsamong the symbols(i.e., thereis an equa number of symbolsfrom each
classification in any group of symbols), then Ny, rnc, = ‘"e‘ACQ x &, where CL
isthe number of different classificationsin the database.

If these assumptions about the distribution of the classifications among symbols
do not hold, then other methods are required to estimate the number of scenic view
tuplesin a given area. The portion of al tuples that belong to each classification
can be recorded when populating the database by checking the class attribute and
tallying the number for each classification. This data can then be used to estimate the
distributionof the classifications among the symbols. Assuming that thedistributionof
classificationsamong any group of symbolsisequal tothethetotal databasedistribution
(i.e., the portion of tuplesfrom each classification among any given group of symbols
iseqgua to the portion of tuples from each classification in the entire database), then
Nsv_nc, = %@ x sv, x N, where sv, isthe portion of the database tuplesthat
belong to the “scenic view” class.

Plan P2A performs a spatial join operation on the results of two selection oper-
ations on relation logical_images. The first select operation extracts all tuples of
the relation that are of class “picnic’, while the second select operation extracts al
tuples of the relation that are of class “scenic view”. The results of these two select
operations are then joined according to a predicate based on the loc attribute. In
our implementation of plan P2A ., we perform the select and join operations simul-
taneously using a block nested loop join algorithm as follows. One of the classes is
designated as theinner class, and the other is designated as the outer class. One block
of tuples belonging into the outer class are read into a memory-resident buffer (using
theindex on attribute class). All tuplesof theinner class are then read (one block at
atime using the index on attribute c1ass) and spatialy joined with all tuples of the
outer class that are in memory (by computing the predicate on the spatia attribute).
This processisrepeated with the next block of tuples of the outer class, until al tuples
of the outer class have been read.

The main difference between C'5 4, and C's 4. isthat in the integrated organization
the index is scanned sequentially, whereas in the partitioned organi zation the rel ation
corresponding to the scenic view partition is scanned sequentially (as in the case
of query 1). As aresult, once again, there are considerably more “random access’
operationsin the integrated organization than in the partitioned organization.

18

Equations 1.5 and 1.6 estimate the cost of responding to query 2 with plan B using
the integrated and partitioned organizations, respectively. Again, asin equations 1.3
and 1.4, thefirst lineisthe cost of reading all pic tuples, but the second lineisthe cost
of finding sv tuplesin the range (using index li_loc) for each pic.

Cop, = cCapticety + Npic X [Cr1i) + Can(ii_en] + (1.5)
Npie X [€1sf(tiztoey + Nrncy X (Cr1iy + Cse + Clsn(ii_toc))]
CZBP = Npic X Csq(pi_part) + (16)

Npic X Cisf(sv_loc) + Nsv_InCQ X (cr(sv_part) + clsn(sv_loc))

The main difference between C»g, and Csp,. isin the number of location-space
“find next” operations and the number of random access operations. In theintegrated
organization, all tuples t of any class in circle C'; are retrieved from the spatial
index. Theclass of t isthenretrieved fromthelogical_images relationto seeif it
correspondstoa*“scenic view”. Thisrequiresarandom access operation for each tuple
in C5. On the other hand, in the partitioned organization, only tuples of type “scenic
view” are retrieved by the spatial index. Thus, there is no need for an additional
random access to check the class of the tuple. In addition, since only a subset of
thetuplesin circle C, are “scenic view” tuples, the number of items retrieved by the
spatial query in the integrated organization (i.e., Nr,¢,) islarger than the number of
itemsretrieved by the spatial query in the partitioned organization (i.e., Nsy_rnc,)-

Another significant difference between C»5, and C»p,. isthat the spatia index on
which the search is performed is smaller in the partitioned organization since it only
contains “scenic view” tuples (i.e,, [svloc| < |[1iloc|). Asaresult, ciof(sv_toc)
and cisn(svtoc) A€ IESSthaN cisp1iioc) AN Crgn(1iioc), respectively. Therefore, the
difference between the total cost of plan P2B in the partitioned organization and
the total cost of plan P2B in the integrated organization is greater than in the case
of plan P2A. The plan for the partitioned organization can be further improved by
implementing a more sophisticated form of the spatial join operation between the two
relationsscenic_part and pi_part which correspondto“scenic view” and “picnic”,
respectively. The overall ideais that the join can be computed more efficiently by
traversing both indices in parallel in such away as to avoid comparing tuples which
cannot satisfy the join condition. This operation has not been implemented in SAND
yet. Onceitisadded, plan P2Bp will be revised accordingly.

It is interesting to compare the costs of answering query 2 for one particular or-
ganization using plans P2A and P2B. For the integrated organization, we compare
equations 1.3 and 1.5. In plan P2A, both relations are scanned sequentialy viathe
alphanumeric index 1i_c1. For each picnic tuple, each scenic view tupleis checked
to determine whether or not it iswithin the specified range. Thus, the total number of
distance computationsis Np;. x N, . Inaddition, the same number of random access
operations are also required in order to get the locations from the Logical_images
relations. In plan P2B;, the spatia index is used and thus only tuples that are within
the specified range need to be examined. The cost of thisis the overhead involved
in using the spatial index. In this case, this cost is IV,;. location-space “find first”
operations, and N,;. x Np,c, location-space “find next” operations. These spatia
operations involve distance computations as part of the incremental nearest neighbor

DATA ORGANIZATIONS FOR SYMBOLIC IMAGES 19

operation. However, there is no need for any distance computationsas part of the plan
itself. Whether plan P2A; or plan P2B; is better depends on the size of the data set,
the portion of these tuples that belong to each classification (termed the contextual
selectivity), and on the portion of al tuplesthat fall in the range specified by the spatial
component (termed the spatial selectivity). Assuming a high spatia selectivity (i.e,
that the number of tuplesin the spatia range is much smaller than the total number
of tuplesin the data set), plan P2B should prove to be much more efficient than plan
P2A;. However, if the spatial selectivity islow, then plan P2A; may prove to be bet-
ter. Similar observationscan be made about the partitioned organi zation by comparing
equations 1.4 and 1.6. Once a more efficient spatia join operator is implemented, as
mentioned above, the difference will be even greater.

CONCLUDING REMARKS

Two different data organizations (integrated and partitioned) for storing logical images
in relationa tables were proposed. They differ in the way that the logical images are
stored. Sample queries and execution plans to answer these queries were described
for both organizations. Analytical cost analyses of these execution plans were given
that indicated that the partitioned data organization is more efficient for queries that
consist of both contextual and spatial specifications. On the other hand, the integrated
organizationis better for purely spatial specifications. Both organizationsgave similar
results for queries that consist of purely contextual specification.

Our definition of the class of images that we can handle is rather strict. Some
of these restrictions can be relaxed. In particular, the requirement that there exists a
function f which when given asymbol s and aclass C' returns a value between 0 and
1indicating the certainty that s belongsto C' can be omitted. In thiscase, we can store
the feature vectorsin the database rather than the classifications. For a comparison of
using these two approaches, see [16]. Of course, more el aborate indexing methods are
then required to respond to queries such as those presented in this paper.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under Grants
CDA-950-3994 and IRI-97-12715. We are grateful to Karttakeskus, Map Center,
Helsinki, Finland for providing us the map data.

References

[1] W. G. Aref and H. Samet. Optimization strategies for spatial query processing.
In Proc. of the 17th Intl. Conf. on \ery Large Data Bases, pp. 81-90, Barcelona,
Sept. 1991.

[2] S. K. Chang, E. Jungert, and Y. Li. The design of pictoriad databases based
upon the theory of symbolic projections. In Design and Implementation of Large
Soatial Databases — 1st Symp., SSD’ 89, pp. 303-323, Santa Barbara, CA, July
1989. (Also Springer-Verlag Lecture Notesin Computer Science 409).

[3] C. Esperanca and H. Samet. Spatia database programming using SAND. In

20

Proc. of the 7th Intl. Symp. on Spatial Data Handling, vol. 2, pp. A29-A42,
Delft, The Netherlands, Aug. 1996.

[4] C.Fadoutsos. Access methodsfor text. ACM Comp. Surveys, 17(1):49-74, Mar.
1985.

[5] V. Gudivada and V. Raghavan. Design and evaluation of agorithms for image
retrieval by spatial similarity. ACM Trans. Info. Syst., 13(2):115-144, Apr. 1995.

[6] A.Gupta T.Weymouth, and R. Jain. Semantic querieswith pictures: theVIMSY S
model. In Proc. of the 17th Intl. Conf. on Very Large Databases, pp. 69-79,
Barcelona, Spain, Sept. 1991.

[7] G. R. Hjatason and H. Samet. Ranking in spatial databases. In Advances in
Spatial Databases — 4th Intl. Symp., SSD’ 95, pp. 83-95, Portland, ME, Aug.
1995. (Also Springer-Verlag Lecture Notesin Computer Science 951).

[8] R.Jain. NSF workshop on visual information management systems. SSGMOD
RECORD, 22(3):57-75, Sept. 1993.

[9] R. Kasturi, R. Raman, and C. Chennubhotla. Document image analysis an
overview of techniquesfor graphics recognition. In Proc. of the |APR Workshop
on Syntactic and Sructural Pat. Rec., pp. 192—230, Murray Hill, NJ, June 1990.

[10] R. C. Nelson and H. Samet. A consistent hierarchical representation for vector
data. Computer Graphics, 20(4):197-206, Aug. 1986. (Also Proc. of SG-
GRAPH’ 86, Dadllas, Aug. 1986).

[11] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, and
P. Yanker. The QBIC project: Querying images by content using color, texture,
and shape. In Proc. of the SPIE, Sorage and Retrieval of Image and Video
Databases, vol. 1908, pp. 173187, San Jose, CA, Feb. 1993.

[12] V. Orig, B. Xu, and M. T. Tamer. VisuaMOQL: A visua query language for
image databases. In Proc. of thelFIP 2.6 4th Working Conf. on Visual Database
Systems (VDB-4), pp. 186-191, L' Aquila, Italy, May 1998.

[13] A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: Content-based manipu-
lation of image databases. In Proc. of the SPIE, Storage and Retrieval of Image
and Video Databases ||, vol. 2185, pp. 34-47, San Jose, CA, Feb. 1994,

[14] D. Rotem. Spatid joinindices. In Proc. of the 7th Intl. Conf. on Data Eng., pp.
500-509, Kobe, Japan, April 1991. IEEE Computer Society Press.

[15] H. Samet and A. Soffer. MAGELLAN: Map acquisition of geographic labels by
legend analysis. Intl. Journal of Document Analysis and Recognition, 1(2):89—
101, June 1998.

[16] A. Soffer and H. Samet. Two approaches for integrating symbolic imagesinto a
multimedia database system: a comparative study. VLDB Journal, to appear.

[17] M. Swain. Interactive indexing into image databases. In Proc. of the SPIE,
Sorage and Retrieval for Image and Video Databases, vol. 1908, pp. 95-103,
San Jose, CA, Feb. 1993.

[18] Virage. Virageweb site. http://www.virage.com.

