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Abstract

A method is presented for representing multidimensional objects with orthogo-
nal faces (i.e., collections of hyperrectangles or n-dimensional rasters) compactly
by a vertex list. This is a list of points with associated weights (vertices). Al-
gorithms for converting between rasters and vertex lists as well as performing
set-theoretic operations on these structures are described and shown to execute
in O(N - d) time, where d is the dimension and N is the number of vertices in
the representation. Other applications of vertex lists are also discussed.

1 Introduction

The shape of objects can be represented by the interiors of the objects or by their
boundaries. The most common interior-based representation is one that decomposes
the object into a collection of cells all of whose sides are of unit length (termed
pixels or vorels in two and three dimensions respectively). The elements of the
this collection (i.e., the cells) are labeled with values or attributes and are frequently
aggregated into subcollections of similarly-valued cells. The decomposition into a
collection of uniform cells makes it very easy to calculate properties such as mass as
well as determining the value associated with any point of the space covered by the
cell.

On the other hand, boundary-based representations are more amenable to the
calculation of properties pertaining to shape (e.g., perimeter, extent, etc.). In this
case, we simply record the different boundary elements. We frequently make use of a
similar technique to that of decomposing an object into a collection of unit-sized cells.
The difference is that now we record their boundaries. Such methods are relatively
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easy in two dimensions where the boundaries are lines. It is somewhat more difficult
in three dimensions (and higher).

Both interior- and boundary-based representations can be made more compact by
just recording the change in the values rather than the values themselves. For interior-
based representations this technique is known as runlength encoding [3]. It aggregates
identically valued cells into one-dimensional rectangles for which only the value and
the length of the rectangle are recorded. The location of the cell can be computed by
referring to the location of the starting position. This method is also applicable to
data of higher dimensions. For boundary-based representations, an analogous effect
can be achieved by use of chain codes [1]. This is a technique for representing the
boundary of an object by a sequence of directional codes corresponding to unit steps
in the four or eight principal directions. Unfortunately, it is difficult to extend this
idea to dimensions higher than two as there is no natural order for traversing the
boundaries of such objects.

Recently, Schechtman [7] introduced a new technique for storing VLSI masks
known as the vertex algebra. The vertex algebra is also based on recording changes
in values rather than the values themselves. It is a combination of an interior and a
boundary representation in the sense that both the interiors and boundaries of the
regions are represented implicitly through the aid of a single vertex which is the tip
of a cone. The vertex algebra was originally presented primarily as an alternative
model for two-dimensional data represented as lists of rectangles. Algorithms have
been devised for a number of vertex algebra operations in two dimensions [7].

In this paper, we show how the vertex algebra can be extended to represent or-
thogonal objects in arbitrary dimensions, and present a number of algorithms for
operations that are useful in computer vision and pattern recognition applications.
The contribution of our work is the generality of the solutions that we obtain through
the use of recursion to construct the representation in higher dimensions, as well as
performing the operations on it. This is largely a result of the switch of the primitive
unit to being a one-dimensional vertex list rather than a two-dimensional vertex list.
This same principle was also used by us in developing a raster to vertex list conversion
algorithm, reported here, which works in arbitrary dimensions. Of course, we could
have also treated the individual cells as unit hyperrectangles and applied the methods
of Schechtman. However, this is cumbersome and defeats the notion of aggregation
of similarly-valued cells.

The rest of this paper is organized as follows. Section 2 reviews the vertex algebra.
Section 3 shows how to use this method to represent multidimensional objects with
orthogonal faces (termed orthogonal maps). Section 4 introduces a data structure
called a vertex list and several associated algorithms. Section 5 summarizes what is
presently known about vertex representations and gives directions for further research.



2 Vertex Algebra

Let p = (p1,p2-+-pa) be a point in RY. We define the cone of p as the scalar field
Q,: R — Z where:

Q-

L itz >2piAza2>pa Ao Aag > py
0 otherwise.

X

Figure 1: Cone of a point in R?

In other words, the cone of p maps to 1 all points inside a hyperrectangle with its
minumum vertex at p and extending to infinity in the positive directions of all axes,
and maps to 0 all other points. Figure 1 illustrates the scalar field represented by the
cone of one single point in R2.

A vertex is defined as a weighted point, that is, a point with an associated scalar
value (a point can be thought of as a vertex with weight 1). The cone of a vertex
v = (p,a), where p is the position of v and « is the weight of v, is a scalar field
given by @), = - Q),. That is, @Q,(x) is « for all points such that @,(x) =1 and 0

otherwise.

Similarly, the scalar field represented by a set of vertices V = {v, vy - - v;} is given

by Qv = Zf:l Q-

y
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Figure 2: Scalar field represented by a set of vertices in R?

Figure 2 shows an example of a scalar field in R? given by a set of 3 vertices. The
labeled black dots correspond to the positions of the vertices and their weights.



It is useful to enumerate some properties of scalar fields expressed using vertex
algebra. Let a and b be vertices, o and [ be integers, and (), denote the scalar field
represented by vertex v. Then,

L aQa + Q. = (a + §)Qa.

2. 0Q, = 0.
3. If @y + @y + --- = 0 and the positions of a, b etc are all distinct, then
a=pf=---=0.

3 Orthogonal Maps and Polygons

In the following, we use the term orthogonal map to designate any scalar field that
can be represented by a finite set of vertices. A set of vertices that represents an
orthogonal map is termed a vertex representation and obeys the following rules:

1. No two vertices with the same positions are allowed. This is reasonable, since if
t = (p,a) and u = (p, ) are vertices in the set, then they can be replaced by

vertex v = (p,a + f3)

2. Vertices with weight 0 are not allowed as they add no new information.

The main purpose of enforcing these rules on sets of vertices is to assure uniqueness,
i.e., that every orthogonal map has exactly one vertex representation.

We define an orthogonal polygon to be a special case of an orthogonal map where
all points are mapped either to 0 or to 1. Those points that are mapped to 0 are said
to be outside the polygon and those that are mapped to 1 are inside the polygon.
If we restrict ourselves to R?, the class of orthogonal polygons closely resembles the
class of ordinary polygons whose edges are parallel to one of the coordinate axes. In
fact, given any such polygon, we can contruct an equivalent vertex representation
with the following algorithm. Since we have already used the term vertex to mean
a point with an associated weight, we refer to the vertices of ordinary polygons as
articulation points:

1. Select a minimum articulation point of the polygon and create a vertex with
weight +1. A minimum articulation point is a point (xo,yo) such that no other
point (z,y) on the boundary of the polygon has @ < oAy < yo. Note that more
than one articulation point may satisfy these requirements.

2. Follow the boundary of the polygon starting from the minimum articulation
point in a clockwise (or counterclockwise) direction. For each articulation point,
create a vertex with weights alternating between —1 and +1, that is, +1 for
point (2o, yo), —1 for point (x1,y1), +1 for point (a2, y2), and so on.
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Figure 3: Vertex construction of an orthogonal polygon

3. Stop when reaching the minimum articulation point again.

The labeling process described above is illustrated in Figure 3. It must be ob-
served that the algorithm is only well defined if in step 2 we know exactly which
vertex/articulation point to visit next. In the case of self-intersecting polygons we
have more than one choice at certain points and the resulting vertex representation
may differ. This is illustrated in Figure 4. Notice that Figure 4(d) contains a vertex
with weight 2, which is a result of visiting an articulation point twice while traversing
the boundary of the polygon.
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Figure 4: Two ways of buiding a vertex representation of a self-
intersecting orthogonal polygon. Visiting the articulation points as in
(a) yields the vertex representation given in (b), whereas visiting them
as in (c) results in the vertex representation given in (d)

It is also possible to represent polygons with “holes”. In this case, apply the
algorithm to the boundary of each hole but label the starting minimum vertex with
value —1 instead of +1. If we regard the example in Figure 4(a) as a polygon with one
hole touching the outer boundary, then we would also get the vertex representation
in Figure 4(d).

A similar construction algorithm may be devised for orthogonal polygons in any
dimension. The task of selecting a minimum articulation point poses no difficulties.
There is no obvious order, however, for traversing the articulation points. This doesn’t



matter at all since, at least for non-self-intersecting polygons, all that is needed is to
assign opposite weights to any two vertices that share an edge.

4 Vertex Lists

Most algorithms on vertex representations use the plane-sweep paradigm [2]. More-
over, plane-sweep is frequently applied recursively, that is, the solution of a problem
in d dimensions is obtained by combining the partial solutions of many subproblems
in d — 1 dimensions. This suggests that vertices should be organized as a list in re-
verse lexicographic order by dimension. For example, letting ((uq,uz---uq), ) and
((v1,v9- - vq), ) be vertices u and v, respectively, we have that vertex u appears
before vertex v in a vertex list if ug (u’s last coordinate value) is less than vg. Sim-
ilarly, if uy is greater than vy then w appears after v. If vy = vy then v and v are
on the same hyperplane and the ordering between them is determined by the d — 1
remaining coordinate values, with coordinate value d — 1 being the most significant.
If all coordinate values of u and v are equal, then u and v are in the same position
and they may be replaced by one vertex whose weight is the sum of the weights of
u and v. For instance, the vertices a = ((4,5),1), b = ((3,2),2) and ¢ = ((4,2),—1)
would appear in a list in the order b6 ¢ a.

In the remaining sections, vertex list algorithms are given using the following
conventions:

1. Uppercase letters such as L, R and S represent lists of vertices.
2. Lowercase letters from the end of the alphabet, such as u, v and w represent
vertices.
3. Other lowercase letters, such as 7, j and k represent integers.
4. head(L) is the first vertex of L.
5. tael(L) is L without its first vertex.
6. concat(L,S) is list L concatenated with list S.
7. concat(L,v) is list L concatenated with vertex v.
8. € represents an empty list.
9. dim(v) is the number of coordinates of v.
10. weight(v) is the weight of v.
11. coord(v,1) is the i'" coordinate value of v.
12. proj(v) is vertex v with its last coordinate dropped.
13. unproj(v, k) is vertex v with one additional coordinate with value k.
14. precedes(u,v) is a Boolean function that is defined only if dim(u) = dim(v). It
returns true if u < v in reverse lexicographic order, i.e.,
precedes(u,v) < (coord(u,dim(u)) < coord(v,dim(v))) V
(coord(u, dim(u)) = coord(v,dim(v))A
precedes(proj(u), proj(v)))



4.1 Sum of Vertex Lists

Given two vertex lists L and S of the same dimension, their sum is a vertex list that
represents the sum of their orthogonal maps, that is Q15 = Q@+ s. This operation
is achieved by merging vertex lists L and S adding the weights of vertices in the same
position. Similarly, the multiplication of a vertex list by a scalar « is equivalent to
multiplying the weight of each vertex of the representation by «.

Procedure add, given below, implements these operations. Given vertex lists L
and S and a scalar «, the algorithm returns the vertex list L + oS in vertex list R.

procedure add(L, S, a)
R—¢
while L #¢V S # ¢ do
if 5 = ¢V precedes(head(L), head(S5)) then
R — concat(R, head(L))
L — tail(L)
else if L = ¢V precedes(head(5), head(L)) then
v — head(9)
weight(v) — a - weight(v)
R — concat(R,v)
S — tail(9)
else
v — head(L)
wetght(v) — weight(v) + a - weight(head(9))
if weight(v) > 0 then R — concat(R,v)
L — tail(L)
S — tail(9)

return R

This algorithm is clearly linear in the total number of vertices in the two vertex
lists, since at each iteration one vertex of L or S (or both) is removed and one (or
none) is added to R. This claim can be contested on the grounds that comparing the
positions of two d-dimensional points in space (as required by precedes) takes O(d)
time. Fortunately, though, the reverse lexicographic ordering of vertices in vertex
lists enables this operation to be executed in O(1) time.

4.2 Converting Rasters to Vertex Lists

A raster in d dimensions is defined by the value associated with each of its cells. Let
length(i) represent the length of the raster in the :"* dimension, and F' be a list of
the raster’s values stored in reverse lexicographic order. For instance, if the raster is
a 2 x 3 matrix, then length(1) is 2, length(2) is 3, and the values would be stored
in F' row-wise, i.e., first the element in row 1 column 1, then row 1 column 2, row 2
column 1, etc.



Each vertex represents the position of space where there is a change in value
when the raster is viewed as an aggregation of one-dimensional rows stored in reverse
lexicographic order. In one dimension, if two cells ¢ and b with values « and 3 are
neighbors, then the change in value is given by 3 — «; if @ = 3 then no vertex is
necessary to indicate the change from a to b. Also, we assume that these changes are
accumulated over an initial value of 0.

As an example, consider the one-dimensional raster given by values (5,3,3,4): the
corresponding vertex representation is given by (((1),+5),((2),—2),((4),4+1))) (see
Figure 5). Notice that the interval (—oo,1) is assumed to be mapped to 0, while
interval [4,4+00) is mapped to the last value in the raster, i.e. 4. This means that
changes in value accross different one-dimensional rows are not recorded. In other
words, every row starts with the first non-zero location.

+5 -2 +1
e e e
1 2 3 4 5 X

Figure 5: Conversion of a one-dimensional raster to a vertex list.

For higher dimensions the problem can be expressed as a combination of length(d)
subproblems of dimension d — 1. First, we find the vertex list for each sub-
raster corresponding to the hyperplanes perpendicular to the d* axis at coordinates
1,2...length(d). The vertex representation for the d-dimensional raster is then com-
puted by subtracting each previous vertex list from the current one. The rationale
behind this procedure is that we are computing the change in value from one hyper-
plane to the next. Procedure raster_to_vlist, given below, implements this process and
returns its result in vertex list R.

procedure raster_to_vlist (d,length, I)
R—¢
if d =1 then
J<=0
for ¢ in {1...length(1)} do
k — weight(head(F"))
F— tail(F)
if j # k then R — concat(R,((¢),k—j))
else
S — ¢
for ¢ in {1...length(d)} do
T — raster_to_vlist (d — 1,length, I)
R — concat(R,unproj(add(T,S,—1),1))
ST

return R
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Figure 6: Converting a raster to a vertex representation. (a) A two-
dimensional raster. Each raster line is converted to a one-dimensional
vertex representation as given in (b). The subtraction of each pair of 1D
vertex lists results in the 2D vertex representation given in (c).

Figure 6 shows an example in two dimensions. We can see that the algorithm reads
each cell value exactly once and thus is linear in the number of cells. For a one-
dimensional raster, the algorithm produces at most as many vertices as there are cells
in the raster. This worst case corresponds to the case where each cell value is different
from the previous one. For an d-dimensional raster, the algorithm outputs length(d)
lists of vertices of dimension d — 1, each with potentially as many as length(1) x ... x
length(d — 1) vertices. Thus, given a raster with N cells, the storage requirement is
always O(N). Also, each vertex list produced by the algorithm at dimensions d > 1
results from the addition of two vertex lists, a process that is linear in the number
of vertices. This is done once for all but the first dimension and thus the algorithm
executes in O(N - d) time.

4.3 Transformations and Set Operations

A common operation on orthogonal maps is to compose them with a transformation
function f : Z — Z. That is, if L is a vertex list representation of a particular
orthogonal map @, then to apply f on L is equivalent to evaluating f(Qp).

One major application of transformations is to perform set-theoretic operations.
For instance, consider two orthogonal polygons represented by their vertex lists A and
B. In the orthogonal map represented by the list L = A + B, those areas originally
covered by either A or B are mapped to 1, while those areas covered by both A and
B are mapped to 2. It is possible to obtain the union of A and B by applying to list

L the transformation
1 fxz>0

0 otherwise.

o - {

Similarly, the following transformation on I, may be used to obtain the intersection

of A and B:
1 ifz>1

0 otherwise.

it = {



The set difference may be obtained by first subtracting B from A and then applying
transformation f.

The algorithm to apply a transformation to a vertex list is similar to the raster
to vertex list conversion algorithm. Once again, we recursively sweep hyperplanes of
decreasing dimension. The problem that we must address is that the values stored
in the vertices correspond to differences in the values of cones in space rooted at the
vertices, while the transformation involves the application of a function to the actual
values of the points in space. This is easy to overcome by recalculating the values
of the points in space during the sweep. In algorithm transform below, L is a vertex
list of dimension d and f is a transformation. Variable ¢ contains the value of the
d" coordinate for the current position of the sweeping hyperplane and I is the list of
vertices on it. S and T' are vertex lists corresponding to the value of the orthogonal
map just before and just after the sweeping hyperplane. S" and 7" are transformed
versions of S and T', respectively.

procedure transform (L, f)
R —e
d — dim(L)
if d =1 then
J=0
while L # ¢ do
v — head(L)
L — tail(L)
k — weight(v)+ j
if f(k) # /(j) then
weight(v) — f(k) - 1))
R — concat(R,v)
J=k
else
S — €
S —«¢
while L # ¢ do
i «— coord(head(L),n)
I — proj(ihead(L,1))
T — add(5,1,+1)
L — itail(L, i)
T" — transform(T, f)
R — concat(R,unproj(add(1’,5', —1),1))
ST
S/ — T/
return R

In procedure transform, function thead(L, ) returns the prefix of L where all ver-
tices have their last coordinate value equal to 7, while ¢tail( L, ¢) returns the remainder
of L (i.e., L with the vertices in thead(L,) dropped). Figure 7 shows how a two-
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Figure 7: Example of a transformation applied to a two-dimensional or-
thogonal map. A call to procedure transform with list I containing the
vertices shown in (a) and f = fy results in the vertex representation given
in (b), which is essentially 7" — S’. Table (c) shows how I, S, T, 5" and
T’ vary with 1.

dimensional orthogonal map is transtormed by f.

The complexity analysis for transform follows the same reasoning as in the raster to
vertex list conversion algorithm. For a vertex list with /V vertices of dimension d, the
algorithm has a worst-case O(N - d) running time.

5 Concluding Remarks

A new representation known as vertex lists for orthogonal objects in arbitrary di-
mensions has been described. Although the basic idea has already been presented
for two-dimensional data [7], our contribution has been the extension to higher di-
mensions. [ts advantage lies in its compactness in comparison with the more tradi-
tional representations such as rasters and collections of hyperrectangles (disjoint and
non-disjoint). Unlike rasters, the storage required for vertex lists is proportional to
the boundary of the represented objects and remains invariant under scaling. Also,
normalized vertex lists have the property of being unique, a property that can be
exploited in many ways. For instance, Santos [6] showed how vertex lists are useful
for the recognition of circuit elements in VLSI design.

Vertex lists are similar in spirit to the chain code with the advantage that they are



not restricted to two dimensions. Algorithms have been given for converting between
vertex lists and a conventional raster representation as well as set-theoretic transfor-
mations for the construction of more complicated objects. The same techniques can
also be used to perform contraction and expansion. This means that operations such
as skeletonization can be implemented easily.

In general, vertex lists are not appropriate for localized querying — for instance, the
extraction of the value of a particular point in space requires the traversal of the entire
vertex list. These operations can be better performed using rasters or hierarchical
structures such as quadtrees [4, 5]. Conversion of vertex lists to these other forms of
representions can be done with little difficulty.
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