
REPRESENTING ORTHOGONAL MULTIDIMENSIONAL OBJECTSBY VERTEX LISTS 1CLAUDIO ESPERANC�AComputer Science Department, University of MarylandCollege Park, Maryland 20742andHANAN SAMETComputer Science Department and Center for Automation Research andInstitute for Advanced Computer Studies, University of MarylandCollege Park, Maryland 20742AbstractA method is presented for representing multidimensional objects with orthogo-nal faces (i.e., collections of hyperrectangles or n-dimensional rasters) compactlyby a vertex list. This is a list of points with associated weights (vertices). Al-gorithms for converting between rasters and vertex lists as well as performingset-theoretic operations on these structures are described and shown to executein O(N � d) time, where d is the dimension and N is the number of vertices inthe representation. Other applications of vertex lists are also discussed.1 IntroductionThe shape of objects can be represented by the interiors of the objects or by theirboundaries. The most common interior-based representation is one that decomposesthe object into a collection of cells all of whose sides are of unit length (termedpixels or voxels in two and three dimensions respectively). The elements of thethis collection (i.e., the cells) are labeled with values or attributes and are frequentlyaggregated into subcollections of similarly-valued cells. The decomposition into acollection of uniform cells makes it very easy to calculate properties such as mass aswell as determining the value associated with any point of the space covered by thecell.On the other hand, boundary-based representations are more amenable to thecalculation of properties pertaining to shape (e.g., perimeter, extent, etc.). In thiscase, we simply record the di�erent boundary elements. We frequently make use of asimilar technique to that of decomposing an object into a collection of unit-sized cells.The di�erence is that now we record their boundaries. Such methods are relatively1The support of the National Science Foundation under Grant IRI-9017393 and of ConselhoNacional de Desenvolvimento Cient���co e Tecnol�ogico (CNPQ) are gratefully acknowledged.



easy in two dimensions where the boundaries are lines. It is somewhat more di�cultin three dimensions (and higher).Both interior- and boundary-based representations can be made more compact byjust recording the change in the values rather than the values themselves. For interior-based representations this technique is known as runlength encoding [3]. It aggregatesidentically valued cells into one-dimensional rectangles for which only the value andthe length of the rectangle are recorded. The location of the cell can be computed byreferring to the location of the starting position. This method is also applicable todata of higher dimensions. For boundary-based representations, an analogous e�ectcan be achieved by use of chain codes [1]. This is a technique for representing theboundary of an object by a sequence of directional codes corresponding to unit stepsin the four or eight principal directions. Unfortunately, it is di�cult to extend thisidea to dimensions higher than two as there is no natural order for traversing theboundaries of such objects.Recently, Schechtman [7] introduced a new technique for storing VLSI masksknown as the vertex algebra. The vertex algebra is also based on recording changesin values rather than the values themselves. It is a combination of an interior and aboundary representation in the sense that both the interiors and boundaries of theregions are represented implicitly through the aid of a single vertex which is the tipof a cone. The vertex algebra was originally presented primarily as an alternativemodel for two-dimensional data represented as lists of rectangles. Algorithms havebeen devised for a number of vertex algebra operations in two dimensions [7].In this paper, we show how the vertex algebra can be extended to represent or-thogonal objects in arbitrary dimensions, and present a number of algorithms foroperations that are useful in computer vision and pattern recognition applications.The contribution of our work is the generality of the solutions that we obtain throughthe use of recursion to construct the representation in higher dimensions, as well asperforming the operations on it. This is largely a result of the switch of the primitiveunit to being a one-dimensional vertex list rather than a two-dimensional vertex list.This same principle was also used by us in developing a raster to vertex list conversionalgorithm, reported here, which works in arbitrary dimensions. Of course, we couldhave also treated the individual cells as unit hyperrectangles and applied the methodsof Schechtman. However, this is cumbersome and defeats the notion of aggregationof similarly-valued cells.The rest of this paper is organized as follows. Section 2 reviews the vertex algebra.Section 3 shows how to use this method to represent multidimensional objects withorthogonal faces (termed orthogonal maps). Section 4 introduces a data structurecalled a vertex list and several associated algorithms. Section 5 summarizes what ispresently known about vertex representations and gives directions for further research.



2 Vertex AlgebraLet p = (p1; p2 � � � pd) be a point in Rd. We de�ne the cone of p as the scalar �eldQp : Rd ! Z where:Qp(x) = ( 1 if x1 � p1 ^ x2 � p2 ^ � � � ^ xd � pd0 otherwise.
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1Figure 1: Cone of a point in R2In other words, the cone of p maps to 1 all points inside a hyperrectangle with itsminumum vertex at p and extending to in�nity in the positive directions of all axes,and maps to 0 all other points. Figure 1 illustrates the scalar �eld represented by thecone of one single point in R2.A vertex is de�ned as a weighted point, that is, a point with an associated scalarvalue (a point can be thought of as a vertex with weight 1). The cone of a vertexv = (p; �), where p is the position of v and � is the weight of v, is a scalar �eldgiven by Qv = � � Qp. That is, Qv(x) is � for all points such that Qp(x) = 1 and 0otherwise.Similarly, the scalar �eld represented by a set of vertices V = fv1; v2 � � � vkg is givenby QV =Pki=1Qvi:
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-1Figure 2: Scalar �eld represented by a set of vertices in R2Figure 2 shows an example of a scalar �eld in R2 given by a set of 3 vertices. Thelabeled black dots correspond to the positions of the vertices and their weights.



It is useful to enumerate some properties of scalar �elds expressed using vertexalgebra. Let a and b be vertices, � and � be integers, and Qv denote the scalar �eldrepresented by vertex v. Then,1. �Qa + �Qa = (�+ �)Qa.2. 0Qa = 0.3. If �Qa + �Qb + � � � = 0 and the positions of a, b etc are all distinct, then� = � = � � � = 0.3 Orthogonal Maps and PolygonsIn the following, we use the term orthogonal map to designate any scalar �eld thatcan be represented by a �nite set of vertices. A set of vertices that represents anorthogonal map is termed a vertex representation and obeys the following rules:1. No two vertices with the same positions are allowed. This is reasonable, since ift = (p; �) and u = (p; �) are vertices in the set, then they can be replaced byvertex v = (p; � + �)2. Vertices with weight 0 are not allowed as they add no new information.The main purpose of enforcing these rules on sets of vertices is to assure uniqueness,i.e., that every orthogonal map has exactly one vertex representation.We de�ne an orthogonal polygon to be a special case of an orthogonal map whereall points are mapped either to 0 or to 1. Those points that are mapped to 0 are saidto be outside the polygon and those that are mapped to 1 are inside the polygon.If we restrict ourselves to R2, the class of orthogonal polygons closely resembles theclass of ordinary polygons whose edges are parallel to one of the coordinate axes. Infact, given any such polygon, we can contruct an equivalent vertex representationwith the following algorithm. Since we have already used the term vertex to meana point with an associated weight, we refer to the vertices of ordinary polygons asarticulation points:1. Select a minimum articulation point of the polygon and create a vertex withweight +1. A minimum articulation point is a point (x0; y0) such that no otherpoint (x; y) on the boundary of the polygon has x < x0^y < y0. Note that morethan one articulation point may satisfy these requirements.2. Follow the boundary of the polygon starting from the minimum articulationpoint in a clockwise (or counterclockwise) direction. For each articulation point,create a vertex with weights alternating between �1 and +1, that is, +1 forpoint (x0; y0), �1 for point (x1; y1), +1 for point (x2; y2), and so on.
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1Figure 3: Vertex construction of an orthogonal polygon3. Stop when reaching the minimum articulation point again.The labeling process described above is illustrated in Figure 3. It must be ob-served that the algorithm is only well de�ned if in step 2 we know exactly whichvertex/articulation point to visit next. In the case of self-intersecting polygons wehave more than one choice at certain points and the resulting vertex representationmay di�er. This is illustrated in Figure 4. Notice that Figure 4(d) contains a vertexwith weight 2, which is a result of visiting an articulation point twice while traversingthe boundary of the polygon.
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-1Figure 4: Two ways of buiding a vertex representation of a self-intersecting orthogonal polygon. Visiting the articulation points as in(a) yields the vertex representation given in (b), whereas visiting themas in (c) results in the vertex representation given in (d)It is also possible to represent polygons with \holes". In this case, apply thealgorithm to the boundary of each hole but label the starting minimum vertex withvalue �1 instead of +1. If we regard the example in Figure 4(a) as a polygon with onehole touching the outer boundary, then we would also get the vertex representationin Figure 4(d).A similar construction algorithm may be devised for orthogonal polygons in anydimension. The task of selecting a minimum articulation point poses no di�culties.There is no obvious order, however, for traversing the articulation points. This doesn't



matter at all since, at least for non-self-intersecting polygons, all that is needed is toassign opposite weights to any two vertices that share an edge.4 Vertex ListsMost algorithms on vertex representations use the plane-sweep paradigm [2]. More-over, plane-sweep is frequently applied recursively, that is, the solution of a problemin d dimensions is obtained by combining the partial solutions of many subproblemsin d � 1 dimensions. This suggests that vertices should be organized as a list in re-verse lexicographic order by dimension. For example, letting ((u1; u2 � � �ud); �) and((v1; v2 � � � vd); �) be vertices u and v, respectively, we have that vertex u appearsbefore vertex v in a vertex list if ud (u's last coordinate value) is less than vd. Sim-ilarly, if ud is greater than vd then u appears after v. If ud = vd then u and v areon the same hyperplane and the ordering between them is determined by the d � 1remaining coordinate values, with coordinate value d � 1 being the most signi�cant.If all coordinate values of u and v are equal, then u and v are in the same positionand they may be replaced by one vertex whose weight is the sum of the weights ofu and v. For instance, the vertices a = ((4; 5); 1), b = ((3; 2); 2) and c = ((4; 2);�1)would appear in a list in the order b c a.In the remaining sections, vertex list algorithms are given using the followingconventions:1. Uppercase letters such as L, R and S represent lists of vertices.2. Lowercase letters from the end of the alphabet, such as u, v and w representvertices.3. Other lowercase letters, such as i, j and k represent integers.4. head(L) is the �rst vertex of L.5. tail(L) is L without its �rst vertex.6. concat(L;S) is list L concatenated with list S.7. concat(L; v) is list L concatenated with vertex v.8. � represents an empty list.9. dim(v) is the number of coordinates of v.10. weight(v) is the weight of v.11. coord(v; i) is the ith coordinate value of v.12. proj(v) is vertex v with its last coordinate dropped.13. unproj(v; k) is vertex v with one additional coordinate with value k.14. precedes(u; v) is a Boolean function that is de�ned only if dim(u) = dim(v). Itreturns true if u < v in reverse lexicographic order, i.e.,precedes(u; v), (coord(u; dim(u)) < coord(v; dim(v))) _(coord(u; dim(u)) = coord(v; dim(v))^precedes(proj(u); proj(v)))



4.1 Sum of Vertex ListsGiven two vertex lists L and S of the same dimension, their sum is a vertex list thatrepresents the sum of their orthogonal maps, that is QL+S = QL+QS. This operationis achieved by merging vertex lists L and S adding the weights of vertices in the sameposition. Similarly, the multiplication of a vertex list by a scalar � is equivalent tomultiplying the weight of each vertex of the representation by �.Procedure add, given below, implements these operations. Given vertex lists Land S and a scalar �, the algorithm returns the vertex list L+ �S in vertex list R.procedure add(L; S; �)R �while L 6= � _ S 6= � doif S = � _ precedes(head(L); head(S)) thenR concat(R; head(L))L tail(L)else if L = � _ precedes(head(S); head(L)) thenv  head(S)weight(v) � �weight(v)R concat(R; v)S  tail(S)elsev  head(L)weight(v) weight(v) + � �weight(head(S))if weight(v) > 0 then R concat(R; v)L tail(L)S  tail(S)return RThis algorithm is clearly linear in the total number of vertices in the two vertexlists, since at each iteration one vertex of L or S (or both) is removed and one (ornone) is added to R. This claim can be contested on the grounds that comparing thepositions of two d-dimensional points in space (as required by precedes) takes O(d)time. Fortunately, though, the reverse lexicographic ordering of vertices in vertexlists enables this operation to be executed in O(1) time.4.2 Converting Rasters to Vertex ListsA raster in d dimensions is de�ned by the value associated with each of its cells. Letlength(i) represent the length of the raster in the ith dimension, and F be a list ofthe raster's values stored in reverse lexicographic order. For instance, if the raster isa 2 � 3 matrix, then length(1) is 2, length(2) is 3, and the values would be storedin F row-wise, i.e., �rst the element in row 1 column 1, then row 1 column 2, row 2column 1, etc.



Each vertex represents the position of space where there is a change in valuewhen the raster is viewed as an aggregation of one-dimensional rows stored in reverselexicographic order. In one dimension, if two cells a and b with values � and � areneighbors, then the change in value is given by � � �; if � = � then no vertex isnecessary to indicate the change from a to b. Also, we assume that these changes areaccumulated over an initial value of 0.As an example, consider the one-dimensional raster given by values h5; 3; 3; 4i: thecorresponding vertex representation is given by h((1);+5); ((2);�2); ((4);+1))i (seeFigure 5). Notice that the interval (�1; 1) is assumed to be mapped to 0, whileinterval [4;+1) is mapped to the last value in the raster, i.e. 4. This means thatchanges in value accross di�erent one-dimensional rows are not recorded. In otherwords, every row starts with the �rst non-zero location.
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xFigure 5: Conversion of a one-dimensional raster to a vertex list.For higher dimensions the problem can be expressed as a combination of length(d)subproblems of dimension d � 1. First, we �nd the vertex list for each sub-raster corresponding to the hyperplanes perpendicular to the dth axis at coordinates1; 2 : : : length(d). The vertex representation for the d-dimensional raster is then com-puted by subtracting each previous vertex list from the current one. The rationalebehind this procedure is that we are computing the change in value from one hyper-plane to the next. Procedure raster to vlist, given below, implements this process andreturns its result in vertex list R.procedure raster to vlist (d; length; F )R �if d = 1 thenj  0for i in f1 : : : length(1)g dok  weight(head(F ))F  tail(F )if j 6= k then R concat(R; ((i); k� j))elseS  �for i in f1 : : : length(d)g doT  raster to vlist (d� 1; length; F )R concat(R; unproj(add(T;S;�1); i))S  Treturn R
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The set di�erence may be obtained by �rst subtracting B from A and then applyingtransformation f[.The algorithm to apply a transformation to a vertex list is similar to the rasterto vertex list conversion algorithm. Once again, we recursively sweep hyperplanes ofdecreasing dimension. The problem that we must address is that the values storedin the vertices correspond to di�erences in the values of cones in space rooted at thevertices, while the transformation involves the application of a function to the actualvalues of the points in space. This is easy to overcome by recalculating the valuesof the points in space during the sweep. In algorithm transform below, L is a vertexlist of dimension d and f is a transformation. Variable i contains the value of thedth coordinate for the current position of the sweeping hyperplane and I is the list ofvertices on it. S and T are vertex lists corresponding to the value of the orthogonalmap just before and just after the sweeping hyperplane. S 0 and T 0 are transformedversions of S and T , respectively.procedure transform (L; f)R �d dim(L)if d = 1 thenj  0while L 6= � dov  head(L)L tail(L)k  weight(v) + jif f(k) 6= f(j) thenweight(v) f(k)� f(j)R concat(R; v)j  kelseS  �S 0  �while L 6= � doi coord(head(L); n)I  proj(ihead(L; i))T  add(S; I;+1)L itail(L; i)T 0  transform(T; f)R concat(R; unproj(add(T 0; S0;�1); i))S  TS0  T 0return RIn procedure transform, function ihead(L; i) returns the pre�x of L where all ver-tices have their last coordinate value equal to i, while itail(L; i) returns the remainderof L (i.e., L with the vertices in ihead(L; i) dropped). Figure 7 shows how a two-
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Figure 7: Example of a transformation applied to a two-dimensional or-thogonal map. A call to procedure transform with list L containing thevertices shown in (a) and f = f[ results in the vertex representation givenin (b), which is essentially T 0 � S 0. Table (c) shows how I , S, T , S 0 andT 0 vary with i.dimensional orthogonal map is transformed by f[.The complexity analysis for transform follows the same reasoning as in the raster tovertex list conversion algorithm. For a vertex list with N vertices of dimension d, thealgorithm has a worst-case O(N � d) running time.5 Concluding RemarksA new representation known as vertex lists for orthogonal objects in arbitrary di-mensions has been described. Although the basic idea has already been presentedfor two-dimensional data [7], our contribution has been the extension to higher di-mensions. Its advantage lies in its compactness in comparison with the more tradi-tional representations such as rasters and collections of hyperrectangles (disjoint andnon-disjoint). Unlike rasters, the storage required for vertex lists is proportional tothe boundary of the represented objects and remains invariant under scaling. Also,normalized vertex lists have the property of being unique, a property that can beexploited in many ways. For instance, Santos [6] showed how vertex lists are usefulfor the recognition of circuit elements in VLSI design.Vertex lists are similar in spirit to the chain code with the advantage that they are



not restricted to two dimensions. Algorithms have been given for converting betweenvertex lists and a conventional raster representation as well as set-theoretic transfor-mations for the construction of more complicated objects. The same techniques canalso be used to perform contraction and expansion. This means that operations suchas skeletonization can be implemented easily.In general, vertex lists are not appropriate for localized querying { for instance, theextraction of the value of a particular point in space requires the traversal of the entirevertex list. These operations can be better performed using rasters or hierarchicalstructures such as quadtrees [4, 5]. Conversion of vertex lists to these other forms ofrepresentions can be done with little di�culty.6 AcknowledgementsWe have bene�tted from discussions with J. Schechtman, whose work sparked ourinterest in vertex representations.References[1] H. Freeman. Computer processing of line-drawing images. ACM Computing Sur-veys, 6:57{97, March 1974.[2] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.Springer-Verlag, New York, 1985.[3] D. Rutovitz. Data structures for operations on digital images. In G. C. Chenget al., editor, Pictorial Pattern Recognition, pages 105{133. Thompson Book Co.,Washington DC, 1968.[4] H. Samet. Applications of Spatial Data Structures: Computer Graphics, ImageProcessing, and GIS. Addison-Wesley, Reading, MA, 1990.[5] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,Reading, MA, 1990.[6] F. V. Santos. Extra�c~ao de circuitos VLSI. Master's thesis, Eng. El�etrica, Univer-sidade Federal do Rio de Janeiro, Rio de Janeiro, April 1991.[7] J. Shechtman. Processamento geom�etrico de m�ascaras VLSI. Master's thesis, Eng.El�etrica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, August 1992.


