A Linear Iterative Approach for
Hierarchical Shortest Path Finding *

Gutemberg Guerra Filho
Department of Computer Science
University of Maryland, College Park 20742

guerra@cs.umd.edu

ABSTRACT

We present a hierarchical approach that subdivides a net-
work with n vertices into r regions with the same number
m of vertices (n = rm) and creates higher levels merging a
constant number ¢ of adjacent regions. We propose linear
iterative algorithms to find a shortest path and to expand
this path into the lowest level. Since our approach is non-
recursive, the complexity constants are small and the algo-
rithms are more efficient in practice than other recursive op-
timal approaches. A hybrid shortest path algorithm to per-
form intra-regional queries in the lowest level is introduced.
This strategy uses a subsequence of vertices that belong to
the shortest path while actually computing the whole short-
est path. The hybrid algorithm requires O(m) time and
space assuming an uniform distribution of vertices. This
represents a further improvement concerning space, since
a path view approach requires O(m!-®) space in the lowest
level. For higher k-levels, a path view approach spends O(1)
time and requires O(c*m) space.

1. INTRODUCTION

Information systems that assist drivers in planning a travel
are required to improve safety and efficiency of automo-
bile travel. These systems use real-time traffic information
gathered by traffic control and surveillance centers like traf-
fic congestion and roadwork. They aid travelers in finding
the optimal path to their destinations considering distance,
time, and other criteria. This helps to eliminate unnecessary
travel time reducing accidents and pollution.

A centralized path finding architecture for such informa-
tion systems consists in a processing center that receives
path queries in a road network and responds in real-time.
The real-time performance is a requirement for the system

*This research was supported in part by the Coordenagdo
de Aperfeicoamento de Pessoal de Nivel Superior - CAPES.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Hanan Samet
Department of Computer Science
Center for Automation Research
Institute for Advanced Computer Studies
University of Maryland, College Park 20742

hjs@umiacs.umd.edu

effectiveness since a driver may take a next turn within a few
seconds. A large number of queries in a huge network may
prevent the system from meeting the real-time requirement
when a flat path finding approach is used.

A flat approach does not subdivide the original graph that
represents the network. This approach solves the path find-
ing problem either by executing a single-source shortest path
algorithm in the whole network [2, 3] or retrieving a path
with one lookup in a pre-computed path view. Dijkstra’s
shortest path algorithm requires O(nlogn) time and O(n)
space in planar graphs [7, 10].

A path view or transitive closure contains the information
required to retrieve a shortest path corresponding to each
pair of vertices in the network. This strategy pre-computes
all shortest paths in the network. Once the path view is cre-
ated, any path query is performed with a lookup in the path
view and reporting the sequence of vertices that represents
the path. A path query requires O(n?) space and spends
O(n) time, since the number of vertices in the path may be
linear in the worst case. The path view strategy requires
O(n?) time for pre-processing [5, 11].

Large networks may need an unacceptable amount of time
and space in order to satisfy the real-time constraint. There-
fore, a hierarchical approach is applied. A hierarchical ap-
proach subdivides a single network into smaller regions. This
process creates a hierarchy of multilevel networks for a path
finding search. We consider the single-pair shortest path
problem for planar graphs with non-negative edge weights.
The problem consists in finding a shortest path from a given
source vertex s to a given destination vertex d in a planar
graph.

In this paper, we present a hierarchical approach that sub-
divides the network into r regions. Each such region has the
same number m of vertices and belongs to the lowest level
of the hierarchy. The same size for regions is a property
enforced in the other O(logr) levels by creating a higher
level merging ¢ adjacent regions. Therefore, the parameters
{r,m,c) completely define the structure of a simple hierar-
chy of networks.

We introduce iterative (non-recursive) algorithms to find a
shortest path through all levels of the (r, m, ¢) hierarchy and
to expand this shortest path into a shortest path composed
by edges only in the lowest level that represents the original
network.

Given a hierarchy of networks, the proposed hierarchical
shortest path algorithm starts in the lowest level network

from the source vertex. When the current region is com-
pletely traversed, the search is promoted to the next higher
level. The promotion step is executed until it reaches the
highest level. Then, the search is demoted to the next lower
level towards the destination vertex. The demotion step
is performed until it reaches the lowest level network. A
resulting hierarchical shortest path consists of subpaths in
each level of the network. The hierarchical approach exe-
cutes intra-regional queries for each level in order to expand
these subpaths to the next lower level. The queries are per-
formed until the whole path is represented by subpaths in
the lowest level network.

In the worst case, our hierarchical approach requires O(n)
query time and space, where n = rm is the total number of
vertices in the original network. These time upper bounds
are achieved using a hierarchy definition where r = m = /n
and ¢ = 2. If we assume that pre-processing to build the
hierarchy of networks is performed a neglected number of
times concerning the number of queries, than our approach
would require optimal time and space resources. Further,
since our approach is non-recursive, the complexity con-
stants are small, what implicates more efficiency in practice
when compared to other recursive optimal approaches.

We also propose a new strategy to execute intra-regional
queries in the hierarchical approach. This strategy is based
on an hybrid shortest path algorithm that uses a partial path
in order to find a single shortest path between two vertices
on the border of a region. A partial path is a subsequence
of vertices that belong to the shortest path.

Using the hybrid shortest path algorithm, the time and
space requirements for intra-regional queries in the lowest
level is O(m). This is an improvement compared to the
O(m*®) space required by a path view. For higher levels,
we use a path view approach. Defining ¢ = 2, the path view
approach spends O(1) time and requires O(c*m) space in a
k-level network for k£ > 0.

This paper is organized as follows. In Section 2, we re-
view work related to hierarchical path finding. The (r, m,c)
hierarchical approach is presented in Section 3. We present
the hybrid shortest path algorithm in Section 4. Section 5
discusses the main contributions of this paper.

2. RELATED WORK

Frederickson [5] proposed a hierarchical algorithm for the
single-source shortest path problem on planar graphs. The
algorithm takes O(n+/logn) running time, where n is the
number of vertices in a planar graph. The algorithm is
based on Dijkstra’s algorithm and uses a division of the
planar graph into a three-level hierarchy of regions. A suit-
able graph division is created in O(nlogn) pre-processing
time using a technique based on a planar separator algo-
rithm [12]. The algorithm depends on the fact that planar
graphs have separators with size O(y/n). The shortest paths
between every pair of border vertices are found for two lev-
els. Therefore, the algorithm uses a path view in the search
for a shortest path through the hierarchy of networks. The
all-pairs shortest path problem is solved in O(n?) time and
space.

Frederickson [6] developed an algorithm for computing all-
pairs shortest paths in a directed planar graph with real-
valued edge cost and no negative cycles. The algorithm
takes O(pn) time, where p is the minimum cardinality of
a subset of the faces that cover all vertices, taken over all

planar embeddings of the planar graph.

Klein et al. [11] presented an optimal single-source short-
est path algorithm for undirected planar graphs with non-
negative edge weights that requires O(n) time and space.
Their recursive approach leads to big constants what in prac-
tice represents some additional time cost. The algorithm
also uses separators, but they are not required to have size
O(y/n). They divide the graph into regions in O(log* n) lev-
els such that the lowest level regions consist of a single edge.
The efficiency of the algorithm is due to the fact that relax
operations are performed using smaller priority queues. The
algorithm chooses a region, perform a number of relax op-
erations depending on the level of the region, and abandons
that region. A relax operation may use a node whose label is
not the correct shortest path distance to that node. There-
fore, a region may be selected again. They also compute the
all-pairs shortest paths in O(n?) time and space.

Djidjev [4] solves the single-pair shortest path problem us-
ing a subdivision whose lowest level regions contain a single
vertex. This approach requires O(n'®) pre-processing time
and space. Djidjev presents an algorithm to compute only
the shortest path distance between s and d in O(y/n) time.
The algorithm locates the vertices s and d in lowest level
regions, find a nearest common ancestor (NCA) region and
computes the minimum distance considering the vertices in
the NCA region separator.

Jing et al. [9] suggested a path view approach that stores
the direct successor vertex and the cost of a shortest path
for each source-destination pair in a region. Therefore, the
path view requires O(m?) space for a region in the lowest
level, where m is the number of vertices in a single region.
They use a path finding algorithm that queries recursively
the shortest path cost through all levels in the hierarchy of
networks. First, it determines the sets Bs and By of border
vertices in regions containing the source vertex s and the
destination vertex d, respectively. The algorithm uses pre-
computed shortest paths between s and Bs; Bs and By;
and By and d to find the global minimum cost for the path
form s to d by searching among all pairs (bs,bq) of border
vertices, where b, € B, and by € B;. The algorithm does
not compute the whole path described by edges in the lowest
level.

Shekhar et al. [13] focus on path view implementations
for a two-level hierarchy. They proposed a hybrid path view
that encodes the direct successor and cost for any shortest
path only from interior vertices to the border vertices in each
lowest level region. The higher level is fully materialized.
Grid graphs were used in complexity analysis concerning
the space required for the path views. The space storage
required for the path views is O(n®/®).

Chen and Xu [1] solves the single-pair shortest path prob-
lem in undirected planar graphs with non-negative edge
weights. They take advantage of the planarity of general
planar graphs to compute the minimum length among paths
passing through pairs of border vertices as in the path find-
ing algorithm used by Jing et al. [9]. They use a divide-
and-conquer scheme to search a pair of border vertices more
efficiently. A single shortest path cost is computed in time
O((|Bs| + |Bg|) log(|Bs| + |Bal)) using a frame search.

3. (R,M,c) HIERARCHICAL APPROACH

A hierarchical approach is based on the subdivision of the
original network into regions (see Fig. 1). A region corre-

sponds to a connected subgraph of the graph representing
the network. A higher level network consists only of border
vertices. A border vertex is a vertex that belongs to at least
two different regions in the network. Since a shortest path
passing through more than one region must include border
vertices, the edges of a higher network represent possible
connections between border vertices in this network.

(a) 0-level network re- (b) 1-level network re-
gions. gions.

(c) 2-level network re-
gions. gions.

(d) 3-level network re-

Figure 1: A hierarchy of network regions with four
levels.

The 0-level network is the original network represented
by an embedding of an undirected planar graph G(V, E)
on the plane, where V (E) is the set of vertices (edges)
in G. The number of vertices in V' is n. This graph is
subdivided into r smaller connected regions corresponding
to subgraphs (G, G35, ..., G5™") such that these subgraphs
cover the original network (V = VU Vg U---U VO’"_I, E =
EQUE}U---UE;™") and each edge belongs to only one
subgraph.

Each 0-level subgraph has m vertices and form a suitable
subdivision of the graph G where boundaries of each corre-
sponding region has a size of O(y/m) vertices. Such suitable
subdivision is obtained in O(nlogn) time using a fragmen-
tation algorithm [5]. Goodrich [8] proposed an algorithm to
find a separator decomposition and a suitable subdivision
in O(n) time. The subdivision into subgraphs decreases the
size of path views, thereby reducing the space and mainte-
nance costs. The best cost is achieved when the subgraphs
have approximately the same number of vertices. Therefore,
we enforce the generation of a higher level to be constrained
in such a way that each region will have about the same
number of vertices.

For k > 0, the k-level network is generated from the (k —
1)-level network. A vertex v is in the k-level network if
it belongs to two different (k — 1)-level regions. Note that
the k-level network has only border vertices. There is an
edge connecting two k-level vertices in the k-level network
if there is a path connecting them in the same (k — 1)-level

region. The k-level network is subdivided into connected k-
level regions containing ¢ adjacent (k — 1)-level regions such
that each (k — 1)-level region belongs to only one k-level
region (see Fig. 2).

A hierarchy of networks for a network represented by a
graph G is represented by a set Go of r subgraphs (G§, G,
..., G571, These subgraphs correspond to regions that will
be merged into higher level regions containing c regions’.
This way, all regions in a particular level have about the
same number of vertices. Each subgraph is denoted by
G (sz" E}c), where k is the hierarchical level and ¢ repre-
sents a region. The set of subgraphs representing regions
for a k-level is denoted by Gk. The set of border vertices
in a subgraph G is represented by Bf and By denotes the
border vertex set for the k-level.

(a) 0-level network.

(b) 1-level network.

Figure 2: Two levels of a hierarchy of networks.
Each region is surrounded by dashed lines and the
border vertices are represented by filled circles.

PV} is the path view for the border vertices in G%. The
path view for the border vertices contains the information
required to retrieve a shortest path only between any pair of
border vertices in a k-level region i. The function PV} (u,v)
returns the predecessor of vertex v in the shortest path from
vertex u. L is the set of edges linking all pairs of border
vertices that are connected by a path in the subgraph G
and L denotes these sets for the k-level. Each edge (u,v),
in L% represents a shortest path from w to v in G%. If there
is another edge (u,v); in L, then we just keep the edge
with minimum cost.

In order to analyze performance issues for the hierarchical
approach, a complexity measure for a set of border vertices
in a k-level network is required. A class of graphs satisfies
an f(n) separator theorem, if there exists a set of O(f(n))
vertices whose removal divides a graph from the class into
two parts with at most an vertices each for some constant
1/2 < @ < 1. Lipton and Tarjan [12] found a set of nodes
of size O(y/n) whose removal divides a planar graph into re-
gions with size less than %n Therefore, the class of planar
graphs is /n-separable. An m-division of a planar graph
with n vertices is a division into O(n/m) regions, each con-
taining at most m vertices including O(y/m) border vertices
[5]. Such a recursive separator decomposition can be found

!We assume without loss of generality that r is a power of

¢, ie., 7 = ¢, where h is the highest level in the hierarchy
of networks.

in O(n) time [8]. The number of border vertices in any k-
level comes from the m-division of a planar graph.

LEMMA 1. Since the number of vertices embedded in a
k-level region corresponding to subgraph G% is O(c*m), the

number of border vertices |Bg| is O (\/ ckm), where m is the
number of vertices in a 0-level subgraph.

Proof. See [5, 8, 12]. a

Once a set of border vertices in a k-level network has a
complexity measure, we can estimate the size of a subgraph
in a higher level. Actually, we obtain complexity measures
for sets of vertices Vi and edges Ey in a k-level subgraph GJ,.
In order to prove these complexity bounds, we introduce the
subgraph adjacency concept. Two subgraphs are adjacent to
each other if the intersection between the respective set of
vertices is not empty.

LEMMA 2. If k > 0, the number of vertices |Vi| in a k-
level subgraph G%, is O (\/C’H'lm) and the number of edges
|Ei| is O (c*m).

Proof. The vertices in G% correspond to the border vertices
of ¢ subgraphs in the (k—1)-level. Hence, |Vi|is O (¢|Bk—1])

according to Lemma 1, and |Vi| = O (\/ck+1m). In the

worst case, the subgraphs in the (k — 1)-level are strongly
connected and, consequently, the number of edges |Ex| is
O (¢|By-1 |2) =
0] (c’c m). m|

The lowest level of the hierarchy is composed by planar
subgraphs. Hence, a single-source shortest path algorithm
requires O(m log m) time in the lowest level. A higher level
(k > 0) subgraph G% in the k-level is not planar and consists
of the union of ¢ cliques corresponding to ¢ regions in the
(k — 1)-level. Therefore, Dijkstra‘s shortest path algorithm
performance is different in a higher level.

LEMMA 3. Defining ¢ = 2, Dijkstra‘s algorithm spends
time O(c¥m) in a k-level subgraph G when k > 0.

Proof. Dijkstra‘s algorithm requires O (|Vi|log |Vi| + |Ek|)
time. Since log|Vi| = O(4/|Vk|), then |Vi|log|Vi| =

0 (VilV/VAl))- We prove that |Vilv/[Vi] =
O(|Ek|), since ¢|Bi—1|y/c|Bk-1] < ¢|Bk—1|>. This inequa-
tion is equivalent to y/c|Bk—1| < |Bk-1|- Squaring and
simplifying this expression, we have ¢ < |Bk—1|. Lemma 1
states that |Br_1| = O(VcF—1m), consequently, we have
¢ = O(Vck~'m). |Bg—1| has the least value when k = 1,
then ¢ = O(y/m). Therefore, Dijkstra‘s algorithm requires
O(|Ex|) = O(c*m) time in a higher level. m|

3.1 Hierarchical Optimal Path Finding

In order to find a shortest path, our hierarchical approach
starts from the source vertex in the 0-level network (see
Fig. 3). Every time the search completely reaches the bor-
der of a k-level region, the search is promoted to the (k+1)-
level starting from the vertices in this border. Since this
procedure reaches the highest level, every time the search

completely reaches the border of a (k + 1)-level region con-
taining the destination vertex, then the search is demoted
to the k-level starting from these border vertices.

If the hierarchy of networks has h + 1 levels, the search
procedure executes a generalized shortest path algorithm
2h + 1 times in order to find the subpaths in each level of
the hierarchy. The generalized algorithm is similar to Di-
jkstra‘s algorithm but allows initializing the priority queue
that keeps unvisited vertices with more than one source ver-
tex and initial costs greater than 0. The generalized shortest
path algorithm computes the shortest path from a set S of
source vertices to all vertices in a subgraph using only edges
in this subgraph.

The hierarchical Find-Path algorithm below creates short-
est path tree layers PT," (for promotion) and PT}, (for de-
motion) in each k-level of the hierarchy (Go, G1,...,Gp) of
networks, where G represents a level (G%,G},. .., G;’“_l)
in the hierarchy. We define a shortest path tree as a tree
whose unique simple path from root to any vertex repre-
sents a shortest path. A layer of a shortest path tree is a
subset of a shortest path tree contained in a particular level
of the hierarchy of networks. The shortest path tree layers
are computed in order to find the hierarchical shortest path
from a source vertex s to a destination vertex d throughout
all levels of the hierarchy. The algorithm uses a set S that
represents source vertices for a layer in a k-level, where each
vertex in S is associated with a cost.

Algorithm Find-Path({Go, G1,...,Gh),s,d)
1. S« (s,0)
2. for k< 0toh—1do
(a) sri < Locate-Region(s,Gr)
S"'+
(b) PT;f « GSP(S,G,*)
(c) S« 0
S"'+
(d) for u € B, * do
i. S+ S U (u, Distance(PT}",u))
3. PT; « GSP(S,G})
4. for k< h—1to0do
(a) sr, < Locate-Region(d,Gy)
(b) S« 0
(c) for u € BZT’: do
i. §« SU (u, Distance(PTy,,u))

(d) PT; « GSP(S,Go™)

Initially, the set S represents only the source vertex s with
cost 0 (step 1). For each k-level but the highest one and
starting in the lowest level (step 2), the algorithm locates s in

a subgraph GZT’“ using the Locate-Region procedure (step
2.a) and computes the shortest path tree layer PT,;" from S
in this subgraph using the generalized single-source shortest
path algorithm (GSP) (step 2.b). The next set S represents

the set of border vertices B,ir’c+ with the respective costs in
PT;" (steps 2.c and 2.d). The function Distance returns
the distance from the source vertex s to the vertex w in the
shortest path tree PT. Then, the shortest path tree layer

(i) 0-level search.

Figure 3: The shortest path search through a hier-
archical network.

PT, for the highest level is computed (step 3). Note that
the highest level has just one shortest path tree layer. After
that, for each k-level but the highest one and starting in the
second highest level (step 4), the algorithm locates d in a

subgraph G;T’“_ (step 4.a), the set S is updated to represent

the border vertices BZT’“ with the respective costs in PT}

(steps 4.b and 4.c). Finally, the shortest path tree layer
PT; from S in G, * is found (step 4.d).

THEOREM 1. The algorithm Find-Path computes the
shortest path distance from the source verter s to the desti-
nation vertez d in G.

Proof. Initially, the set S consists only of the source vertex
s and the algorithm GSP computes the shortest path from s

+
to all border vertices in the subgraph Gg'° that corresponds
to the region containing s in the lowest level. Actually, the
shortest paths are minimum only among those paths com-

T
pletely contained in G(S)T0 . However, a shortest path from s

+
to any border vertex in Gg °® may not be completely con-
tained in a single lowest level region.

The shortest path from s to any border vertex u in qu
may include some other border vertices. Let v be the first
border vertex from s to w in this shortest path. Hence, the
subpath from v to w is a shortest subpath composed by sub-
paths whose source and destination vertices are border ver-

+
tices. These subpaths are represented in G5 * by edges with
the same cost. Therefore, the shortest paths from s to all

+ +
border vertices in G ' and completely contained in Gy * is
computed by the algorithm GSP by initializing S to the bor-

der vertices of GZT‘;F with the shortest path costs computed
previously. The same step inductively shows that the algo-
rithm Find-Path computes the shortest path cost from s to
all border vertices in the highest level. Analogously, another
induction provides that the algorithm computes the shortest
path costs to border vertices towards the destination vertex
d. Finally, a last step in the lowest level, computes the short-
est path cost from s to d. O

The generalized shortest path algorithm dominates the
time requirements for the algorithm Find-Path.

THEOREM 2. The algorithm Find-Path spends time
O(mlogm + n).

Proof. The procedure Locate-Region finds a set of sub-
graphs in the k-level that may contain the source/destination
vertex. Since these subgraphs represent connected regions
embedded in a plane, this set has O(1) subgraphs. Pro-
vided that the vertices of a subgraph are sorted, additional
search takes O(log |Vk|) time to identify the region in the k-
level where the source/destination vertex is located. Hence,
the procedure Locate-Region spends O(ry + log |Vi|) time.
The procedure GSP spends time O(|Vk| log |Vi|+ | Ex|), since
basically it has the same time complexity as Dijkstra‘s al-
gorithm. According to Lemma 3, the procedure GSP spends
time O(c"m) = O(rm) = O(n) in the h-level. The loops in
the algorithm execute the procedures Locate-Region, GSP
and updates the source set S with the border vertices in

+
B;"* . Hence, each iteration spends time O(r + log |Vi| +
|Vk| log |Vk|+|Ek|+|Bk|) If £ = 0, the loop iteration spends
O(r+mlog m) time, otherwise, it spends O (rk + c*m) time.
Therefore, the algorithm Find-Path spends total time

o ((1‘4—mlogm)+hz_:1 (rk +ckm> +n> .

k=1

This is equivalent to O (mlogm+n+) | (rem)

Therefore, the algorithm Find-Path spends O(m log m + n)
time. O

The subgraph for the highest level requires O(n) space.
This is the input for the procedure GSP in the highest level
and dominates the space requirement concerning the algo-
rithm Find-Path.

THEOREM 3. The algorithm Find-Path requires O(n)
space.

Proof. The procedure Locate-Region uses the vertex sets
Vi of O(1) regions in the k-level. Hence, the procedure
Locate-Region requires O(|Vk|) space. This way,
Locate-Region requires O(m) space in the lowest level and
O(Vc*+1m) space otherwise. The procedure GSP requires
O(|Vk| + | Ex|) space. Therefore, GSP requires O(m) space in
the lowest level and O(c¥m) space otherwise. The priority
queue S stores general source vertices that are only bor-
der vertices. Hence, S requires O(|Bx|) = O(VcFm) space.
Therefore, the algorithm requires O(m) space for the low-
est level, O(c*m) space for the k-level when 0 < k < h, and
O(rm) space for the GSP procedure in the highest level. This
way, the space requirement for the algorithm Find-Path is
O(rm) = O(n). m|

If we define r = m = /n, the algorithm Find-Path spends
O(n) time. However, a shortest path from s to d is encoded
in shortest path tree layers through all levels of the hierarchy
and requires further processing to expand this shortest path
into one composed by edges only in the lowest level (see
Fig. 4).

Figure 4: Shortest path tree layers.

3.2 Expanding Subpaths in Higher Levels

A shortest path from s to d consists of a sequence of sub-

paths (P (s,v1), P (v1,v2), Pyt (v2,v3),. .., P (vh—1, vp),
Py (vny vat1), Py (Vht1, Vhg2), - oo, Py (Uzh—z,wh—l),
P (vah—1,v21), Py (v2n,d)), where a subpath from vertex
v; to vertex v; in the k-level network is denoted by either
P (vi,vj) or Py (vi,v;). In order to have a complete short-
est path, the algorithm executes intra-regional queries for
each k-level expanding subpaths in the k-level to subpaths
in the next lower level until the whole path consists only of
edges in the lowest level network (see Fig. 5).

shortest (b) 2-level shortest

path. path.

(c) 1-level
path. path.

shortest (d) 0-level shortest

Figure 5: The expansion of a hierarchical shortest
path through all levels of the hierarchy.

The Expand-Path algorithm below finds a whole shortest
path from s to d represented by a sequence of edges in the
lowest level network. The algorithm traverses the shortest
path tree layers PT,;|E in order to retrieve the subpaths that
compose a shortest path from s to d in all levels of the hier-
archy. Then, the algorithm performs intra-regional queries
to expand each edge of these subpaths into a path P in a
lower level.

Algorithm Expand-Path(PTZ, s, d)
1. Py (van,d) < TravBack(PT; ,d)
2. for k <1 to h do
(a) Py (vah—k,V2n—kt1) TravBack(PTk_,vgh,kH)
3. fork+< h—1to1ldo
(a) Py (vk,vks1) < TravBack(PT,, vky1)
4. Pir(s,v1) + TravBack(PTd",Ul)
5. for k < h to 1 do
(a) P+ 0
(b) for each (u,v), € P, (vk,v2n—k+1) do
i. P+ P@® Intra-Regional(u,v,k,1%)

(c) P_;(Vk—1,V2n—k42) P;;tl(vk—l,vk) © PO
P (v2h—k+1, V2n—k+2)

Initially, the algorithm traverses each shortest path tree
layer backwards using the procedure TravBack (steps 1, 2,
3, and 4). The procedure creates the subpaths P, (vj, vj+1)
and P, (vj,vj+1) in each k-level by retrieving a sequence of
edges (u,v), for each subpath. The algorithm expands each
subpath starting at the highest level until it finds a whole
path represented by edges only in the lowest level (step 5).
For each k-level, the algorithm takes the corresponding sub-
path P, (vk,v2n—k+1) and the procedure Intra-Regional
expands each edge (u,v); in this subpath into a subpath in
the (k—1)-level (step 5.b). This procedure finds the subpath
from u to v in the subgraph G%_, corresponding to a region
i in the (k—1)-level. These subpaths in the (k — 1)-level are
concatenated (operator @) into a path P (step 5.b.i). Then,
all subpaths in the (k — 1)-level are concatenated into only
one subpath P, (vk_1,v2n—r42) (step 5.c).

An important issue in the analysis of the Expand-Path al-
gorithm is the number of edges that an expanded shortest
path will have in a particular level of the hierarchy. With-
out loss of generality, we assume that the border vertices
between two regions compose a shortest path. Hence, for
higher levels, any shortest subpath entirely contained in a
single region is composed by at most two edges in the next
lower level.

LEMMA 4. The number of edges in a shortest path ez-
panded to the (h — i)-level is O(2*).

Proof. If £ > 1 and defining ¢ = 2, any shortest subpath
entirely inside a region in a k-level is composed by at most
two edges in the (k — 1)-level. Therefore, the number of
edges in a shortest path passing through many regions ex-
panded to the (k — 1)-level is two times the number of edges
in the corresponding subpath in the k-level plus four edges
concerning the subpaths originally in the (k—1)-level: P; |
and P;_,. Hence, the number |P,| of edges in the high-
est level shortest path is two and the number of edges in
a shortest path expanded to the (h — 7)-level is defined by
the recurrence |Py_;| = 2|Ph_i+1| + 4. This recurrence is
evaluated to |Py—;| = 6(2° — 1) + 2. Therefore, the number
of edges in a shortest subpath expanded to the (h — ¢)-level
is 0(2). m|

For intra-regional queries, we may use any flat strategy.
A path view strategy pre-computes all shortest paths in the
network for each region. Since ¢ = 2, this strategy spends
O(m) time to retrieve a shortest path in the lowest level
and O(1) time otherwise. The path view strategy requires
O(m!*®) space in the lowest level and O(c¥m) otherwise.

THEOREM 4. If the intra-regional query is implemented
using a path view approach, the algorithm Expand-Path
spends O(n) time.

Proof. The traversal of the shortest path tree layers using
procedure Traverse-Backwards in the lowest level requires
O(m) time. Since any subpath is composed by two edges
in higher levels, the traversal spends time O(h) = O(logr)
in all higher levels. Therefore, the traversal of the shortest
path tree layers takes O(m + logr) time. Using the path

view approach, the procedure Intra-Regional spends linear
time in the size of the subpath. Hence, the procedure spends
O(m) time if £ = 1, and O(1) time otherwise. Therefore,
according to Lemma 4, the subpaths are expanded in time
O(Ezzh 2=k 4 2P=1m;). This expression is equivalent to
02" + 2" 'm) = O(r + rm). Therefore, the algorithm
Expand-Path spends O(n) time. m|

The path views in the highest level and the expanded
shortest path in the lowest level require O(n) space. They
dominate the space requirement for the algorithm
Expand-Path.

THEOREM b. If the intra-regional query is implemented
using a path view approach, the algorithm Expand-Path re-
quires O(n + m*-®) space.

Proof. The hierarchical shortest path obtained by the tra-
versal of the shortest path tree layers has O(m+logr) edges
through all levels of the hierarchy. A path view PV}, requires
O(|Bx|?) space in a higher level, since a shortest subpath
in a higher level has at most two edges. Hence, a path
view requires O(c®m) space in a higher level while in the
lowest level, a path view requires O(|Bx||Vx|) = O(m"?®)
space. Therefore, the space required to store the path views
is O (Eg;i cFm+ m1'5).
O(rm + m"®) = O(n + m*®). The expanded path P has
0O(2°) edges in the (h—i)-level according to Lemma 4. Hence,
the space required to store P in the 1-level is O(2" 1) =
O(r). In the worst case, each edge of P in the 1l-level is
expanded into O(m) edges in the lowest level. This way,
the path P requires O(rm) = O(n) space. Therefore, the
algorithm Expand-Path requires O(n+m*-®) space in a path
view approach. O

This expression is equivalent to

4. THE HYBRID SHORTEST PATH ALGO-
RITHM

Given an edge e = (u, v), in the k-level network, an intra-
regional query consists in expanding the edge e into a sub-
path from u to v in the subgraph G%_, in the (k — 1)-level,
where u and v are border vertices in G%_,. The query may
be performed using any flat strategy, ranging between a
single-source shortest path algorithm and a lookup in a path
view for border vertices.

The strategy proposed in this paper for the lowest level
uses a hybrid path view for border vertices. The hybrid path
view represents each shortest path between border vertices
just by a sequence of guide vertices. A guide vertex is a pre-
decessor vertex for more than one vertex in the predecessor
matrix implementing the path view for border vertices. The
path view for border vertices consists of shortest path trees
composed only by shortest paths from a border vertex to
the other border vertices (see Fig. 6). Each row of a prede-
cessor matrix represents a shortest path tree corresponding
to a particular source vertex as the root.

LEMMA 5. The number of guide vertices in a shortest
path tree of a path view for a subgraph in the lowest level

18 O(v/m).

Proof. Concerning the number of guide vertices, the worst
case for a shortest path tree is a binary tree. Since a shortest

(b) Destinations are only border ver-
tices.

Figure 6: Shortest path trees and guide vertices in
a lowest level region.

path tree for a subgraph in the lowest level has |Bo| leaves,
there are |Bo| interior nodes that are guide vertices. There-
fore, according to Lemma 1, the number of guide vertices
in a shortest path tree for a subgraph in the lowest level is

O(ym). m

The hybrid path view PV{ for each region 7 in the lowest
level of the hierarchy is retrieved from the corresponding
path view PV{. In order to create PV, each guide vertex
is identified in a traversal of PV{. A hybrid path view is
implemented as a predecessor sparse matrix whose columns
are only related to guide vertices V§ and border vertices
B§. Further, the predecessor relation in this sparse matrix
is only expressed in terms of guide vertices.

An intra-regional query for an edge (u,v); in a 1-level
network is performed by the hybrid shortest path algorithm.
This algorithm uses the subgraph G¥ and the hybrid path
view PV{ information in order to find a single shortest path
P from w to v in the lowest level region i. PV{ describes the
shortest path in terms of guide vertices as a partial shortest
path Pg(u,v). Therefore, the algorithm expands Pf(u,v)
finding a sequence of subpaths between consecutive guide
vertices in P} (u,v).

The algorithm Hybrid-Shortest-Path below creates a
shortest path tree PT whose root represents the source ver-
tex u. A priority queue @ is used to keep track of all in-
formation related to the current vertices in V¢ — PT. Each
entry (u, f(u),e) in @ represents a vertex uw with an esti-
mate cost f(u) and a predecessor edge e. The set Q' keeps
track of the vertices in () whose cost is not infinity and,
consequently, will be reset for the next subpath search.

Algorithm Hybrid-Shortest-Path(u,v,1)

1. Pi(u,v) ¢ Path-Lookup (PVOi, u, v)
2. PT+ Q<+ 0
3. Q+ Q + QU (u,0,0)
4. for v' € V§ —u do
(a) @ < QU (v, 00,00)
. for each (s,d) € Pi(u,v) do
(a) (v, f(u'),e') +Extract-Min(Q)
(b) @ «Q -
(c) PT «+ PTU (W, f(u'),e)
(d) while u' # d do
i. for (u',u"); € E
AL if f(u') + (v, u");] < f(u") then
o f(u") « f(u) + (' u")
o ¢ (u',u")j
° QI — QI U 'LL”
ii. (v, f(u'),e') <Extract-Min(Q)
i Q — Q —
iv. PT « PT U (v, f(u'),€’)
(e) for v' € Q' do
i f(u') e + oo
(f) for (d,u"); € E}
L f(u") < |(d,u"),]
ii. e ¢« (d,u");
() @ <0
6. P < TravBack(PT,v)

(2}

First, the algorithm finds the partial shortest path P (u, v)
using the procedure Path-Lookup that traverses the hybrid
path view PV{ (step 1). Initially, PT is empty and @ has
all vertices with cost and predecessor edge equal to co, but
the source vertex u whose cost is 0 (steps 2, 3 and 4). Then,
the algorithm finds a shortest subpath in G corresponding
to each edge (s, d) in the partial shortest path (step 5). The
shortest subpath for each edge is computed in a similar way
to Dijkstra‘s shortest path algorithm. However, the current
state of the priority queue () means that there is no need to
consider the vertices already in PT for the current subpath.
Therefore, each following search has an initial @ just with
all remaining vertices (step 5.e). All costs and predecessor
edges are set to co, but vertices connected to d have its
costs and predecessor edges updated to represent that the
next source vertex is d with cost equal to 0 (step 5.f). The
subpath from wu to v is computed by traversing PT from v
using the procedure TravBack (step 6).

In the worst case, the hybrid shortest path algorithm has
the same time requirement as Dijkstra‘s single-source short-
est path algorithm. However, the number of vertices visited
by the hybrid shortest path algorithm is much smaller than
all vertices when vertices are uniformly distributed in the
region corresponding to the subgraph and the guide vertices
are uniformly distributed along a shortest path (see Fig. 7).

Since the subgraph G and the hybrid path view PV{ are
the inputs for the hybrid shortest path algorithm, the space
requirement for the algorithm is the same as for a single-
source shortest path algorithm.

(a) Shortest path tree (b) Dijkstra’s algo-
for border vertices. rithm.

(c) Hybrid algorithm.

Figure 7: Vertices visited by the shortest path algo-
rithms.

THEOREM 6. The hybrid shortest path algorithm requires
O(m) space.

Proof. The hybrid path view PV§ requires O(|Bo|Vo).
Hence, according to Lemmas 1 and 5,PV{ requires O(m)
space. The partial path Pg requires O(|Vo|+|Bo|) = O(v/m)
space. The space required by the set PT, priority queue Q
and set Q' is O(|Vo|). Hence, PT, Q and Q' require O(m)
space. The set of edges Eo requires O(m) space. Therefore,
the hybrid shortest path algorithm requires O(m) space. O

An uniform distribution of vertices in the lowest level is
acomplished when the number of vertices m in a bounded
region tends to infinity and the closest pair of points has a
distance greater than some small constant. This way, the
shortest path tends to a straight line and the number of
vertices in a shortest path is O(y/m).

THEOREM 7. Assume an uniform distribution of vertices
in the lowest level and the guide vertices are also uniformly
distributed along a shortest path. The number of vertices
visited by the hybrid shortest path algorithm is O(y/m).

Proof. Assuming the guide vertices are uniformly distri-
buted along the shortest path, the number ¢ of vertices be-
tween two consecutive guide vertices in a shortest path is

0] (%) The number of vertices visited in a single search
for a shortest subpath between two consecutive guide ver-
tices is O(g%). This way, the total number of vertices visited

is O (|Vo|g®). This expression is equivalent to O (%) =

vm
hybrid shortest path algorithm is O(y/m). O

0] (£> Therefore, the number of vertices visited by the

Assuming vertices are uniformly distributed, the running
time requirement for the hybrid shortest path algorithm be-
comes O(m) in the lowest level.

THEOREM 8. Assume an uniform distribution of vertices
in the lowest level and the guide vertices are also uniformly
distributed along a shortest path. The hybrid shortest path
algorithm spends O(m) time in the lowest level.

Proof. The path lookup in the hybrid path view spends
time O(y/m). The priority queue initialization requires
O(m) time. According to Lemma 7, the number of vertices
visited by the algorithm is O(y/m). This way, the algo-
rithm spends O(y/mlogm) time in Extract-Min operations
and cost updates. The algorithm spends O(y/m) time in
resets and initializing @) concerning source vertices. There-
fore, the algorithm spends O(y/mlogm + m) time. Since
log m = O(y/m), the hybrid shortest path algorithm spends
O(m) time in the lowest level. m|

The best time and space requirements for intra-regional
queries in the lowest level is accomplished by the hybrid
shortest path algorithm assuming an uniform distribution
of vertices. For higher levels, the best strategy concerning
time and space resources is the path view approach defining
c=2.

5. CONCLUSION AND FUTURE WORK

We present a hierarchical approach that subdivides the
network into regions with the same number of vertices and
creates higher levels merging a constant number of adjacent
regions. The hierarchy is completely defined by the number
of regions r in the lowest level, the number m of vertices of
a region in the lowest level, and the merging degree ¢. We
propose algorithms to find a shortest path and to expand
this path.

The complexity analysis for these algorithms show that
our hierarchical approach requires O(n) query time and spa-
ce when »r = m = /n and ¢ = 2. Since our approach is non-
recursive, the complexity constants are small. Hence, it is
more efficient in practice when compared to other recursive
optimal approaches.

A hybrid shortest path algorithm to perform intra-regional
queries is introduced. This strategy uses a subsequence of
vertices that belong to the shortest path while actually com-
puting the whole shortest path. In the lowest level, the hy-
brid algorithm requires O(m) time and space assuming an
uniform distribution of vertices. This is better than a path
view approach that requires O(m'-®) space. For higher lev-
els, the path view approach spends O(1) time and requires
O(cFm) space.

The algorithms in the hierarchical approach also present a
good potential for parallelization. The path expansion may
expand each subpath for a specific level in parallel.

In order to support the theoretical results we achieved,
computational experiments using real networks to evaluate
the time and space efficiency for our hierarchical approach

should be implemented. Three different strategies to per-
form intra-regional queries in the lowest level would be com-
pared: Dijkstra’s algorithm, path view lookup and hybrid
shortest path algorithm.

6.
[1]

[2

—

3

—_

[9

—

[10]

[11]

[12]

[13]

REFERENCES

D. Chen and J. Xu. Shortest path queries in planar
graphs. In Proceedings of the 32nd ACM Symposium
on Theory of Computing, pages 469-478. ACM, May
2000.

R. Dechter and J. Pearl. Generalized best-first search
strategies and the optimality of A*. Journal of the
ACM, 32(3):505-536, July 1985.

E. Dijkstra. A note on two problems in connection
with graphs. Numerische Mathematik, 1:269-271,
1959.

H. Djidjev. Efficient algorithms for shortest path
queries in planar digraphs. In WG: Graph-Theoretic
Concepts in Computer Science, International
Workshop WG, 1996.

G. Frederickson. Fast algorithms for shortest paths in
planar graphs, with applications. SIAM J. Comput.,
16(6):1004-1022, December 1987.

G. Frederickson. Planar graph decomposition and all
pairs shortest paths. Journal of the ACM,
38(1):162-204, January 1991.

M. Fredman and R. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms.
Journal of the ACM, 34(3):596—615, July 1987.

M. Goodrich. Planar separators and parallel polygon
triangulation. In Proceedings of the 24th ACM
Symposium on Theory of Computing, pages 507-516.
ACM, May 1992.

N. Jing, Y.-W. Huang, and E. Rundensteiner.
Hierarchical encoded path views for path query
processing: An optimal model and its performance
evaluation. IEEE Transactions on Knowledge and
Data Engineering, 10(3):409-432, 1998.

D. Johnson. Efficient algorithms for shortest paths in
sparse networks. Journal of the ACM, 24(1):1-13,
January 1977.

P. Klein, S. Rao, M. Rauch, and S. Subramanian.
Faster shortest-path algorithms for planar graphs. In
Proceedings of the 26th ACM Symposium on Theory of
Computing, pages 27-37. ACM, May 1994.

R. Lipton and R. Tarjan. A separator theorem for
planar graphs. STAM J. Appl. Math, 36:177-189, 1979.
S. Shekhar, A. Fetterer, and B. Goyal. Materialization
trade-offs in hierarchical shortest path algorithms. In
M. Scholl and A. Voisard, editors, SSD’97,
Proceedings of the 5th International Symposium on
Advances in Spatial Databases, volume 1262 of Lecture
Notes in Computer Science, pages 94-111.
Springer-Verlag, 1997.

