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Abstract

An algorithm is presented to answer window queries in a quadtree-based spatial database envi-
ronment by retrieving all of the quadtree blocks in the underlying spatial database that cover the
quadtree blocks that comprise the window. It works by decomposing the window operation into
sub-operations over smaller window partitions. These partitions are the quadtree blocks corre-
sponding to the window. Although a block & in the underlying spatial database may cover several
of the smaller window partitions, b is only retrieved once rather than multiple times. This is
achieved by using an auxiliary main memory data structure called the active border which requires
O(n) additional storage for a window query of size n x n. As a result, the algorithm generates
an optimal number of disk I/O requests to answer a window query (i.e., one request per covering
quadtree block). A proof of correctness and an analysis of the algorithm’s execution time and
space requirements are given, as are some experimental results.
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1 Introduction

Spatial data consists of spatial objects made up of points, lines, regions, rectangles, sur-
faces, volumes, and even data of higher dimension which includes time. Examples of
spatial data range from locations of cities, rivers, roads, to the areas that are spanned
by counties, states, crop coverages, mountain ranges, etc. They are increasingly finding
their way into adaptations of conventional databases for use in applications in geographic
information systems (GIS), resource management, space, urban planning, etc. [9, 22].

There are many different representations of spatial data (see [20, 21] for an overview).
We are interested in representations that are based on spatial occupancy. Spatial oc-
cupancy methods decompose the space from which the data is drawn (e.g., the two-
dimensional space containing the lines) into regions called buckets. They are also com-
monly known as bucketing methods. Traditionally, bucketing methods such as the grid
file [19], BANG file [13], LSD trees [17], Buddy trees [25], etc. have usually been applied
to points, although they can be applied to the other types as well.

There are four principal approaches to decomposing the space from which the data is
drawn. One approach buckets the data based on the concept of a minimum bounding (or
enclosing) rectangle. In this case, the minimum bounding rectangles of the objects are
grouped (hopefully by proximity) into hierarchies, and then stored in another structure
such as a B-tree [7]. The R-tree [16] (as well as its variants such as the R*-tree [6]) is an
example of this approach.

The drawback of these hierarchies of objects is that they do not result in a disjoint
decomposition of the underlying space. The problem is that each object is only associated
with one bounding rectangle even though it may also overlap a portion of the bounding
rectangle of another object. In the worst case, this means that when we wish to determine
which object is associated with a particular point in the two-dimensional space from
which the objects are drawn (e.g., the containing rectangle in a rectangle database, or an
intersecting line in a line segment database), we may have to search the entire database.

The other approaches are based on a decomposition of space into disjoint cells, which
are mapped into buckets. Their common property is that the objects are decomposed
into disjoint subobjects such that each of the subobjects is associated with a different cell.
They differ in the degree of regularity imposed by their underlying decomposition rules
and by the way in which the cells are aggregated. The price paid for the disjointness is
that in order to determine the area covered by a particular object, we have to retrieve
all the cells that it occupies. Moreover, if we wish to report all the objects that overlap
a particular area, then we may have to report an object as many times as its subobjects
appear in the area.

The first method based on disjointness partitions the objects into arbitrary disjoint
subobjects and then groups the subobjects in another structure such as a B-tree. The
partition and the subsequent groupings are such that the bounding rectangles are disjoint
at each level of the structure. The RT-tree [26] and the cell tree [15] are examples of this
approach. Their drawback (as well as the R-tree variants) is that the decomposition is
data-dependent. This means that it is difficult to perform tasks that require composition
of different operations and data sets (e.g., set-theoretic operations such as overlay).

In contrast, the remaining two methods, while also yielding a disjoint decomposition,
have a greater degree of data-independence. They are based on a regular decomposition.
The space can be decomposed either into blocks of uniform size (e.g., the uniform grid [12])
or adapt the decomposition to the distribution of the data (e.g., a quadtree-based approach
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that makes use of regular decomposition such as [24]). In the former case, all the blocks
are of the same size, while in the latter case, the widths of the blocks are maximal subject
to being restricted to be powers of two, and a restriction on their positions.

For example, Figure 1 shows the quadtree block decomposition of two square regions
of space each of which contains a rectangular subregion (termed a window) delimited by
heavy lines. The blocks are obtained by applying regular decomposition to the square
regions thereby repeatedly breaking them up into four congruent blocks until each block
is either completely within the window or completely outside the window.

window w window w

underlying spatial database underlying spatial database

Figure 1: The decomposition of (a) a 12 x 12 window, and (b) a 13 x 13
window into maximal quadtree blocks.

The uniform grid is ideal for uniformly distributed data, while quadtree-based ap-
proaches are suited for arbitrarily distributed data. In the case of uniformly distributed
data, quadtree-based approaches degenerate to a uniform grid, albeit they have a higher
overhead. Both the uniform grid and the quadtree-based approaches lend themselves to
set-theoretic operations as the positions of the decomposition lines are restricted and thus
there is much less variation between the operands of the operations. Thus they are ideal
for tasks which require the composition of different operations and data sets. In gen-
eral, since spatial data is not usually uniformly distributed, the quadtree-based regular
decomposition approach is more flexible.

A window query is the spatial analog of a range query in that it retrieves all objects
that overlap the space covered by a range of 2 and y (and possibly z in three-dimensions)
coordinate values which form the window. In this paper we focus on performing a variant
of a window query using a regular decomposition quadtree. Both the window and the
underlying database are represented by a quadtree. In particular, the quadtree blocks
By that make up the window are used to guide the retrieval process. The variant of the
query is one that retrieves all of the quadtree blocks By of the underlying database that
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cover the blocks that make up the window (i.e., By). This query differs from the classical
window operation described above which retrieves the objects in the underlying database
that cover the window instead of the blocks in the underlying database as we do here.

The rationale for using the quadtree blocks of the window is to match the quadtree
decomposition of the underlying spatial database. This makes it more straight-forward
to answer the window query since there is a direct correspondence between each window
block and some overlapping quadtree block(s) in the underlying spatial database. The
answer to the window query is the union of all the answers generated by querying the
underlying spatial database with the maximal quadtree blocks comprising the window
serving as the individual queries.

Our variant can be viewed as a preliminary step to the retrieval of the objects in that it
retrieves the blocks in the underlying database (i.e., Bys) that correspond to the window.
The next step would process blocks By and extract the relevant objects from them. When
the underlying database is a quadtree where the objects have been decomposed so that the
blocks which contain them are disjoint, the step that extracts the relevant objects from
the blocks may in fact encounter some of the objects more than once (e.g., when a region
or line object has been decomposed into several blocks each of which contains a part of
the region or line object). In this case, this step would have to eliminate the duplicates
which is not a simple matter (but see [2, 4]).

The rationale for our variant is that we may wish to use these blocks (i.e., By) as
input to a subsequent operation whose underlying representation is also a quadtree thereby
facilitating the composition of several operations. Another way to characterize our variant
is that it is somewhat like a clipping operation where we are using the quadtree blocks
that make up the query window (i.e., By ) to clip the blocks that make up the underlying
database (i.e, By).

In this paper we show how to retrieve the quadtree blocks from the underlying database
that cover the quadtree blocks that comprise the window. In particular, we describe a
method that retrieves each block b in By just once even though b may cover several blocks
in By. The rest of this paper is organized as follows. Section 2 gives an overview of
our approach. Section 3 describes our algorithm. Section 4 contains an informal proof of
correctness for the algorithm’s block retrieval process, while an analysis of its worst-case
execution time and space complexity is given in Section 5. Section 6 presents empirical
results of the disk I/O behavior of the algorithm, while concluding remarks are drawn in
Section 7.

2 Overview of our Approach

A window decomposition algorithm is given in [3] which decomposes a two-dimensional
window of size n X n in a feature space (e.g., an image) of size 7" x T into its maximal
quadtree blocks in O(nloglogT') time. Once the set By has been determined, we simply
retrieve the elements of the underlying spatial database S that overlap each of its elements.
The drawback of this algorithm is that many of the elements of S may be retrieved more
than once. For example, in Figure 2, the algorithm would retrieve block p of the underlying
spatial database four times (once for each of the maximal window blocks 1, 4, 8, and 10).
We assume that the underlying spatial database is disk-resident, and we often speak of the
operation of retrieving a block of the underlying spatial database as a disk I/O request.
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This means that redundant disk I/O requests will result.? One solution is to keep track
of all blocks that have already been retrieved. This is not easy without additional storage
(see [2] for a discussion of the similar issue of uniquely reporting answers in a spatial
database).

window w
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Figure 2: Examples where more than one window block retrieves the same
block of the underlying spatial database.

The problem with using the algorithm in [3] is that the process of generating the
maximal blocks that comprise the window only depends on the query window and does
not take into consideration the decomposition of space induced by the underlying spatial
database. We overcome this problem by generating and retrieving each covering block
in the underlying spatial database just once. This is achieved by controlling the window
decomposition procedure through the use of information about blocks of the underlying
spatial database that have already been retrieved. We use an approach based on active
borders [23], at the expense of some extra storage. The algorithm that we present performs
this task with the same worst-case CPU execution-time complexity as the one in [3] (i.e.,
O(nloglogT)). The difference is in the I/O cost where the new algorithm makes just M
requests to access the underlying spatial database instead of max(N, M) as in [3], where
M is the number of quadtree blocks in the underlying spatial database that overlap the

2This problem can be overcome via appropriate use of buffering techniques. However, in this paper
we show how to avoid the problem by retrieving each block of the underlying spatial database just once
without relying on buffering techniques.
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window and N is the number of maximal quadtree blocks in the window. A general sig-
nificance of both our algorithm and the one in [3] is that although the window contains n?
pixel elements, the worst-case CPU execution-time complexity of the algorithms is almost
linearly proportional (and not quadratic) to the window diameter, and is independent of
other factors.

It is important to note that we retrieve blocks in the underlying spatial database by use
of information (partial) about their relationship to other blocks (e.g., containment, overlap,
subset, etc.). We do not retrieve a block of the underlying database by its identifier. If we
could do this, then we could keep track of which blocks are retrieved via a hash table, for
example, and avoid retrieving them again. Instead, we are given the spatial description of
a window block, say b. The spatial description of b is used to retrieve all the blocks of the
underlying spatial database that are spatially related to b (e.g., the blocks that contain,
or are contained in, b). Blocks in the underlying spatial database can be retrieved more
than once if they satisfy some spatial relationship with respect to different window blocks.
In order to avoid retrieving the same block more than once when a different window
block is processed, we maintain a spatial analog to the hash-table mechanism above. This
is achieved through the usage of some spatial data structure, namely the active border,
tailored to match the needs of this type of spatial retrieval. The active border can also be
viewed as simulating the spatial equivalent of a sort-merge list of pages which is used in
database query processing when accessing data through secondary indexes [10].

3 Algorithm

Answering a window query by first computing the maximal quadtree blocks comprising it,
and then retrieving the corresponding covering blocks in the underlying spatial database
proceeds as follows. Assume a query window W, a spatial database S, a query function F
that performs the appropriate variant of a window query test (e.g., a containment test)
and a record of type answer_set that accumulates the answer to the window query.

answer_set procedure Algorithm-1(S,W,F);
begin
reference spatial_database S;
value window W;
value function F;
block B;
block set C;
spatial_object set T;
answer_set RESULT;
RESULT :=empty;
decompose W into its maximal quadtree blocks;
foreach block B in W do

BEGIN
C:=blocks in S THAT cover B;
T:=empty;

foreach block Q in C do T:=F(W,Q) U T;
/* apply F to spatial objects associated with Q */
RESULT:=RESULT U T;
end;
return(RESULT) ;
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end;

By varying the function F and the data type answer_set, many window operations can be
implemented using Algorithm-1. For example, to answer the report query (i.e., reporting
the identity of all the features that exist inside a window), the function F simply identifies
all the spatial objects inside the block of the underlying spatial database, and the data type
answer _set is just a set of spatial object identifiers for the qualifying objects. To answer
the exist query (i.e., determining if feature f exists in w), the function F tests whether or
not f (or f’s identifier) exists inside the block of the underlying spatial database, and the
data type answer_set is the type Boolean while U is a logical or operation. To answer the
select query (i.e., reporting the locations of all instances of feature f in the window), the
function F simply tests whether or not f (or f’s identifier) exists inside the block of the
underlying spatial database, and the data type answer_set is a quadtree that stores in it
the location of these blocks.

There is one principal issue in implementing this algorithm. This was discussed in
Section 2 and corresponds to the situation that block ¢ in the underlying spatial database
covers more than one maximal quadtree block in the window. In this case, ¢ will be
retrieved several times. This is what happens in the algorithm reported in [3]. This could
be overcome by avoiding the invocation of the retrieval step for some of the maximal
quadtree window blocks. The issue is how do we skip some of the maximal quadtree
window blocks. In order to understand this issue, we briefly focus on the relation between
the maximal quadtree blocks of the window decomposition and the quadtree blocks in the
underlying spatial database.

Assume that b is a maximal window block that is generated by the window decomposi-
tion algorithm. Due to the quadtree decomposition of both the window and the underlying
spatial database, b can either be contained in, or contain, one or more quadtree blocks of
the underlying spatial database. In particular, there are three possible cases as illustrated
by Figure 2. Case 1 is demonstrated in the figure by window block 2 which contains more
than one quadtree block of the underlying spatial database. All of these blocks have to be
retrieved (e.g., from the disk), and processed by the algorithm (e.g., the spatial objects
associated with these blocks will be reported as intersecting the window). The second
case is illustrated by window block 9 of Figure 2. Block 9 contains exactly one block of
the underlying spatial database which will have to be retrieved (e.g., from the disk) as
well. The third case is demonstrated by window blocks 1, 4, 8, and 10 of Figure 2 which
all require retrieving (e.g., from the disk) the same quadtree block (i.e., block p of the
underlying spatial database). Case 3 arises frequently in any typical window query, as
shown by the experiments conducted in Section 6, thereby resulting in a large number of
redundant disk I/O requests.

Our algorithm is an improvement over Algorithm-1 and is based on the following
observation (it is restated as Lemma 1, as well as proved, in Section 4):

Observation 1: Assume that a block, say b, is a maximal block that lies inside
the window w and overlaps with a block of the underlying spatial database, say
q. If g is of greater size than b, then ¢ must intersect with at least one of the
boundaries of the window w (refer to Figure 3 for illustration).

In other words, there cannot be database blocks that are bigger than the intersecting
window blocks which are in the middle of the query window. These big database blocks
have to intersect the boundary of the query window. Our window retrieval algorithm is
based on this observation which we illustrate further later in this section.
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The new algorithm consists of procedures WINDOW RETRIEVE, GEN_SOUTHERN MAXIMAL,
and MAX BLOCK. They are described below, while their detailed code is given in the Ap-
pendix. The algorithm works for an arbitrary rectangular window (i.e., it need not be
square). We avoid generating non-maximal quadtree blocks in the window (or at least
generate a bounded number of them) by using the same technique as in [3], which we out-
line below. Note that there are O(n?) non-maximal blocks inside an n x n window. Also,
each maximal quadtree block in the window is processed only once (i.e., as a neighbor of
another node) regardless of its size.

We make use of an active border data structure [23] which is a separator between the
window regions that have already been processed and the rest of the window. Note that
the active border in our case will differ from the conventional one (which looks like a
staircase) because of the nature of the block traversal process. In particular, we traverse
the blocks in the window in a row-by-row manner rather than in quadrant order (i.e., NW,
NE, SW, SE).

Figures 4-8 represent the first five steps of the execution of the algorithm for the query
window w. The heavy lines in Figure 4 represent the active border for window w at the
initial stage of the algorithm. In generating a new block, the window decomposer has to
consult the active border in order to avoid generating a disk 1/O request for a window
region that has already been processed by a block of the underlying spatial database that
has already been retrieved.

The active border is maintained as follows. First, a window block, say b, is generated
by the window decomposer and a disk 1/O request is issued to access the region of the
underlying spatial database corresponding to b. Assume that b overlaps in space with
block = in the underlying spatial database. Therefore, u is retrieved as a result of the
disk I/0O request corresponding to b. The spatial objects inside u are processed and thus
there is no need to retrieve u again. As a result, the active border needs to be updated
by block b or u depending on which one provides more coverage of the window region.
Figures 4-8 illustrate the updating process of the active border. If u has a larger overlap
with the unprocessed portion of the window than b (e.g. window block 1 and block p
of the underlying spatial database in Figure 4, as well as window block 3 and block q
of the underlying spatial database), then the active border is expanded using u’s region
(Figure 5). If u is contained in b (e.g., window block 2 and block r of the underlying
spatial database in Figure 4), then all the other blocks in the underlying spatial database
have to be retrieved as well, and the active border is expanded by b’s region (Figure 6).
If the sizes of b and u are the same (e.g., window block 12 and block s of the underlying
spatial database in Figure 4), then the active border is expanded by either one of them
(Figure 8). Notice that, if we were using Algorithm-1, window blocks 4, 8, 10, and 7
would still be processed and hence would generate four redundant disk 1/O requests to
retrieve blocks p and q.

The generation of the maximal quadtree blocks inside a given window is controlled by
procedure WINDOW_RETRIEVE whose basic structure is given in Figure 9. WINDOW_RETRIEVE
scans the window row-by-row (in the block domain rather than in the pixel domain),
and visits the blocks within it that have not been visited in previous scans®. For each
visited window block, say b, the underlying spatial database is queried and a corresponding
quadtree block, say ¢, is retrieved from the database. Procedures GEN_SOUTHERN MAXIMAL

and MAX_BLOCK generate b’s or ¢’s maximal southern neighboring blocks (in fact, only the

*Observe that we could have chosen to scan the window in a column-by-column fashion instead of
row-by-row. The result is unchanged as long as the data structures for keeping track of the active border
are reoriented appropriately.
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portion of ¢ that lies inside the window will be used) according to the three cases presented
earlier in this section, that relate the location and size of both b and ¢ with respect to
the query window. WINDOW _RETRIEVE also makes sure that any of the remaining columns
of row r that lie within b or ¢ are skipped. For example, consider Figure 2, where five
scans are needed to cover the 12 x 12 window with maximal blocks. The first scan visits
blocks 1, 2, and 3; the second scan visits blocks 12, 5, 6, and 9; the remaining scans
visit blocks 14 and 11; 13; and 15. Notice that once blocks 5 and 6 have been visited,
their columns (i.e., 2-5 in the window) have been completely processed. Also, observe
that when block 1 is generated, block p of the underlying spatial database, which overlaps
with block 1, is retrieved. As a result, window blocks, 4, 8, and 10 are skipped. This way,
the algorithm can avoid reaccessing p by skipping all the window blocks that overlap with
p. As a consequence, the southern neighbors of p (and not those of block 1) are generated
by the algorithm.

Procedure GEN_SOUTHERN _MAXIMAL generates the southern neighbors (maximal blocks)
Ny through N, for each maximal block B generated by WINDOW RETRIEVE and that is not
contained in another maximal block. There are a number of possible cases illustrated in
Figure 10. If m = 1, then N7 is greater than or equal to B. Otherwise, the total width of
blocks Ny through N, is equal to that of B. It is impossible for the total length to exceed
that of B unless there is only one neighbor (see Figure 10b). Procedure MAX_BLOCK takes
as its input a window, say w, and the values of the # and y coordinates of a pixel, say
(col,row), and returns the maximal block in w with (col,row) as its upper-leftmost corner.
The resulting block has width 2%, where s is the maximum value of ¢ (0 < ¢ < logT', where
T x T is the size of the image space) such that row mod 2° = col mod 2° = 0 and the point
(row —I—Qi, col —I—Qi) lies inside w.

Figure 11a gives the active border’s most general form. The active border does not
contain any holes (see Lemma 1 in Section 4 and thus Figure 11b corresponds to an
impossible situation). When a block of the underlying spatial database, say ¢, is retrieved,
the algorithm checks its size against the corresponding window block, say b. If ¢’s size
is larger than that of b, then the algorithm knows that ¢ has to intersect one of the
window’s boundaries (see Lemma 1 in Section 4). We make use of this property here.
Figure 3 shows the four possible cases where the block retrieved from the underlying
spatial database intersects with one of the window boundaries. Each of the four cases
must be treated separately by the algorithm.

There is no need to maintain any data structures to explicitly store the northern portion
of the active border since WINDOW RETRIEVE can handle this portion directly. During the
first row-by-row scan of the window by WINDOW RETRIEVE, if a block of the underlying
spatial database, say ¢, is retrieved that happens to intersect the northern boundary of
the window (Figure 3a), then WINDOW_RETRIEVE skips the window blocks in the current
row scan that overlap with ¢. The portion of the southern boundary of ¢ that lies inside
the window is used to generate the southern neighboring blocks to be processed in the
next scan.

When block ¢ of the underlying spatial database intersects only the southern boundary
of the window (Figure 3d), then it also suffices for WINDOW_RETRIEVE to skip all the window
blocks that are adjacent to the window block that initiated ¢’s retrieval. Although this
seems intuitive, it is not straight-forward to see that all of the processing of block ¢ by
WINDOW RETRIEVE is localized in one part of the algorithm. In particular, although true,
it is not directly obvious that all the blocks that overlap with ¢ will be processed by
WINDOW RETRIEVE at the same time so that they can be skipped. Thus as a result of this
localized processing, there is no need to maintain any explicit data structures in this case
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either.

If g intersects the western or eastern boundaries (Figures 3b and 3c), its overlap with
the window creates a pocket-like region that needs to be stored in two separate lists,
WestList or EastList, respectively. Fach time a window block is generated, it has to be
checked against the active border in order to make sure that the block is not covered by
a previously retrieved block of the underlying spatial database. Below, we show how to
perform this check in constant time.

To facilitate our presentation, we represent both WestList and EastList as two one-
dimensional arrays, each of length equal to the height of the window: WestList[r : r4+n—1]
and EastList[r : 7 + n — 1], where the height of the window is n and (r,¢) corresponds
to the z and y coordinate values of its upper-left corner. Figure 12b shows the border
represented by each of the two arrays as a result of extracting an 8 x 12 window from the
underlying spatial database in Figure 12a. Let (r,,¢,) be the location of the upper-left
corner of ¢. If ¢ intersects the west boundary of the window, then WestList[ry] is set to the
pair < ¢4 + 54,5, > where the first component of the pair denotes the x coordinate value
of ¢’s east boundary while the second component (i.e., s,) denotes the size of ¢. The pair
< ¢q+ 54,8, > represents the pocket-like region resulting from the intersection of ¢ with w.
Similarly, if ¢ intersects the east boundary of the window, then EastList[r,] is set to the
pair < ¢4,5, >. Each time a window block is generated it has to be checked against the
active border in order to make sure that the block is not covered by a previously retrieved
block of the underlying spatial database. Notice that updating the active border only
requires one array access (either updating WestList or EastList depending on whether
q intersects the west or east boundaries of the window, respectively), while checking a
window block against the active border takes only two array accesses (one access to each
of WestList and EastList). Therefore, maintaining the active border, whether updating
or checking, takes O(1) time.

Observe that WINDOW RETRIEVE always generates maximal neighboring blocks, and
a bounded number of non-maximal blocks. An example of this situation arises when
processing blocks A-J in the first row of the window in Figure 13. Each of blocks B,
C, D, F, G, H, and J can generate at most one non-maximal neighboring block. Even
though these non-maximal blocks are generated, procedure WINDOW RETRIEVE skips them
in the next scan since they are subsumed (i.e., contained) in the previously processed
maximal block in the scan. For example, when scanning block K in Figure 13, blocks L,
M, and N are skipped since they are contained in it. This is easy to detect because for
each block we know the = and y coordinate values of its upper-left corner and its size.

4 Correctness

Proving that the algorithm is correct involves showing that every block of the underlying
spatial database that overlaps with the query window is retrieved and processed by the
algorithm. In order to prove this, we can structure our algorithm in the following way.
The algorithm consists of two mechanisms: one for generating maximal quadtree blocks
inside the window (also termed the window decomposition algorithm), and the other for
retrieving blocks from the underlying spatial database and maintaining the active border.
The active border keeps track of the blocks on the boundary of the window that have
already been retrieved. This guarantees that each block in the underlying spatial database
is not retrieved more than once. Our strategy for proving that the algorithm is correct
is to separate these two mechanisms, show that each one is correct, and then prove that
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they interact properly.

The algorithm has two cases. The first case arises when all the quadtree blocks of
the underlying spatial database that overlap the window are smaller than or equal to the
size of the smallest quadtree block in the window. The second case arises when this size
criterion is not satisfied.

In the first case the window decomposition algorithm will have to generate all of the
maximal quadtree blocks inside the window and none will be skipped — i.e., each one
causes a block of the underlying spatial database to be retrieved. In other words, there
are no pockets and thus the arrays WestList and EastList are never updated or accessed.
This means that the algorithm reduces to the window decomposition algorithm given in [3].

The window decomposition algorithm is proved correct in [3] and thus we will not
address it here. However, we only state that proving that the window decomposition
algorithm is correct involves showing that the execution of the algorithm generates a list
of maximal blocks that lie entirely inside the window and that cover each point inside the
window. In other words, each point inside the window is covered by one maximal block
that is generated through the execution of the algorithm. The following two theorems are
proved in [3]:

Theorem 1: Each point inside a window is covered by one and only one maximal block
generated by the algorithm.

Theorem 2: The window decomposition algorithm generates all the maximal blocks
inside the window and only maximal blocks, and hence is correct.

We now address the second case where some of the blocks in the underlying spatial
database are larger than the smallest block in the window — i.e., blocks of the underlying
spatial database whose sizes are larger than the overlapping window blocks. We need to
show that the interaction and maintenance of the active border with the window decom-
position algorithm (1) guarantees that every block of the underlying spatial database that
overlaps with the query window is retrieved and processed by the algorithm, and (2) does
not interfere negatively with the window decomposition algorithm. From the complexity
point of view, we prove, in Section 5, that every block of the underlying spatial database
that overlaps with the window is retrieved only once.

First, we use the concept of a maxzimal zone [3] to facilitate the presentation of the
proofs. Assume a window having (¢, r) as the z and y coordinate values of its upper-left
corner with height wy, (i.e., in the y direction) and width w,, (i.e., in the z direction). First,
let us look at the a direction. Processing along the width w,,, we subdivide the window
into p vertical strips with (¢;,7) (0 < < p) as coordinate values of their upper-left corner
where ¢g = ¢, and ¢; = ¢;_1 + 27 such that ¢;_; mod 27 = 0 and ¢;_; mod 271! # 0 and
¢ic14 27 < ¢+ w,y. pis defined so that ¢p = ¢+ wy. An example of such a decomposition
into vertical strips is shown in Figure 14a. The vertical strips are termed mazimal columns.

We now subdivide the window into horizontal strips in the same way. In particular,
we have ¢ horizontal strips with (¢,7;), (0 < 7 < ¢) as the z and y coordinate values of
their upper-left corner where 1o = r and r;, = r;_1 + 27 such that 7;_; mod 2/ = 0 and
ri_1 mod 2711 # 0 and r;_q +27 < r+wy. ¢is defined so that rq = 7+ wp. An example of
such a decomposition into horizontal strips is shown in Figure 14b. The horizontal strips
are termed mazimal rows.

Now we define the term mazimal zones as follows. A maximal zone, say Z;;, is the
region between the vertical strips (i.e., maximal columns) having ¢; and ¢;41 as the z-
coordinate values of their upper-left corner and the horizontal strips (i.e., maximal rows)
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having 7; and r;41 as the y-coordinate values of their upper-left corner where 0 < ¢ < p
and 0 < j < ¢g. Figure 14c gives an example of decomposing a window into its maximal
zones.

Below, we state some propositions dealing with properties of maximal zones. Their
proofs are straightforward, and we omit them in the interest of brevity. They are illustrated
in Figure 14d.

Proposition 1: Each maximal block inside the window is entirely contained in one and
only one maximal zone.

Proposition 2: All the maximal blocks inside a maximal zone are of the same size.

Proposition 3: A maximal zone contains either one maximal block, or one row of max-
imal blocks, or one column of maximal blocks.

Proposition 4: All the southern neighbors of a block lie in one maximal zone.

Proposition 5: There exists a maximal column, say cg, inside the window such that,
Vii0<i<kyeg—cog<cip1 — e AVt k<i<p,cipq—¢ <¢—Coq.

In other words, the sequence of distances between (width of) the maximal columns forms
a monotonically increasing sequence followed by a monotonically decreasing sequence. An
equivalent property exists for maximal rows.

A useful invariant that holds during the execution of the window decomposition algo-
rithm that also relates to maximal columns is stated below.

Invariant 1: Fach maximal window block and its southern neighbor window blocks that
are both generated by the window decomposition algorithm always lie inside the same
maximal column.

In other words, the blocks inside a maximal column are processed independently of the
blocks in other maximal columns inside the window. Put differently, although the algo-
rithm scans the window row-by-row (in the block domain) and generates the maximal
neighboring blocks to the south of each block encountered, there is no interaction between
blocks of different maximal columns. We make use of this invariant to prove the lemmas
below.

Lemma 1: Assume that a block, say b, is a maximal block that lies inside the window
w and overlaps with a block of the underlying spatial database, say ¢g. If ¢ is of greater
size than b, then ¢ must intersect with at least one of the boundaries of the window w
(Figure 3).

Proof by Contradiction: Since b overlaps with ¢ and b is smaller than ¢, then b is
contained in ¢ (by the definition of a quadtree decomposition of space). Assume to the
contrary that the database block ¢ lies entirely inside w. If ¢ is of greater size than the
window block b that overlaps with it, then & is not a maximal block since we can use a
window block by that contains & and that coincides with ¢ as our new maximal block,
which leads to a contradiction. O

As a result, we deal with three categories of blocks of the underlying spatial database
that intersect the window boundary: blocks that intersect the north boundary, blocks
that intersect the east (west) boundary, and blocks that intersect the south boundary.
Notice that the algorithm treats blocks that intersect both the west (east) and the south
boundaries of the window as if they just intersect the west (east) boundary. On the other
hand, it treats blocks that intersect both the north and west (east) boundaries of the
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window as if they just intersect the north boundary. Blocks intersecting the east or west
boundary of the window receive the same type of processing and hence are considered as
one group. We prove the correctness of the interaction of each category separately.

Lemma 1 means that the active border does not contain any holes (see Figure 11b)
since the query window is scanned row-by-row, and large-sized blocks of the underlying
spatial database intersect only the window boundary. Therefore, storing only the outer
boundary of the active border is enough.

Lemma 2a: If a block of the underlying spatial database, say ¢, intersects the west (east)
window boundary, then the east (west) boundary of ¢ that lies inside the window must
coincide with a boundary of one of the maximal columns of the window.

Proof: We prove the lemma for the case when ¢ intersects the west boundary of the
window. The other case is similar. Assume the lemma does not hold — i.e., that ¢
intersects the window boundary but that the eastern boundary of ¢ that lies inside the
window does not coincide with a maximal column of the window. Therefore, one of two
possible cases must occur. These are illustrated in Figure 15. Both of the cases cannot
happen since, by the definition of a quadtree decomposition, blocks cannot overlap in this
manner. O

An analogous lemma can be stated for blocks intersecting the north or south boundary of
the window.

Lemma 2b: If a block of the underlying spatial database, say ¢, intersects the north
(south) window boundary, then the south (north) boundary of ¢ that lies inside the window
must coincide with a boundary of one of the maximal rows of the window.

Lemma 3: If a block of the underlying spatial database, say ¢, intersects the west (east)
window boundary, then the part, if any, of the south boundary of ¢, say s, that lies inside
the window must coincide with the north boundary of a maximal block inside the window.

Proof: Assume that ¢ intersects the west boundary of the window. From Lemma 2a,
¢’s east boundary coincides with a boundary of a maximal column of the window, say c.
However, other maximal columns to the west of ¢ may intersect ¢ as well (for example, in
Figure 12, maximal column Cj intersects block p of the underlying spatial database). If
q intersects with no maximal columns other than ¢, then only two cases are possible (as
illustrated in Figures 16a and 16b). Figure 16a cannot occur in a quadtree decomposition,
while Figure 16b satisfies the Lemma. If ¢ intersects with one or more maximal columns
other than ¢, then s must coincide with a maximal row inside the window (Figure 16¢) as
the other case cannot exist in a quadtree decomposition (Figure 16d). Since a maximal
row coincides with the north boundary of maximal blocks across the whole window, then
this applies to ¢ as well. O

Lemma 4: If a block of the underlying spatial database, say ¢, intersects the west (east)
window boundary, then the window decomposition strategy will only skip the window
blocks covered by ¢ while maintaining normal processing otherwise. In other words, up-
dating the active border with ¢ does not adversely affect the mechanism used for window
decomposition.

Proof: Assume that ¢ intersects the west border of the window. By Lemma 2a, the east
boundary of ¢ coincides with a maximal column of the window. Therefore, the window
decomposition mechanism will function properly to the east of ¢ since, by Invariant 1, the
block generation process works independently inside each maximal column. The portion
of the south boundary of ¢, say s, that lies inside the window, is used by the algorithm to
generate the new window blocks to the south of q. However, from Lemma 3, all parts of
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s coincide with the north boundary of a maximal block inside the window. Therefore, by
applying a maximal block computation at s, the algorithm would still generate maximal
blocks of the window to the south of ¢ after skipping the ones inside ¢ (and hence avoid
retrieving ¢ more than once by the overlapping window blocks). If the south boundary of
q lies outside the window, then the Lemma holds since no further processing to the south
of ¢ is needed. In addition, by Invariant 1, the window decomposition process to the east
of ¢ is not affected by ¢ since the east boundary of ¢ coincides with a maximal column.
O

We now study the case where a block of the underlying spatial database intersects the
south boundary of the window. We make use of the following lemma. Its proof is given
in [3] (where it is Lemma 4).

Lemma 5: All the maximal blocks arranged in a row inside a maximal zone are processed
in the same iteration of the main loop of procedure WINDOW_RETRIEVE.

Lemma 6: If a block of the underlying spatial database, say g, intersects only the south
boundary of the window, then ¢ lies entirely inside one maximal column of the window.

Proof: By Proposition 5, if ¢ overlaps with more than one maximal column of the window,
then either the size of ¢ is not a power of two (a contradiction) or ¢ must intersect with
the east or west boundary of the window (a contradiction). Therefore, ¢ lies inside one
maximal column. O

Combining Lemmas 5 and 6, we get the following result:

Lemma 7: If a block of the underlying spatial database, say g, intersects only the south
boundary of the window, then the window decomposition strategy will only skip the
window blocks covered by ¢, while maintaining normal processing otherwise.

Proof: By Lemma 6, ¢ lies inside only one maximal column of the window. By Lemma 5,
if one maximal window block, say b, results in retrieving ¢, then the rest of the window
blocks in the maximal zone that lie in the same row as b, will exist in the same iteration of
the main loop of procedure WINDOW_RETRIEVE. Therefore, all of them can be automatically
skipped by the algorithm once ¢ is retrieved, and hence no additional data structure is
needed to record ¢’s retrieval. Since the south boundary of ¢ is already outside the window,
no further processing is needed to the south of ¢. The effect of this is that it results in
skipping all the window blocks that overlap with ¢ and that lie to the south of b up to
the south boundary of the window. Also, by Invariant 1, ¢ lies inside only one maximal
column and hence does not affect other portions of the window decomposition mechanism.
O

Lemma 8: If a block of the underlying spatial database, say ¢, intersects the north
boundary of the window, then the window decomposition strategy will only skip the
window blocks covered by ¢ while maintaining normal processing otherwise.

Proof: Since ¢ intersects the north boundary of the window, ¢ will be retrieved when
the algorithm scans the first row in the window. In addition, ¢ will be retrieved by the
leftmost maximal window block, say b, that overlaps with ¢ since scanning is from left
to right. Therefore, all the window blocks to the right of b and that overlap with ¢ are
automatically skipped by the algorithm since all of them immediately follow b in TopList,
the list of blocks to be processed. Processing of the algorithm resumes at the first window
block to the right of ¢ in the current row scan. By Lemma 2b, the part of ¢’s south border,
say s, that lies inside the window will coincide with a maximal row of the window. Since
a maximal row coincides with the north boundary of maximal blocks across the whole
window, this applies to s as well. Therefore, using s to generate maximal blocks to the



Geolnformatica, 1(1):59-91, April 1997 14

south of ¢ will resume regular processing of the decomposition algorithm as it results in
generating legitimate maximal blocks of the window after skipping the window blocks that
overlap with ¢. Therefore, ¢ is retrieved just once by the algorithm without affecting the
normal processing of the algorithm. O

Combining Theorems 1 and 2 and Lemmas 4, 7, and 8 we get the following theorem:

Theorem 3; Every block of the underlying spatial database that overlaps with the query
window is retrieved by procedure WINDOW RETRIEVE and hence the algorithm is correct.

Proof: By Theorem 1, maximal blocks of the window cover every point inside the window
(without overlap). Therefore, if blocks of the underlying spatial database are smaller than
the window blocks, then, by Theorem 2, the window decomposition algorithm will generate
all the maximal blocks inside the window, and hence all the blocks of the underlying
spatial database overlapping with the window blocks are retrieved. If some of the blocks
of the underlying database, say D, are larger than the corresponding maximal window
blocks, then by Lemma 1, each block, say ¢ in D, has to intersect with some of the
window boundaries. By Lemmas 4, 7, and 8, the algorithm will skip all but one of the
maximal blocks of the window that overlap with ¢ (this is because when one of the maximal
blocks has to retrieve ¢, then the rest of the overlapping window blocks are skipped).
Lemmas 4, 7, and 8 also show that the normal window decomposition mechanism is
resumed after processing each block of the underlying spatial database that overlaps the
window. O

5 Complexity Analysis

Based on Observation 1 (restated as Lemma 1) that relates the size of the query window
blocks to the size of the underlying database blocks that they intersect, we are able to
restrict the size of the active border, so that it has a worst-case space complexity of O(n)
instead of O(n?) for an n x n query window.

Analyzing the time complexity of our algorithm is a bit complex as there are two
processes going on, and hence two ways of measuring it. The first is in terms of the blocks
of the underlying spatial database that are retrieved (the I/O cost), while the second is
in terms of the maximal blocks in the window, i.e., the window decomposition mechanism
and the maintenance of the active border (the CPU cost).

The CPU cost of the process of generating the maximal quadtree blocks in the window
is computed as follows. First, we find the number of maximal quadtree blocks, say IV,
inside the window, and then compute the cost of generating each one of the maximal
quadtree blocks, say Tyc,. The overall CPU cost T.,, is the product of these two terms,
ie.,

Topy = N X Then,

It is important to note that, usually, not all of the maximal blocks inside the window are
generated. However, in the worst case, when none of the blocks in the underlying spatial
database intersect the border of the window, all the maximal blocks inside the window
are generated.

It is known that the number of maximal quadtree blocks inside a square window of
size n X n is
N =32n—logn)—5

in the worst case ([8, 11, 27]). It remains to compute the cost of generating each maximal
quadtree block comprising the window, i.e., T,c,. This consists of the work, say T),,
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to generate a maximal quadtree block, say B, and the work that is wasted, say T, in
generating southern neighboring blocks of B that are non-maximal. Therefore, the total
CPU execution time of the window decomposition algorithm is

Topu = N XTyen
= Nx(Tp+Ty)

Given a point (2,y) in a T' X T space, there can be at most log7T + 1 different blocks
of size 2' (0 < i < logT) with (z,y) as their upper-left corner. We use a binary search
through this set of blocks to determine the maximal quadtree block inside the window [3].

Thus T}, is O(loglogT').

To compute T, we need to show that each maximal quadtree block inside the window
is generated once, and that only a limited number of non-maximal blocks are generated.
We say that the work required to generate blocks that are not maximal with respect to
a particular window is wasted. Such blocks are ignored (i.e., bypassed) in subsequent
processing. For example, the work in generating the southern neighbors of blocks B, C,
D, F, G, H, and J(i.e.,L, M, N, P, Q, R, and T, respectively) in Figure 13 is wasted.
This is formulated and proved in the following two Lemmas.

Lemma 9: Each maximal quadtree block inside window w is generated at most once.

Proof: In Theorem 2, we proved that every maximal quadtree block inside window w
is generated by the algorithm. To show that it is generated only once we observe that
each window block processed by the algorithm generates only its southern neighbors. The
facts that non-maximal window blocks are bypassed by the algorithm, and that maximal
blocks do not overlap, mean that each maximal window block, say B, is generated as the
southern neighbor of only one other maximal window block, say C'. Note that this worst
case only arises if WINDOW_RETRIEVE generates all of the maximal blocks (i.e., none are
skipped). O

Lemma 10: Each window block visited by the algorithm can waste at most O(loglogT")
work in generating intermediate non-maximal window blocks.

Proof: Assume that window block B generates wasted work. We show that this work takes
O(loglogT') time. B can generate neighboring southern maximal blocks that are either
smaller or larger. When the size of the neighboring block is greater than or equal to the size
of B, then the algorithm takes O(loglogT") time regardless of whether or not it is wasted
and the Lemma holds. When more than one southern neighboring block is generated (this
number can be of the same order as the size of B), we need to show that all the generated
southern blocks are maximal, and cannot be bypassed, i.e, they are not wasted work.
We shall prove this by contradiction. Assume that B generates more than one southern
neighboring block and that all of them are bypassed (i.e., not visited) in subsequent
processing. It should be clear that due to the nature of the quadtree decomposition of
space, either all of them are visited, or all are bypassed. Our assumption means that there
exists a block €' whose width is greater than the total width of B’s southern neighbors.
Let (B;,By) and (C,,Cy) be the locations of the upper-leftmost pixels of blocks B and
C', respectively. Also, let B; and 5 be the widths of blocks B and C', respectively. It is
easy to see that the fact that B and C' are maximal blocks that are southern neighbors
of other visited maximal blocks means that 'y = B, + B,. The fact that C's > B, means
that the lower-rightmost pixel of C'is at (C, +C5 —1,Cy, 4+ Cs —1) which is in the window.
Therefore, (B, + Bs — 1,B, + B, — 1) which is the lower-rightmost pixel of B’s southern
neighbor of equal size, say D, is also in the window. This means that D is B’s neighboring
southern maximal block. However, this contradicts the existence of more than one such
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block. Thus the assumption that all of the southern neighboring blocks of B are bypassed
is invalid. Therefore, no work is wasted in generating B’s southern neighbors in this case,
and the Lemma holds. O

Combining the results for T}, and T, and Theorem 3 means that we have proven the
following theorem.

Theorem 4: Given an n X n window in a T' x T image, the worst-case CPU execution
time for the algorithm is O(nloglogT) O

In order to compute the disk 1/O execution time of the algorithm, say T;,, we need to
prove the following theorem.

Theorem 5: Every block of the underlying spatial database that overlaps the query
window is retrieved once, and only once, by WINDOW_RETRIEVE.

Proof: By Lemma 9, each maximal block is generated at most once. Let ¢ be a block in
the underlying spatial database and suppose that ¢ overlaps the window. If ¢ lies inside
the window and is of equal or smaller size than the overlapping window block, say b, then
g will be retrieved once by the algorithm when b is generated, and hence the theorem holds
(notice that maximal blocks do not overlap). If ¢ overlaps the window and if ¢ contains
more than one window block, then ¢ will be retrieved by the first window block, say b, that
encounters ¢. However, from that point onwards, all the window blocks that overlap ¢ will
be skipped and block ¢ will not be retrieved again. By Lemma 1, ¢ has to intersect one
of the window boundaries. If ¢ intersects the east or west boundaries of the window, then
by Lemma 4 the active border (i.e., WestList and EastList) prevents block ¢ from being
retrieved again by the remaining window blocks that overlap ¢q. Otherwise, if ¢ intersects
the north or south boundaries of the window, then by Lemmas 7 and 8 the algorithm skips
the remaining window blocks that overlap ¢. Therefore ¢ will be retrieved once, and only
once. Hence the theorem also holds when ¢ is of larger size than the overlapping window

blocks. O

Note that there is an onto relation between the set of blocks of the underlying spa-
tial database that are retrieved by the algorithm and the set of maximal window blocks
generated by the algorithm. This relation is only onto, rather than one-to-one onto, be-
cause a window block, say b, may overlap more than one block in the underlying spatial
database (i.e., the overlapped blocks are smaller than b), in which case several blocks in
the underlying spatial database will be retrieved. However, they will only be retrieved
once.

The actual disk I/O cost of the algorithm depends on how the quadtree is implemented.
Assume that the underlying database consists of a total of K quadtree blocks and that M
of these blocks are retrieved by the window query. Assume further that it spans a space
of size T'x T'. A pointer-based quadtree implementation may have an overall I/O cost as
high as M logT" as we must traverse at most logl" pointers to access the relevant block
in the quadtree. Using a pointerless quadtree representation such as a linear quadtree
(e.g., [14]) where each leaf block is represented by a unique number which is stored in a
Bt -tree, the overall I/O cost is O(M log K) as the cost to retrieve each block is O(log K).

6 Empirical Results

In this section, we study the performance of the two algorithms Algorithm-1 (which
is based on the window decomposition algorithm [3]) and WINDOW RETRIEVE, which is
proposed in this paper. The window decomposition part of the two algorithms has the
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same worst-case execution time complexity (i.e., O(nloglogT')) as shown in Section 5. As
a result, we only focus on comparing the I/O cost of the two algorithms.

Figure 17 shows the results of experiments comparing the number of disk I/O requests
(i.e., blocks retrieved) to answer a window query using Algorithm-1(labeled 01d Alg))
with the number of disk I/O requests generated by WINDOW RETRIEVE (labeled New Alg).
Our data consists of maps of the road network of the US provided by the Bureau of the
Census. A sample map corresponding to Falls Church containing 640 line segments is
given in Figure 18. The maps are represented using the PMR-quadtree [18, 21], a variant
of a quadtree for storing vector data.

The z-axis corresponds to the ratio between the window area and the area of the
underlying spatial database which spanned a 512 x 512 image. Experiments were run for
the ratios .01, .001, .0001, and .00001. For example, the ratio .00001 corresponds to a 5x5
window, while the ratio .01 corresponds to a 50 x 50 window. For each such ratio, a set of
500 randomly positioned rectangles were generated. A window query is processed for each
rectangle using both algorithms. The y-axis corresponds to the average of the disk 1/0
requests for each set of rectangles plotted on a logarithmic scale. Not surprisingly, use of
WINDOW RETRIEVE does not lead to a great reduction in disk I/O requests for small window
sizes (about 25%) since for both the window and the corresponding area in the underlying
database the number of blocks is relatively small. However, for larger size windows, the
reduction is much more pronounced, and, in fact, use of WINDOW_RETRIEVE leads to an
improvement of over one order of magnitude (e.g., a factor of 10).

7 Concluding Remarks

An algorithm was presented for retrieving the blocks in a quadtree-base spatial database
environment that overlap a given window. It is based on decomposing a window into its
maximal quadtree blocks, and performing simpler sub-queries to the underlying spatial
database. Fach block in the underlying spatial database is only retrieved once. The
algorithm is proven (analytically and experimentally) to lead to an improvement in disk
I/O performance. The algorithm requires some extra space (on the order of the width of
the window), to store the active border. It remains to consider how the algorithm can be
adapted to handle spatial databases with non-disjoint objects (i.e., overlapping).

Performance can be enhanced further by selecting a suitable buffering strategy for
the underlying B-tree [1, 5]. In particular, if we can adjust the scan order of the window
algorithm so that the window quadtree blocks are visited in Morton order, and accompany
this with a most-recently-used buffer replacement policy, then this would guarantee that
B-tree pages, both leaf and non-leaf pages, would be requested by the algorithm only
once, and hence no redundant disk I/O requests would result. For more clarification on
this issue, see [1, 5].
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Appendix: Code for the Retrieval Algorithm

cedure WINDOW_RETRIEVE(S,W,F);

Retrieve the quadtree blocks of the underlying spatial database that overlap

window W. The window is represented by a record of type window with four fields ROW,
COL, WIDTH, and HEIGHT corresponding to the y coordinate value of its upper-leftmost
pixel, the x coordinate value of its upper-leftmost pixel, its width, and its
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height, respectively. The origin is at the upper-left corner of the image and the
positive x and y directions are to the right and down, respectively. In order to
perform the window retrieval query, WINDOW_RETRIEVE generates the maximal blocks
that comprise window W. Then, for each maximal window block, window query function
F is applied which accesses the underlying spatial database, retrieves the corresponding
block of the underlying spatial database, say DbBlock, that overlaps with the maximal
window block, and applies the desired window operation to it. DbBlock is also
returned to WINDOW_RETRIEVE to be used in updating the active border. The active
border is maintained in order to avoid accessing a block of the underlying spatial
database more than once. Arrays WestList and EastList, which represent the east and
west borders of the active border, are of size equal to the window height and are
of type array of pocket. Pocket is a record of two fields: LEN and COL, denoting
the size of the intersecting block of the underlying spatial database, and the x
coordinate value of its east or west boundaries, depending on whether it is stored
in WestList or EastList, respectively. The quadtree blocks inside the query window
are determined by repeatedly finding southern neighbors and keeping them in a linked
list whose first and last elements are pointed at by NextTopList and EndNextTopList,
respectively. All blocks are represented by records of type block with three fields
ROW, COL, and LEN corresponding to the y coordinate value of its upper-leftmost
pixel, the x coordinate value of its upper-leftmost pixel, and its length, respectively.
The block currently being processed is pointed at by TopList. Initially, the southern
neighboring blocks of a block of length WIDTH(W) with an upper-leftmost pixel at
(COL(W) ,ROW (W)-WIDTH(W)) are generated. */
begin

reference spatial database S;

value pointer window W;

pointer block function F();

pointer list TopList,NextTopList,EndNextTopList;

pointer block Current,DbBlock;

pocket array WestList [ROW(W):ROW(W)+HEIGHT (W)-1];

pocket array EastList[ROW(W):ROW(W)+HEIGHT (W)-1];

integer I;

for I:=ROW(W) step 1 until ROW(W)+HEIGHT(W)-1 do
begin
COL(WestList[I]) :=COL(W);
COL(EastList[I]) :=COL(W) + WIDTH(W);
LEN (WestList[I]) :=0;
LEN(EastList[I]) :=0;
end;
Current:=create(block); /* Initially we find the southern maximal neighbors of a block
as wide as the entire window. */
ROW (Current) :=ROW (W) -WIDTH(W) ;
COL(Current) :=COL(W) ;
LEN(Current) :=WIDTH(W) ;
NextTopList :=NIL;
GEN_SOUTHERN_MAXIMAL(NextTopList,Current ,W,EndNextTopList,WestList ,EastList);
do
begin
TopList:=NextTopList;
NextTopList:=EndNextTopList:=NIL;
while not(null(TopList)) do
begin
Current :=DATA(TopList);
TopList:=NEXT(TopList);
while not(null(TopList)) and CONTAINED(DATA(TopList),Current) do
TopList:=NEXT(TopList); /* Skip non-maximal blocks inside current */
/* If Current is already covered by the West or East boundaries of the
border, then skip it. */
if ((COL(Current)>=COL(WestList [ROW(Current)]) and
(COL(Current)<COL(EastList [ROW(Current)])) then
begin /# Current is a maximal window block */
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DbBlock:=F(Current,S);
if (LEN(DbBlock)>LEN(Current))
begin
if (ROW(DbBlock)<ROW(W)) then
begin /* Database block intersects the window’s top boundary */
ROW (Current) :=MIN (ROW(W)+HEIGHT (W) ,ROW(DbBlock)+LEN (DbBlock)) ;
LEN(Current) :=MIN (COL(DbBlock)+LEN(DbBlock), COL(W)+WIDTH(W))
-MAX(COL(DbBlock) ,COL(W));
while not(null(TopList)) and CONTAINED(DATA(TopList),DbBlock) do
TopList :=NEXT(TopList);
end
else if(COL(DbBlock)<COL(W)) then
begin /* Database block intersects the window’s west boundary */
COL(WestList [ROW(Current)]) :=COL(DbBlock)+LEN(DbBlock) ;
LEN (WestList [ROW(Current)]) :=LEN(DbBlock) ;
ROW (Current) :=MIN(ROW(DbBlock)+LEN(DbBlock) ,ROW(W)+HEIGHT (W)) ;
end
else if (COL(DbBlock)+LEN(DbBlock)>COL(W)+WIDTH(W)) then
begin /* Database block intersects the window’s east boundary */
COL(EastList [ROW(Current)]) :=COL(DbBlock) ;
LEN(EastList [ROW(Current)]) :=LEN(DbBlock) ;
ROW (Current) :=MIN(ROW(DbBlock)+LEN(DbBlock) ,ROW(W)+HEIGHT (W)) ;
end
else if (ROW(DbBlock)+LEN(DbBlock)>ROW(W)+HEIGHT (W)) then
begin /* Database block intersects the window’s bottom boundary */
ROW (Current) :=R0OW (DbBlock)+LEN(DbBlock) ;
while not(null(TopList)) and CONTAINED(DATA(TopList),DbBlock) do
TopList :=NEXT(TopList);
end
end
end
GEN_SOUTHERN_MAXIMAL(NextTopList,Current,W,EndNextTopList,WestList ,EastList);
end;
end
until null(NextTopList);
end;

procedure GEN_SOUTHERN_MAXIMAL(NextTopList,B,W,EndNextTopList,WestList,EastList);
/* Find the maximal blocks to the south of block B in window W and add them to the end
of the list which starts at NextTopList and ends at EndNextTopList. If NextTopList
is NIL, then set it to the first block that is added. WestList and FastList are
used to avoid the generation of any blocks to the south of B that overlap with a
block of the underlying spatial database that has already been retrieved. */
begin
reference pointer list NextTopList,EndNextTopList;
reference pointer block B;
value pointer window W;
reference pointer array WestList, EastList;
pointer block T;
integer LEFT,RIGHT;
while (COL(B)<COL(WestList [ROW(B)]) do /# Check for a west pocket */
ROW(B) : =ROW(B)+LEN (WestList [ROW(B)]) ;
while (COL(B)>=COL(EastList[ROW(B)]) do /* Check for an east pocket */
ROW(B) : =ROW(B)+LEN (EastList [ROW(B)]) ;
T:=MAX_BLOCK (ROW(B)+LEN(B) ,COL(B) ,W); /* Allocate first block. #*/
if null(T) then return
else
begin /* Allocate first block and initialize start of NextTopList. */
if null (NextTopList) then NextTopList:=EndNextTopList:=create(list)
else EndNextTopList:=NEXT (EndNextTopList):=create(list);
DATA (EndNextTopList) :=T;
LEFT:=COL(B)+LEN(T);

21
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RIGHT:=COL(B)+LEN(B) ;
while LEFT < RIGHT do /# Generate rest of blocks. */
begin
EndNextTopList :=NEXT(EndNextTopList):=create(list);
DATA (EndNextTopList) :=MAX_BLOCK (ROW(B)+LEN(B) ,LEFT,W);
LEFT:=LEFT+LEN (DATA (EndNextTopList));
end;
NEXT (EndlNextTopList) :=NIL; /# Set pointer at the end of the list to NIL. */
end;
end;

pointer block procedure MAX_BLOCK(ROW,COL,W) ;
/* Find the largest square block inside window W for which (ROW,COL) is the first
(upper-leftmost) pixel. The length of the side of the block is a power of 2. */
begin
value integer ROW,COL;
value pointer window W;
integer I;
pointer block B;
1:=0;
while IN_WINDOW(ROW+2#**I-1,C0L+2%*I-1,W) and ((ROW mod 2#%*I)=0)
and ((COL mod 2%*I)=0)
do I:=I+1;
if I=0 then return(NIL) /#* No maximal block exists. */
else
begin
B:=create(block);
ROW(B) : =R0OW;
COL(B) :=COL;
LEN(B) :=2%*(I-1);
return(B);
end;
end;
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Figure 3: Possible overlaps between blocks of the underlying spatial
database and the (a) northern, (b) western, (c) eastern, and (d) south-
ern borders of the window.
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Figure 4: The active border at the initial stage.
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Figure 5: The active border after processing window block 1.
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Figure 6: The active border after processing window block 2.
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Figure 7: The active border after processing window block 3.
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Figure 8: The active border after processing window block 12.
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1. Initialize the scan list current-list to contain the quadtree blocks that cover the
top-most row of the query window.

2. Initialize the scan list next-list to be empty (i.e., it contains no blocks).

3. Initialize data structures WestList and FastList, corresponding to the active
borders, to contain the western and eastern borders of the query window, re-
spectively.

4. Repeat steps 5-7 as long as current-list is not empty.

5. For each window quadtree block b in current-list do:
(a) Skip processing b if any one of the following conditions is satisfied:

i. bis to the west of the border in WestList.
ii. bis to the right of the border in FastList.
iii. b is non-maximal (due to the manner in which b is generated as the
southern neighbor of another block).

(b) Retrieve into set D the database block(s), if any, overlapping query block
b.

(c¢) If the number of elements in D is greater than 1 then
/* All the elements in D are contained inside b */

i. Generate the quadtree blocks in w that are to the south of b.
ii. Append the generated blocks into next-list.

else /* D has only 1 element d (the only database block that overlaps b) */
i. If size(d) > size(b)
then /* d has to intersect one of the window borders */

o Update WestList or FastList to reflect the addition of d into either
of them.

e Generate the quadtree blocks in w, if any, that are south of d.

e Append the generated blocks into next-list.

6. Let current-list — next-list.

7. Let next-list — empty.

Figure 9: Outline of procedure WINDOW_RETRIEVE.
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Figure 10: (a), (b), and (c) are examples of possible block/southern-

neighbor pairs; (d) cannot occur in a quadtree decomposition.

(d)

(@)
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Figure 11: (a) The most general form of an active border. (b) An impossible

active border as holes cannot occur.
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Figure 12: (a) Example of a window (heavy line) and the pockets (heavy
lines) along the west and east boundary induced by the underlying spatial
database, and (b) the spatial representation of the WestList and EastList
data structures corresponding to the active border.
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Figure 13: The neighboring blocks to the south of blocks A-J in a 10 x 10
window. Blocks L, M, N, P, Q, R, and T are non-maximal, while blocks
K, 0, and S are maximal.
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(b)
a column of maximal blocks
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Figure 14: The subdivision of a window into (a) vertical strips, (b) horizontal
strips, and (c¢) maximal zones. (d) The relationship between maximal blocks
and maximal zones.
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Figure 15: Examples of impossible block configurations in which the bound-
ary of block q in the underlying spatial database does not coincide with a
boundary of (a) a maximal block in the window, or (b) a maximal column.
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Figure 16: Examples of possible ((b) and (c)) and impossible ((a) and (d))
block configurations involving blocks from the underlying spatial database
and the window.
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