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ABSTRACT

The Hausdorff distance is commonly used as a similarity measure
between two point sets. Using this measure, a set X is considered
similar to Y iff every point inX is close to at least one point in Y .
Formally, the Hausdorff distance HAUSDIST(X,Y ) can be com-
puted as the MAX-MIN distance from X to Y , i.e., find the maxi-
mum of the distance from an element in X to its nearest neighbor
(NN) in Y . Although this is similar to the closest pair and farthest
pair problems, computing the Hausdorff distance is a more chal-
lenging problem since its MAX-MIN nature involves both maxi-
mization and minimization rather than just one or the other. A tradi-
tional approach to computing HAUSDIST(X,Y ) performs a linear
scan overX and utilizes an index to help compute the NN in Y for
each x in X . We present a pair of basic solutions that avoid scan-
ning X by applying the concept of aggregate NN search to search-
ing for the element inX that yields the Hausdorff distance. In addi-
tion, we propose a novel method which incrementally explores the
indexes of the two sets X and Y simultaneously. As an example
application of our techniques, we use the Hausdorff distance as a
measure of similarity between two trajectories (represented as point
sets). We also use this example application to compare the perfor-
mance of our proposed method with the traditional approach and
the basic solutions. Experimental results show that our proposed
method outperforms all competitors by one order of magnitude in
terms of the tree traversal cost and total response time.

1. INTRODUCTION
The Hausdorff distance is a measure of the maximum of the min-

imum distance between two sets of objects. The problem of de-
termining the MAX-MIN distance over two sets may arise in spa-
tial problems that require a similarity measure between two point
sets. For example, the Hausdorff distance can be used as a ser-
vice coverage measure. In particular, given a setW of warehouses
and a set C of customers’ locations, the Hausdorff distance from
C to W corresponds to the greatest distance that a customer has
to travel to their nearest warehouse. As can be seen, this prob-
lem involves (i) finding the minimum distance to a warehouse for
each customer, and (ii) finding the maximum of the minimum dis-
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tances. The Hausdorff distance also corresponds to the last pair
in the results of the distance semi-join of W and C [16]. That
is, MAX{MINDIST(c,W ) : c ∈ C}. The MAX-MIN nature of the
Hausdorff distance makes it a more challenging problem than the
closest and farthest pair problems which involve minimization or
maximization alone, but not both.
The Hausdorff distance is commonly used in similarity determi-

nation of two shapes [17] and measuring errors in creating a trian-
gular mesh for approximating a surface [4]. In this paper, our mo-
tivating application is trajectory matching. Intuitively, we can con-
sider the Hausdorff distance HAUSDIST(A,B) as the worst-case
discrepancy of one trajectory A with respect to another trajectory
B. Using this measure, a trajectory A is considered similar to B
iff every point in A is close to at least one point in B. To demon-
strate the effectiveness of this measure, example search results of
trajectories in a real road network are given in Appendix F.
Figure 1 illustrates how MINDIST(a, B) for each a in A

can be evaluated by finding the nearest neighbor (NN) in B.
This definition shows that HAUSDIST(A,B) is asymmetrical. The
symmetrical Hausdorff distance SYMHAUSDIST(A,B) is defined
as MAX{HAUSDIST(A,B),HAUSDIST(B,A)}. An example of
SYMHAUSDIST(A,B) is provided in Appendix A.

Figure 1: Hausdorff Distance HAUSDIST(A,B)

One example use of the distance measure in this problem do-
main is bus route comparison. Assume that a transport authority is
considering whether to replace one bus route A by another route
B. Intuitively, we want the route A to have a low discrepancy with
respect to B. Given that the two bus routes are represented as lo-
cations of stops, the Hausdorff distance HAUSDIST(A,B) can be
used to indicate the worst-case distance that any customer of route
A would need to walk from their usual stop in routeA to its nearest
stop in route B, should the route replacement take place.
In this paper, we present three algorithms (two basic meth-

ods and one proposed algorithm), which utilize hierarchical in-
dexes and the branch-and-bound search principle. The two ba-
sic methods are extensions to the concept of aggregate nearest
neighbor querying [22]. To compute HAUSDIST(A,B), both of
these methods consider the trajectory B as a single object and
traverses the index of A to identify the point a in A that yields
MAX{MINDIST(a, B) : a ∈ A}.
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Our proposed method, on the other hand, traverses the indexes of
A andB simultaneously to find one point inA and another point in
B that yield HAUSDIST(A,B). As mentioned earlier, calculating
HAUSDIST(A,B) involves both minimization and maximization.
Hence, we cannot apply existing methods [16, 25, 27] which tra-
verse indexes of two point sets to find closest pairs.
The novelty of our method lies in the proposed data structure

which is a two-level hierarchy of priority queues where (i) the main
level arranges entries in descending order and controls the traversal
order of the index of A; (ii) the secondary level arranges entries
in ascending order and controls the traversal order of the index of
B. This setup corresponds to the MAX-MIN nature of the distance
function. The benefit of this approach is demonstrated by our exper-
imental results which show that the proposed method significantly
outperforms the basic methods by an order of magnitude.
The contributions of this paper are as follows: (i) Basic

branch-and-bound algorithms and a proposed method to compute
HAUSDIST between two point sets. (ii) A method to browse trajec-
tories in increasing order of HAUSDIST. (iii) Experimental studies
which show that our proposed method outperforms the traditional
and basic branch-and-bound algorithms by one order of magnitude.
The rest of this paper is organized as follows. Section 2 reviews

related work. Section 3 contains the equations that are required to
estimate the Hausdorff distance for objects in minimum bounding
rectangles (MBRs). Section 4 presents basic methods based on the
principles of depth-first and best-first traversal. Sections 5 and 6
describe our proposed HAUSDIST algorithm and an algorithm to
browse trajectories based on increasing HAUSDIST, respectively.
Section 7 contains results of experimental studies. Concluding re-
marks are drawn in Section 8.

2. RELATED WORK

2.1 Trajectory Comparison
The Lp distance provides a classical means to measure similarity

between two trajectories. For example, letting trajectoriesA and B
denote point sequences 〈a1, ..., an〉 and 〈b1, ..., bn〉, respectively,
theL2 distance betweenA andB can be derived from the following

expression:
(
∑n

i=1 ‖ai − bi‖
2
)(1/2)

. By using this measure, we
assume that (i) a point ai in A always corresponds to bi in B; (ii)
A and B contain the same number of points. These assumptions
can be relaxed by introducing “elasticity” into the way in which the
locations inA are matched against the locations inB. In particular,
elasticity is used by allowing each point ai in A to match bj in
B where the difference between i and j is smaller than a specific
temporal threshold [26] or temporally stretching/contracting parts
of A to find matching subsequences in B [9, 20].
To mitigate the effects of noise, the concept of edit distance can

be applied. For example, given a point a inA and a matching point
b in B, one can use a binary weight to indicate if the distance be-
tween a and b is small enough to be considered as the same point
instead of the actual distance. Notable methods that utilize the edit
distance concept include: edit distance with real penalty [10], edit
sequence on real sequence [11], time warp edit distance [21], and
longest common subsequence [26].
We now consider the Hausdorff distance. In terms of elasticity,

since each point a inA is allowed to match with any point inB, the
default definition of HAUSDIST(A,B) is completely elastic. This
means that we are seeking the maximum discrepancy rather than at-
tempting to match each point inA to a point inB as is the case with
methods based on the edit distance concept. Note that if less elastic-
ity is desirable, then we can introduce a temporal constraint which
allows a to match with only a subset of B within a certain time
window. As mentioned earlier, we must contend with the presence

of noise which may lead to the existence of outliers. The effects
of the noise can be mitigated by ignoring the outliers through the
use of partial matching techniques [18] which calculate the m-th
partial Hausdorff distance. Specifically, them-th partial Hausdorff
distance (m-HAUSDIST) is the m-th smallest distance from each
a point a in A to B.1 As a result, possible noise is excluded from
the resultant m-HAUSDIST by ignoring points a in A that pro-
duce the l greatest distances MINDIST(a, B), where l is equal to
(|A| − m − 1). The value of l can be determined by the number
of outliers. For example, if we know that less than 1% of the mea-
surements in A are affected by noise, then the value of l can be set
to (|A| × 0.01).

2.2 Hausdorff Distance Computation
Alt et al. [3] present a method to compute HAUSDIST from one

polygon A to another polygon B using a Voronoi diagram [6].
Their method uses the vertices and edges of B as generators for
a Voronoi diagram which is then used to index the edges of B in
computing the Hausdorff distance from A to B. This is done by it-
erating through each of the edges a of A to compute the Hausdorff
distance from a toB and retaining the maximum of these distances.
In applications where object locations are not fixed such as im-

age/shape matching, a more robust use of the Hausdorff distance
involves the calculation of the minimum Hausdorff distance under
rotation and translation [17]. Due to the relatively high computa-
tional complexity of this algorithm, approximation methods have
also been studied [2, 19].
In this paper, we are interested in calculating the Hausdorff dis-

tance between two sets of points with fixed locations (e.g., bus stops
of a bus route). Hence, techniques [1, 2, 17, 19] which utilize rota-
tions and translations are irrelevant to our problem. The objective
of our research is to apply the branch-and-bound principle to im-
prove on the existing approach [3] to calculate HAUSDIST(A,B)
by not having to examine each element a in A.

2.3 Branch­and­Bound Search over two Sets
of Points

The aggregate nearest neighbor problem is concerned with find-
ing a point p in a datasetD which minimizes the aggregate distance
with respect to a set Q of query points. That is, finding a point p
that yields the minimum value of the set {AGG{DIST(p, q) : q ∈
Q} : p ∈ D}, where AGG is an aggregate function: MAX, MIN or
SUM. For example, given a set Q of user locations and a set D of
possible meeting locations, the aggregate function MIN can be used
to find a meeting location nearest to any of the users inQ. Papadias
et al. [22] propose a method which (i) treatsQ as one query object,
and (ii) finds an object that minimizes the aggregate distance to Q
by searching D in a manner similar to the NN query [16, 23].
The closest-pair query in spatial databases [12] involves finding

two objects from two different datasets where the distance between
them is minimized. Formally, the closest pair of two point sets X
and Y is a pair (x,y) that yields the minimum value of the set
{DIST(x, y) : y ∈ Y,x ∈ X}.
In a more general setting, the incremental distance join (IDJ)

and incremental distance semi-join (IDSJ) problems [15, 25, 27]
are concerned with finding the closest pair and next closest ones in
an incremental order of the distance. The difference between IDJ
and IDSJ is that when running to completion IDJ iterates through
all possible pairs. On the other hand, IDSJ of two sets X and Y
produces only pairs (x,y), where x ∈ X , y ∈ Y and y is the
nearest neighbor of x.

1For example, |A|-HAUSDIST(A,B) is HAUSDIST(A,B); and 1-
HAUSDIST(A,B) is MINDIST(A,B).
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According to this definition, the IDSJ and aggregate NN queries
(with the aggregate function of MIN) produce comparable results.
Specifically, when running to completion, the last pair produced by
the IDSJ of X and Y is the pair that yields the distance

MAX{MINDIST(x, Y ) : x ∈ X}. (1)

Similarly, the object inD which maximizes the MIN-aggregate dis-
tance with respect to the query set Q has the distance of

MAX{MINDIST(p, Q) : p ∈ D}. (2)

Although the two expressions (1) and (2) are equivalent, these
two problems are different in practice. The coverage and cardinal-
ity of the aggregate NN query set Q are usually smaller than those
of the dataset D, while the two datasetsX and Y in an IDSJ query
usually have similar coverage and cardinality. As a result, an ag-
gregate NN query is often processed by representing Q as a single
query object and performing a traversal on the index of D. On the
other hand, processing a IDSJ query requires indexes for both X
and Y , and involves traversing the two indexes simultaneously.
The two expressions (1) and (2) are also equivalent to the
HAUSDIST definition given in Section 1. According to this ob-
servation, the HAUSDIST calculation can be done by applying the
principle of farthest point querying [24] so that the object with the
greatest MINDIST is returned first. Basic branch-and-bound search
methods based on this principle are presented in Section 4.

3. HAUSDORFF DISTANCE ESTIMATORS
In order to apply the branch-and-bound concept to the computa-

tion of the Hausdorff distance, we derive upper and lower bounds
of HAUSDIST in this section. We assume an R-tree like index struc-
ture [7, 8, 13], although a similar analysis could be applied to any
hierarchical containment index for spatial data [5]. A lower bound
of the Hausdorff distance from one MBR A to another MBR B can
be determined by exploiting the fact that for each MBR face, there
has to be at least one object that touches it. By this means, we can
compute the smallest possible NN distance that each MBR face can
produce and the overall maximum of these estimates is guaranteed
to be lower than the actual Hausdorff distance. We formally define
a lower bound of the Hausdorff distance as follows.

DEFINITION 1 (LOWER BOUND). Given two MBRs A and
B, a lower bound of the Hausdorff distance from the elements con-

fined by A to the elements confined by B is defined as

HAUSDISTLB(A,B) =

MAX{MINDIST(fa, B) : fa ∈ FACESOF(A)}.

As shown in Figure 2, HAUSDISTLB(A,B) is calculated by
evaluating the MINDIST from each face in A to the MBR B. The
maximum, i.e., MINDIST(A.LEFT, B), of these values is the lower
bound of the Hausdorff distance.

Figure 2: Lower bound of HAUSDIST from A to B.

Similarly, an upper bound can be computed as the greatest possi-
ble NN distance that each MBR face could produce and the overall

maximum of these estimates is guaranteed to be greater than the
actual Hausdorff distance.

DEFINITION 2 (UPPER BOUND). Given two MBRsA and B,
an upper bound of the Hausdorff distance from the elements con-

fined by A to the elements confined by B is defined as

HAUSDISTUB(A,B) =

MAX{MAXNEARESTDIST(fa, B) : fa ∈ FACESOF(A)},

where the MAXNEARESTDIST from an MBR face fa to an MBR
B is given as MIN{MAXDIST(fa, fb) : fb ∈ FACESOF(B)}.

As shown in Figure 3, HAUSDISTUB(A,B) is calculated by
evaluating the MAXNEARESTDIST [24] from each face in A to the
MBR B. The maximum MAXNEARESTDIST is the upper bound
of the Hausdorff distance.

Figure 3: Upper bound of HAUSDIST from A to B.

In the next two sections, we show how these lower and upper
bounds are used in branch-and-bound search algorithms to compute
the Hausdorff distance from one trajectory to another.

4. BASIC METHODS
Our first basic method is based upon the existing method [3]

which scans all elements in X to calculate HAUSDIST(X,Y ). Al-
gorithm 1 visits each point x in X to compute MINDIST(x, Y ) in
order to compute MAX{MINDIST(x, Y ) : x ∈ X}. The function
DistanceToNN(x,RY ) (Line 4) computes MINDIST(x, Y ) using
the best-first NN algorithm over RY .

Algorithm 1: Scan-HAUSDIST(X , Y )

input : Point SetX , Point Set Y
output: Hausdorff distance fromX to Y

RTree RY ← Create an R-Tree for Y ;1

Distance dH ← 0;2

for each Point x inX do3

dH ← MAX{dH ,DistanceToNN(x, RY )} ;4

return dH ;5

As can be seen, Algorithm 1 still requires visiting all points in
X to calculate HAUSDIST(X,Y ). To mitigate this problem, the
branch-and-bound search principle has to be applied to the setX as
well. We apply the aggregate NN query technique [22] which con-
siders one of the sets (which is Y in this case) as one single object.
Assuming thatX is indexed in an R-TreeRX , depth-first and best-
first search on X is done by traversing RX with respect to lower
and upper bounds of the distance to Y . Next, we present two basic
branch-and-bound methods to compute HAUSDIST(X,Y ) which
traverse the R-TreeRX ofX in depth-first (Algorithm 2) and best-
first (Algorithm 3) manners.
The depth-first algorithm is based on the fact that (i)
HAUSDIST(X,Y ) can be decomposed into HAUSDIST calcula-
tions from subsets of X to Y , and that (ii) the HAUSDIST from
a singleton set {x} to Y is MINDIST(x, Y )— the distance from
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x to the NN in Y . As shown in Algorithm 2, the algorithm tra-
verses the tree RX of X in a depth-first manner controlled by re-
cursive function calls. Lines 5 to 22 show a recursive function DF-
HAUSDIST* called by Algorithm 2. The recursive function accepts
three arguments: a node NX , an R-Tree RY , and a distance lower
bound MaxLB computed so far. There are two cases depending on
whether or not NX is an object. If NX is not an object (Lines 8
to 20), we process the children of NX . This is done by computing
the upper bound HAUSDISTUB from each child node to the root
node of RY (Line 11) and visit them in descending order. As the
function traverses nodes in RX , it keeps track of the maximum re-
sult and the maximum lower bound computed from nodes visited
so far. The maximum of these two values is stored in the variable
MaxLB (Line 8 and Line 17). Nodes with upper bounds smaller
than MaxLB are pruned since they cannot produce a result greater
than the current lower bound. Otherwise, if NX is a point object
(Lines 21 to 22), then the distance from NX to its NN is returned
as output. The recursion terminates when all nodes in RX are vis-
ited or pruned.

Algorithm 2: DF-HAUSDIST(X , Y )

input : Point SetX , Point Set Y
output : Hausdorff distance fromX to Y

RTree RX ← Create an R-Tree forX;1

RTree RY ← Create an R-Tree for Y ;2

MaxLB← HAUSDISTLB(RootOf(RX ), RootOf(RY ));3

return DF-HAUSDIST*(RootOf(RX ), RY ,MaxLB);4

Recursive Function DF-HAUSDIST*(NX , RY ,MaxLB)5

input : Node NX (from RX ), R-Tree RY , Maximum
distance lower bound MaxLB obtained so far

output : HAUSDIST from objects inNX to objects in RY

Distance dH ← 0;6

if NX is a non-object then7

MaxLB←MAX{MaxLB,HAUSDISTLB(NX ,RootOf(RY ))};8

List L← create an empty list;9

for each Child Node C of NX do10

Distance UB← HAUSDISTUB(C,RootOf(RY ));11

Insert((C, UB), L);12

Sort L in descending order using the second element;13

for each (C, UB) in L do14

if UB≥MaxLB then15

dH←MAX{dH ,DF-HAUSDIST*(C,RY ,MaxLB)};16

MaxLB← MAX{MaxLB, dH};17

else18

return dH ;19

return dH ;20

else21

return DistanceToNN(NX , RY );22

We now present Algorithm 3, a method which traverses the R-
Tree for X in best-first order. To calculate the Hausdorff distance
HAUSDIST(X,Y ) from a point set X to a point set Y , the initial-
ization involves the following steps (Lines 1 to 4):

• create R-Trees RX and RY forX and Y , respectively;
• create an empty priority queue PQ which arranges entries
(Node N , Distance dN ) in decreasing order according to the
key value dN , where dN is calculated as (i) an upper bound
HAUSDISTUB ifN is a non-object, or (ii) the distance from
N to its NN in RY , otherwise;

• insert the pair (RootOf(RX ),∞) into PQ.
In the while loop (Lines 6 to 16), the best-first search order is

controlled by PQ which organizes objects according to the key
in descending order. At the beginning of each iteration, the entry

(Node N , Distance dN ) with the greatest upper bound is retrieved
from PQ. For each child C ofN , we compute the key value dC and
insert (C, dC ) into PQ. The while loop iterates until it encounters
the first data object p. Since the best-first search order guarantees
that no other object in PQ can have a greater distance to its NN,
the key value of p can be returned as the resultant distance.

Algorithm 3: BF-HAUSDIST(X , Y )

input : Point SetX , Point Set Y
output: Hausdorff distance fromX to Y

RTree RX ← Create an R-Tree forX;1

RTree RY ← Create an R-Tree for Y ;2

PriorityQueue PQ← Create a “descending order” priority queue;3

Insert((RootOf(RX ),∞), PQ);4

while PQ is not empty do5

Entry (N , dN )← Dequeue(PQ);6

if N is a non-object then7

for each Child Node C of N do8

Distance dC ;9

if C is a non-object then10

dC ← HAUSDISTUB(C, RootOf(RY ));11

else12

dC ← DistanceToNN(C,RY );13

Insert((C, dC ), PQ);14

else15

return dN ;16

In this section, we have shown that we can apply the concept
of aggregate NN query to enable branch-and-bound search overX
when calculating HAUSDIST(X,Y ). By this means, both depth-
first (DF) and best-first (BF) algorithms (Algorithms 2 and 3) avoid
examining every single point in the setX . However, the main draw-
back of these algorithms is that the upper bound calculated on the
basis of the root ofRY may not be an effective estimator (especially
whenRX andRY are highly overlapped). A more accurate estima-
tor can be calculated from nodes at deeper levels in RY , which is
more expensive to compute. In the next section, we describe our
proposed method which computes a tighter upper bound by explor-
ing RY in order of increasing depth.

5. PROPOSED METHOD
Our next objective is to mitigate the upper bound inaccuracy

drawback described in the previous section. In this section, we
present an algorithm which incrementally explores the indexes of
X and Y to calculate the HAUSDIST(X,Y ). Similar to the two
basic methods, both setsX and Y are assumed to be indexed by R-
trees RX and RY , respectively. A priority queue is used to control
the order in which nodes NX in RX are visited. However, instead
of using an upper bound of HAUSDISTUB(NX ,RootOf(RY )), a
better upper bound is computed from a subset SN of nodes NY

inside RY . Specifically, an upper bound is computed as

MIN{HAUSDISTUB(NX , NY ) : NY ∈ SN},

where SN is determined by a process which incrementally explores
RY with respect to the distance from NX (more details in Sec-
tion 5.2). The correctness of this new upper bound is verified by
Lemma 1 and its associated proof in Appendix C.
The incremental HAUSDIST algorithm (Algorithm 4) uses a

while loop to explore both R-Trees RX and RY in a best first man-
ner. In each iteration, a decision is made whether to traverse RX

or RY . The order in which nodes in RX and RY are explored is
maintained by the data structure illustrated in Figure 4.
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5.1 Data Structures
Wemake use of a hierarchy of priority queues (Figure 4) consist-

ing of one main priority queue (MainPQ) and multiple secondary
priority queues (SecPQs). Specifically, each entry in MainPQ is as-
sociated with a SecPQ. MainPQ controls the order in which nodes
in RX are explored. For each MainPQ entry, its corresponding
SecPQ controls the order in which nodes in RY are explored. En-
tries in MainPQ are arranged in descending order, i.e., the head
entry has the greatest key. Entries in a SecPQ are arranged in as-
cending order, i.e., the head entry has the smallest key. This setup
corresponds to the MAX-MIN nature of the distance function.

Figure 4: Illustration of the priority queue hierarchy

In the context of HAUSDIST(X,Y ) calculation, definitions for
priority queue entries of MainPQ and SecPQ are given as follows.

DEFINITION 3 (MainPQ-Entry). Attributes of each MainPQ
entry (NX , UB, SPQ) are described as follows:

(i) Node NX — a node in an R-Tree for X , which could be an

object or a non-object (index node);

(ii) Distance UB — an upper bound of HAUSDIST from data
points inNX to the set Y ;

(iii) SecPQ SPQ — a priority queue of entries corresponding to
nodes of the R-Tree for Y .

DEFINITION 4 (SecPQ-Entry). Attributes of each SecPQ en-
try (Node NY , Distance LB) are described as follows:

(i) Node NY — a node in an R-Tree for Y , which could be an

index node or a data point;

(ii) Distance LB — a lower bound of HAUSDISTLB(NX , NY ),
where NX is the node of the MainPQ entry to which the

SecPQ entry is associated.

Note that the upper bound UB is calculated as the minimum of
HAUSDISTUB(NX , NY ) for nodes NY in SPQ.

5.2 Algorithm Description
The main algorithm is given by Algorithm 4 and has the fol-

lowing structure. The initialization (Lines 1 to 6) consists of the
following steps: (i) create R-Trees RX and RY for point sets X
and Y , respectively; (ii) initialize MainPQ MPQ; (iii) create a sec-
ondary priority queue SPQ; (iv) insert the root ofRY with an initial
distance of 0 into SPQ; (v) insert the root ofRX with an initial dis-
tance of ∞ and a secondary priority queue SPQ into MPQ. After
the initialization, MPQ contains a single entry with the root of RX

as the associated node. For each iteration of the while loop (Lines 7
to 15), the head entry (NX , UB, SPQ) is dequeued from MPQ. We
also check the head entry (NY , LB) of SPQ (without dequeuing).
Based on NX and NY , a decision is made whether to terminate, to
traverse RX (Algorithm 5) or to traverse RY (Algorithm 6).
The case that both NX and NY are data points implies that

(i)NY is the NN ofNX , since SPQ uses HAUSDISTLB as an esti-
mator and arranges its entries in ascending order; (ii) No other entry
in MPQ can produce an NN distance greater than UB, since MPQ
uses HAUSDISTUB as an estimator and arranges its entries in de-
scending order. As a result, the key value UB, which is DIST(NX ,

Algorithm 4: Inc-HAUSDIST(X , Y )

input : Point SetX , Point Set Y
output: Hausdorff distance fromX to Y

RTree RX ← Create an R-Tree forX;1

RTree RY ← Create an R-Tree for Y ;2

MainPQ MPQ← Create a “descending order” PQ;3

SecPQ SPQ← Create an “ascending order” PQ;4

Insert((RootOf(RY ), 0), SPQ);5

Insert((RootOf(RX ),∞, SPQ),MPQ);6

while MainPQ is not empty do7

MainPQ-Entry (NX , UB, SPQ)← Dequeue(MPQ);8

SecPQ-Entry (NY , LB)← Head of SPQ;9

if NX and NY are both points then10

return UB;11

else if NX is farther from the leaf level than NY then12

TraverseX(NX , SPQ,MPQ)13

else14

TraverseY(NX , UB, SPQ,MPQ)15

NY ), can be safely returned as the HAUSDIST from X to Y with-
out having to examine the remaining entries.
In case that further examination is required, we compare the

numbers of hops from the leaf level of NX and NY . Since the
goal is to reach two objects, the node farther from the leaf level
is chosen for expansion. Specifically, ifNX is farther from the leaf
level than NY , we deepen the search in RX by calling TraverseX
(Algorithm 5). Otherwise, TraverseY (Algorithm 6) is called. The
description of the deepening process is given as follows.

Algorithm 5: TraverseX(NX , SPQ,MPQ)

input : Node NX in R-Tree ofX , SecPQ SPQ, MainPQ MPQ
output: Modified MPQ

for each Child C of NX do1

SecPQ Child-SPQ← Create an “ascending order” PQ;2

Distance MinUB← Initialize to∞;3

for each SecPQ-Entry (NY , ULB ) in SPQ do4

Distance LB← HAUSDISTLB(C,NY );5

Insert((C, LB), Child-SPQ);6

Distance UB← HAUSDISTUB(C, NY ) ;7

MinUB← MIN{MinUB, UB}8

Insert((C, MinUB, Child-SPQ), MPQ);9

Algorithm 6: TraverseY(NX , UB, SPQ,MPQ)

input : Node NX in R-Tree ofX , Distance UB, SecPQ SPQ,
MainPQ MPQ

output: Modified MPQ

SecPQ-Entry (NY , LB)← Dequeue(SPQ);1

Distance MinUB← UB;2

for each Child Node C of NY do3

Distance LB← HAUSDISTLB(NX , C) ;4

Insert((C, LB), SPQ);5

Distance UB← HAUSDISTUB(NX , C) ;6

MinUB← MIN{MinUB, UB}7

Insert((NX ,MinUB, SPQ),MPQ);8

Algorithm 5, TraverseX. The algorithm accepts a node NX , a
SecPQ SPQ and MainPQ MPQ. For each child node C of NX ,
a new MainPQ entry is created by the following steps: (i) a new
SecPQ Child-SPQ is filled with entries in SPQ but with lower
bounds calculated with respect toC; (ii) the minimum upper bound
MinUB is calculated as the minimum of HAUSDISTUB(C, NY );
(iii) a new entry (C, MinUB, Child-SPQ) is inserted into MPQ.
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Upon completion of the for loop, each child node C of NX has a
corresponding entry in MPQ.
Algorithm 6, TraverseY. The algorithm accepts a node NX ,

the current upper bound UB of the node NX , a SecPQ SPQ
and MainPQ MPQ. The first step is to remove the head en-
try (NY , LB) from SPQ. The next step is to initialize the min-
imum upper bound MinUB to the current upper bound value
UB. For each child C of NY , (i) the lower bound LB is cal-
culated as HAUSDISTLB(NX ,C); (ii) a SecPQ entry (C, LB)
is inserted into SPQ; (iii) the upper bound UB is calculated as
HAUSDISTUB(NX ,C); (iv) the new upper bound is incorporated
into the minimum upper bound MinUB. A new MainPQ entry (C,
MinUB, Child-SPQ) is inserted into MPQ. Output is given via the
modification of MPQ.
The end product of Algorithm 4 is the directed Haus-

dorff distance from X to Y . An algorithm to compute
SYMHAUSDIST(X,Y ) is described in Appendix D.
To mitigate the effect of outliers, one may wish to ignore the first

l distances retrieved from MainPQ and return a partial Hausdorff
distance [18] instead. This feature can be incorporated into Algo-
rithm 4 by modifying the termination condition (Line 10) so that it
returns the (l + 1)-th distance instead of the first one.

6. SEARCHING TRAJECTORIES
As stated in Section 1, we want to use the Hausdorff distance as

a similarity measure between two trajectories. In this section, we
formulate an incremental algorithm for searching similar trajec-
tories based on the Hausdorff distance. We define an incremental
search algorithm TRAJSEARCH(Q,D, T ) (given by Algorithm 8
in Appendix E) as a function that accepts three arguments: a query
trajectory Q, a collection D of trajectories represented by an R-
tree index here although other spatial indexes could also be used,
and the type T of the Hausdorff distance function. The search al-
gorithm makes use of the R-tree hierarchical index that stores the
trajectory set D, and a Hausdorff distance estimator (described in
Algorithm 9, Appendix E) to provide the order in which the index
is traversed. In this way, we avoid examining all trajectories in the
dataset as shown in Appendix G.
Since the distance function can be asymmetrical or symmetrical,

our search function supports three search modes, which correspond
to the following Hausdorff distance minimization problems.

• FROM Q — MIN{HAUSDIST(Q,Y ) : Y ∈ D}. For exam-
ple, given an incomplete trajectory Q of an active cyclone,
a meteorologist may wish to find similar cyclone trajectories
from a set D of historic cyclone trajectories. Assume that
the results are used for trajectory prediction purposes. The
FROM-Q mode can be used to match a shorter trajectory Q
with sub-trajectories of longer ones in D.

• TO Q — MIN{HAUSDIST(Y,Q) : Y ∈ D}. For example,
given a trajectory Q of a bus line, a transportation authority
may wish to find k bus lines from a set D that can be re-
placed by Q. In this application, we are interested in finding
k trajectories that match with a part of Q.

• SYM — MIN{SYMHAUSDIST(Q,Y ) : Y ∈ D}. The SYM
mode can be used for full-trajectory matching. For exam-
ple, given a set of migration trajectories of different types
of birds, zoologists are interested in finding a type of bird
that has the same migration pattern as a given type.

To compute the HAUSDIST from one trajectory to another, we
can use any of the four algorithms: Scan, Depth-First, Best-First
and Incremental algorithms given by Algorithms 1, 2, 3 and 4, re-
spectively. Results of an experimental study of these algorithms are
given in Section 7.

7. EXPERIMENTAL STUDIES
In this section, we compare the performance of the three basic

approaches: SCAN (Algorithm 1), DF (Algorithm 2) and BF (Al-
gorithm 3) with our proposed algorithm, INC (Algorithm 4). We
chose the R-tree technique [13] for the hierarchical containment
index. We used only internal memory and a low fan-out for perfor-
mance. All algorithms were implemented in C++ and the experi-
ments were performed on a computer with a Core 2 Duo processor
and 2GB of Main Memory, running Mac OS 10.5.
We used synthetic and real datasets in our performance studies.
• The synthetic dataset contains trajectories generated from a
road network representing main roads in the city of Olden-
burg, Germany.

• We used the GeoLife GPS Trajectories [28, 29] as our real
dataset. The dataset contains trajectories collected from 165
users in a period of 29 months. Each trajectory contains a se-
quence of locations within a period of one day (12:00:01 am
to 11:59:59 pm) of a user. Since we are interested in large tra-
jectories, only trajectories with 3000 locations or more were
used in the experiments. This results in 2669 trajectories be-
ing used for this dataset.

Performance comparison of the four algorithms was conducted
in two different settings: Hausdorff distance calculation (Sec-
tion 7.1) and Incremental trajectory search (Section 7.2). The fol-
lowing four cost measures were used.

• Tree traversal cost — the number of R-Tree nodes accessed.
• Distance calculation cost — the number of MINDIST and
MAXDIST calculations. This is because the computation of
HAUSDIST lower and upper bounds can be decomposed into
MINDIST and MAXDIST calculations. Please refer to Ap-
pendix B for the costs for computing a HAUSDIST lower
bound and upper bound using MBRs.

• Priority queue cost — the total number of comparisons in-
curred from enqueue and dequeue operations.

• Total execution time — the amount of time taken to compute
HAUSDIST (Section 7.1) or to find the k most similar trajec-
tories (Section 7.2).

7.1 Hausdorff Distance Calculation
In this set of experiments, we compared the four algorithms to

calculate HAUSDIST(X,Y ) by varying sizes ofX and Y . In order
to properly control these two parameters, only the synthetic dataset
was used in this experiment. Specifically, we generated trajectories
from the Oldenburg road network. Each trajectory was randomly
generated as a shortest path with a length of 2000 units (in a data
space of 104 by 104 unit squares). Each trajectory was created in
5 resolutions: 400, 800, 1200, 1600 and 2000 sampled locations.
The dataset was organized into 5 sets according to these resolu-
tions. These 5 different sets of trajectories enabled us to vary the
parameter |X| on a fixed value of |Y | and vice versa. Each result
was recorded as the average of 200 different pairs of trajectories.
Tree traversal cost. Figure 5(a) compares the tree traversal costs

of the four algorithms to calculate HAUSDIST(X,Y ) as the size
|X| changes. Both point sets X and Y are indexed in two R-Trees
RX and RY respectively. For all methods, we can see the positive
correlation between the traversal cost and |X|. This is because an
increase in |X| means that there are more NN queries to execute
for the three competitors (SCAN, DF and BF) and more MainPQ
entries for the proposed method (INC).
Both Figures 5(a) and 5(b) show that INC significantly outper-

forms all three competitors. The traversal costs of DF and BF are
approximately three times lower than that of SCAN. This result
shows the effectiveness of a simple improvement which utilizes
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the upper bound computed with respect to the root node of RY .
Further performance improvement of over an order of magnitude
(in comparison to DF and BF) was obtained by INC. This re-
sult confirms our hypothesis that a more effective upper bound for
HAUSDIST(X,Y ) can be obtained by examining deeper nodes in
RY instead of just the root node.
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Figure 5: Traversal costs of calculating HAUSDIST(X,Y )

Priority queue cost. Figure 6 compares the four methods in terms
of priority queue cost. The results conform with those of the traver-
sal cost. DF and BF incur similar costs and perform better than
SCAN by approximately three times. INC significantly outper-
forms all competitors.
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Figure 6: Priority queue costs of calculating HAUSDIST(X,Y )

Distance calculation cost. Figure 7 shows the distance calcula-
tion costs of the four methods. With this cost measure, we can see
that DF has a slightly higher cost than BF. This is because, DF
computes lower bounds of nodes for pruning purposes (Line 8, Al-
gorithm 2), while this step is not required for BF, as pruning is
handled implicitly by node scheduling using a priority queue.
We can also see that INC has the lowest distance calculation cost.

However, the performance improvement is much smaller than that
of the traversal cost. This is because, INC has a higher distance cal-
culation cost per traversed node than DF and BF. Specifically, DF
and BF traverse the R-Tree RY of Y using the NN query, which
computes the MINDIST for each child node encountered. For INC,
on the other hand, traversal of RY (Algorithm 6) requires evalua-
tion of lower bound and upper bound for each node encountered.
As shown in Appendix B, each lower/upper bound calculation re-
quires multiple MINDIST/MAXDIST calculations.
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Figure 7: Distance calculation costs of calculating

HAUSDIST(X,Y )

Total execution time. Figure 8 displays the total execution times
of the four methods. We can see that DF and BF provide an im-
provement of approximately 2.5 times over SCAN, and BF has a
slightly better performance than DF (which conforms with the mea-
sure of distance calculation cost). INC is one order of magnitude
faster than DF and BF.
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Figure 8: Total execution times of calculating HAUSDIST(X,Y )

7.2 Incremental Trajectory Search
Results from the previous set of experiments have shown the ef-

fectiveness of the branch-and-bound methods (DF, BF and INC)
when calculating HAUSDIST(X,Y ) whereX and Y are chosen at
random. In this set of experiments, we compared the performance
of the four methods as they were used to compute HAUSDIST in the
incremental trajectory search algorithm (Lines 13 to 15 of Algo-
rithm 8 in Appendix E). The search algorithm uses the HAUSDIST
lower bound function as a search heuristic to estimate the distances
from trajectories to a query trajectory Q. Hence, the trajectory se-
lection is skewed towards those closer to Q.
Figure 9 displays results from the synthetic dataset (where

each trajectory has 2000 locations) and the directionality of the
HAUSDIST function is symmetrical (SYM). The results conform
with the previous set of experiments (Section 7.1) in the following
ways. First, DF and BF have similar cost improvements with re-
spect to SCAN for tree traversal and priority queue costs. Second,
BF performs slightly better than DF for the distance calculation
cost and the total time. Finally, INC significantly outperforms all
competitors in all cost measures.
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Figure 9: Effect of k on the synthetic dataset (SYM)

The main difference from the results of distance calculation
experiments is that in the case of incremental trajectory search,
only a marginal improvement is obtained from DF and BF for
all cost measures. This result shows that the basic branch-and-
bound methods (DF and BF) do not function well when calculating
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HAUSDIST(X,Y ) whereX and Y are close to each other. The ef-
fectiveness of the incremental upper bound computation is demon-
strated by the INC method, which retains an improvement factor
similar to that for the distance calculation experiments (for all cost
measures). Results for the real dataset are given in Figure 10. As
can be seen, INC continues to significantly outperform the three
competitors for all cost measures.
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Figure 10: Effect of k on the real dataset (SYM)

Additional experimental results are given in Appendix H. These
results conform with those given in this section.

7.3 Summary
In comparison to SCAN, the basic branch-and-bound methods

(DF and BF) yield a reasonable cost improvement when just cal-
culating the Hausdorff distance between two trajectories chosen
at random. The improvement is marginal for incremental trajec-
tory search. For INC, similar cost improvements in comparison to
SCAN are obtained in all experiments and INC also outperforms all
competitors for the four cost measures for all sets of experiments.

8. CONCLUDING REMARKS
We presented a novel technique to calculate the Hausdorff dis-

tance which utilizes hierarchical indexes. To calculate the Haus-
dorff distance HAUSDIST(X,Y ), our technique traverses the in-
dexes of X and Y in an incremental manner. We have compared
our proposed method with (i) a baseline based upon an existing
method [3] that scans an entire set X , and then performs indexed
search over Y ; (ii) two basic branch-and-bound algorithms (DF and
BF) that considers Y as a single query object and traverses the
index of X in a similar manner as the aggregate NN query [22].
Experiments show that our proposed method significantly outper-
forms its three competitors in terms of the traversal cost, priority
queue maintenance cost, distance calculation cost and the total ex-
ecution time.
Future work involves investigating the performance when calcu-

lating a partial Hausdorff distance in order to exclude outliers (as
discussed in Section 5). We also want to extend our algorithm to
handle trajectories represented as polylines (Appendix I).
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[4] C. Andújar, P. Brunet, and D. Ayala. Topology-reducing surface
simplification using a discrete solid representation. ACM Trans.
Graph., 21(2):88–105, 2002.

[5] W. G. Aref and I. F. Ilyas. An extensible index for spatial databases.
In SSDBM, pages 49–58, 2001.

[6] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental
geometric data structure. ACM Comput. Surv., 23(3):345–405, 1991.

[7] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree:
an efficient and robust access method for points and rectangles. In
SIGMOD, pages 322–331, 1990.

[8] N. Beckmann and B. Seeger. A revised R*-tree in comparison with
related index structures. In SIGMOD, pages 799–812, 2009.

[9] D. Berndt and J. Clifford. Using dynamic time warping to find
patterns in time series. AAAI Workshop on Knowledge Discovery in
Databases, pages 229–248, 1994.

[10] L. Chen and R. Ng. On the marriage of lp-norms and edit distance.
VLDB, pages 792–803, 2004.
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APPENDIX

A. HAUSDORFF DISTANCE EXAMPLES
Figure 11 illustrate the difference between the directed Haus-

dorff distance HAUSDIST(A,B) and HAUSDIST(B,A). The undi-
rected Hausdorff distance SYMHAUSDIST(A,B) is given as the
maximum of HAUSDIST(A,B) and HAUSDIST(B,A), which is
HAUSDIST(B,A) in this example.

(a) HAUSDIST(A,B)

(b) HAUSDIST(B,A)

Figure 11: The Hausdorff distance (a) HAUSDIST(A,B)
evaluated as MAX{MINDIST(a, B) : a ∈ A} and (b)

HAUSDIST(B,A) evaluated as MAX{MINDIST(b, A) : b ∈ B}.

B. UPPER BOUND AND LOWER BOUND
In this appendix, we derive the cost of upper bound and lower

bound calculations by determining the number of MINDIST and
MAXDIST calculations. In this cost measure, we assume that each
of the following calculations costs one unit:

• MINDIST/MAXDIST from a point to an MBR;
• MINDIST/MAXDIST from an MBR to a point;
• MINDIST/MAXDIST from an MBR face to an MBR;
• MINDIST/MAXDIST from an MBR to an MBR face.
The HAUSDIST from a singleton set {p} to objects in an MBR

B is the distance from p to the nearest object in B. As shown in
Figure 12(a), a lower bound of HAUSDIST from a point p to objects
in an MBR B can be computed as the smallest possible distance
from p to the nearest object in B. That is, HAUSDISTLB(p, B) =

MINDIST(p, B).

Hence, this operation requires 1 MINDIST calculation.
As shown in Figure 12(b), an upper bound of HAUSDIST from

a point p to objects in an MBR B can be computed as the
greatest distance from p to its nearest object in B. In this case,
we use the MAXNEARESTDIST [24] as an upper bound. Specif-
ically, we exploit the fact that each of the four faces (B.TOP,
B.BOTTOM, B.LEFT and B.RIGHT) has at least one object that
touches it. We then compute the worst case of each of the faces
and the upper bound is obtained as the overall minimum. That is,
HAUSDISTUB(p, B) =

MIN{MAXDIST(p, fb) : fb ∈ FacesOf(B)}.

This operation requires 4 MAXDIST calculations.

(a) Lower bound (b) Upper bound

Figure 12: Lower bound and upper bound from a point p to an

MBR B

The HAUSDIST from objects in an MBR A to a singleton set
{p} is the distance to p from its farthest object in the MBR. Fig-
ure 13(a) shows a lower bound computed as the minimum dis-
tance of this farthest object, MINFARTHESTDIST [24]. That is,
HAUSDISTLB(A,p) =

MAX{MINDIST(fa,p) : fa ∈ FacesOf(A)}.

Hence, this operation requires 4 MINDIST calculations. Simi-
larly, Figure 13(b) shows an upper bound computed as the max-
imum distance of the farthest object with respect to p. That is,
HAUSDISTUB(A,p) =

MAXDIST(A,p).

Hence, this operation requires 1 MAXDIST calculation.

(a) Lower bound (b) Upper bound

Figure 13: Lower bound and upper bound from an MBR A to

point p

We now determine the calculation costs for the case where both
entries A and B are MBRs. As shown in Figure 14, we reuse the
examples given in Section 3. In this case, a lower bound can be
computed by breaking down both A and B into faces as

HAUSDISTLB(A,B) =

MAX{ MIN{MINDIST(fa, fb) : fb ∈ FACESOF(B)} :

fa ∈ FACESOF(A)}.

Since MIN{MINDIST(fa, fb) : fb ∈ FACESOF(B)} is equiva-
lent to MINDIST(fa, B), this operation requires 4 MINDIST cal-
culations. Similarly, an upper bound can be evaluated as

HAUSDISTUB(A,B) =

MAX{ MIN{MAXDIST(fa, fb) : fb ∈ FACESOF(B)} :

fa ∈ FACESOF(A)}.

Note that MIN{MAXDIST(fa, fb) : fb ∈ FACESOF(B)} can be
rewritten as MAXNEARESTDIST(fa, B). However, evaluation
of MAXNEARESTDIST also requires 4 MAXDIST calculations.
Hence, this operation requires 16 MAXDIST calculations in total.
Summary of distance calculation costs in the number of
MINDIST and MAXDIST calculations is given in Table 1.
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(a) Lower bound

(b) Upper bound

Figure 14: Lower bound and upper bound an MBR A to an-

other MBR B

Table 1: Summary of calculation costs

Point to MBR MBR to Point MBR to MBR

Lower bound 1 4 4
Upper bound 4 1 16

C. CORRECTNESS OF UPPER BOUND

CALCULATED FROM SUB­NODES
We verify the correctness of using the minimum upper bound of

child nodes as an overall upper bound of the parent as follows.

LEMMA 1. Given two sets of objects X and Y which are

enclosed by two R-Tree nodes A and B, respectively. Let

{B1, ..., Bn} denote the set of sub-nodes in B. The value

MIN{HAUSDISTUB(A,Bi) : Bi ∈ {B1, ..., Bn}}

is an upper bound of HAUSDIST(X,Y ).

PROOF. We prove this lemma by showing that for all Bi

in {B1, ..., Bn}, HAUSDIST(X,Y ) cannot be greater than
HAUSDISTUB(A,Bi).
Assume that the set Y is decomposed into subsets Y1, ..., Yn

where each is enclosed by B1, ..., Bn respectively. Hence, for all i
in [1, ..., n],

HAUSDIST(X,Yi) ≤ HAUSDISTUB(A,Bi).

Since each Yi is a subset of Y , a closer element toX could exist in
Y . We have HAUSDIST(X,Y ) ≤ HAUSDIST(X,Yi).
For all Bi in {B1, ..., Bn},

HAUSDIST(X,Y ) ≤ HAUSDISTUB(A,Bi).

As a result, the minimum value of HAUSDISTUB(A,Bi) over the
set {B1, ..., Bn} is an upper bound of HAUSDIST(X,Y ).

D. CALCULATING THE UNDIRECTED

HAUSDORFF DISTANCE
The undirected Hausdorff distance function
SYMHAUSDIST(X, Y ) is defined as the maximum be-
tween HAUSDIST(X,Y ) and HAUSDIST(Y,X). Hence, both
HAUSDIST(X,Y ) and HAUSDIST(Y,X) can be used as lower
bounds for SYMHAUSDIST(X,Y ). We can exploit this observa-
tion to speed up the computation of SYMHAUSDIST(X,Y ) by (i)
evaluating the direction that has a greater lower bound first, and (ii)
use the result as a lower bound for the other direction. Specifically,
given two point sets X and Y , SYMHAUSDIST(X,Y ) can be
calculated as follows:

• calculate a lower bound L1 of HAUSDIST(X,Y ) using the
MBRs of the two sets;

• calculate a lower bound L2 of HAUSDIST(Y,X) using the
MBRs of the two sets;

• if L1 is greater than L2, then let S1 be X and S2 be Y ;
• otherwise let S1 be Y and S2 beX;
• calculate d1 as Inc-HAUSDIST(S1, S2);
• calculate d2 as Inc-HAUSDIST*(S2, S1, d1) (Algorithm 7);
• return the maximum of d1 and d2 as the resultant HAUSDIST.
Inc-HAUSDIST*() is a slight modification to the proposed algo-

rithm (Algorithm 4). The algorithm accepts the distance d which is
the HAUSDIST previously computed in the opposite direction as a
lower bound. The algorithm terminates upon discovery of an upper
bound UB that is smaller than d (Lines 9 to 10). This is because,
further computation would yield a distance smaller than what we
already have and cannot affect the overall maximum distance. The
same principle can also be applied to DF-HAUSDIST (Algorithm 2)
and BF-HAUSDIST (Algorithm 3).

Algorithm 7: Inc-HAUSDIST∗(X , Y , d)

input : Point SetX , Point Set Y , Distance d
output: Maximum of d and the Hausdorff Distance fromX to Y

RTree RX ← Create an R-Tree forX;1

RTree RY ← Create an R-Tree for Y ;2

MainPQ MPQ← Create a “descending order” PQ;3

SecPQ SPQ← Create an “ascending order” PQ;4

Insert((RootOf(RY ), 0), SPQ);5

Insert((RootOf(RX ), 0, SPQ),MPQ);6

while MainPQ is not empty do7

MainPQ-Entry (NX , UB, SPQ)← Dequeue(MPQ);8

if UB≤ d then9

return d;10

SecPQ-Entry (NY , LB)← Head of SPQ;11

if NX and NY are both points then12

return UB;13

else if NX is in a shallower depth than NY then14

TraverseX(NX , SPQ,MPQ)15

else16

TraverseY(NX , UB, SPQ,MPQ)17

E. TRAJECTORY SEARCH ALGORITHM
Algorithm 8 applies the concept of incremental nearest neighbor

search [16] and proceeds as follows. The initialization steps (Lines
1 to 4) include (i) creating an MBRMQ for Q; (ii) creating an R-
TreeR for all trajectories inD; (iii) initializing a priority queue PQ;
(iv) inserting a priority queue entry with RootOf(R) into PQ. The
best-first traversal is controlled by the while loop (Lines 5 to 20),
which explores nodes in R according to the HAUSDIST estimator
(given in Algorithm 9).
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Algorithm 8: TRAJSEARCH(Q, D, T )

input : Query trajectory Q, Trajectory setD and Distance direction T
(FROM-Q, TO-Q or SYM)

output: Trajectory with the smallest HAUSDISTwith respect to Q

MQ← Create an MBR of Q;1

R← Create an R-Tree forD;2

Priority Queue PQ← Create an “ascending order” PQ;3

Insert((RootOf(R), 0, False), PQ);4

while PQ is not empty do5

PQ-Entry (NodeN , Distance d, Bool IsFinal)← Dequeue(PQ);6

if N contains one trajectory then7

if IsFinal then8

return N ;9

else10

Distance d;11

switch the value of T do12

case FROM-Q: d← HAUSDIST(Q,N );13

case TO-Q: d← HAUSDIST(N ,Q);14

case SYM: d← MAX {HAUSDIST(Q,N ),15

HAUSDIST(N ,Q)};

Insert((N , d, True), PQ);16

else17

for each Child C of N do18

Distance d← HAUSEST(MQ, C, T );19

Insert((C, d, False), PQ);20

The Hausdorff distance of a query MBR and a node containing
trajectories can be estimated as follows. As input, the algorithm ac-
cepts (i) an MBRMQ corresponding to the query trajectory Q, (ii)
a node C in the R-Tree containing a set of possible trajectories, and
(iii) the direction of the distance function (FROM-Q, TO-Q or SYM).
The output of the algorithm is a lower bound on the HAUSDIST for
all trajectories in C with respect to Q. If C corresponds to one tra-
jectory, then the estimate is described as follows.

• HAUSDISTLB(MQ, C) for FROM-Q.
• HAUSDISTLB(C,MQ) for TO-Q.
• MAX{HAUSDISTLB(MQ, C),HAUSDISTLB(C,MQ)}
for SYM.

Otherwise, if C contains multiple trajectories (C is an index node),
an estimate can be computed as follows.

• FROM-Q— HAUSDISTLB(MQ, C). SinceMQ is the MBR
of Q, it is safe to assume that each face of MQ has at least
one data point. Please refer to Figure 14(a).

• TO-Q — MINDIST(C, MQ). Since C contains multiple tra-
jectories, the nearest trajectory can be anywhere in C. It is
safe to assume only that the nearest trajectory cannot be out-
side C and use MINDIST as the lower bound.

• SYM. This is evaluated as the maximum of the first two esti-
mates. However, since MINDIST(C, MQ) cannot be greater
than HAUSDISTLB(MQ, C), HAUSDISTLB(MQ, C) is al-
ways the maximum of the two and there is no need to calcu-
late MINDIST(C,MQ).

F. EXAMPLE SEARCH RESULTS
This appendix provides example trajectory search results which

are ranked according to the HAUSDIST from a query trajectory Q
using the city of Oldenburg dataset (described and used in the ex-
perimental studies, Section 7). Figure 15 shows results of ranks
[1, 51, ..., 451] where each is accompanied by the distance fromQ.
We can see that as the rank and distance increase the deviation from
Q also increases. These search results illustrate the effectiveness of
the Hausdorff distance as a similarity measure for trajectories.

Algorithm 9: HAUSEST(MQ, C, T )

input : Query MBRMQ, Node C and Direction T (FROM-Q, TO-Q
or SYM)

output: Optimistic Estimate of HAUSDIST
Distance L;1

if C contains one trajectory then2

switch the value of T do3

case FROM-Q: L← HAUSDISTLB(MQ, C);4

case TO-Q: L← HAUSDISTLB(C,MQ);5

case SYM: L← MAX {HAUSDISTLB(MQ, C),6

HAUSDISTLB(C,MQ)};

else7

switch the value of T do8

case FROM-Q: L← HAUSDISTLB(MQ, C);9

case TO-Q: L← MINDIST(C,MQ);10

case SYM: L← HAUSDISTLB(MQ, C);11

return L12
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Figure 15: Similarity search results ranked according to

HAUSDIST from the query trajectory Q

G. EFFECTIVENESS OF TRAJSEARCH
Table 2 shows the proportion of trajectories encountered by
TRAJSEARCH. As we can see, in the case of the Oldenburg dataset
with a k value of 20, our search algorithm considers only 42 tra-
jectories out of a collection of 2000. In other words, in order to
retrieve the 20 most similar trajectories based on the symmetrical
Hausdorff distance, our algorithm considers only 22 non-resultant
trajectories. The number of encountered trajectories increases as
k increases. When k is 100 (i.e., ranking 5% of the Oldenburg
dataset and 3.7% of the GeoLife dataset), TRAJSEARCH accesses
only 8.3% and 13.6% of the trajectories, respectively.

Table 2: Proportion of Trajectories Accessed

Oldenburg GeoLife
(2000 Trajectories) (2669 Trajectories)

k Number of Percentage Number of Percentage

Trajectories Trajectories

20 42 2.1% 65 2.4%
40 72 3.6% 94 3.5%
60 106 5.3% 138 5.1%
80 131 6.6% 202 7.6%
100 166 8.3% 363 13.6%
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H. ADDITIONAL EXPERIMENTAL RE­

SULTS
In addition to the results for the symmetric Hausdorff distance

(SYM) given in Section 7, we report experimental results of using
the Hausdorff distance to find trajectories that minimize the dis-
tance in the directions of “FROM-Q” and “TO-Q”. Figure 16 com-
pares the traversal costs of the four methods. We see that the traver-
sal costs of DF and BF are slightly lower than that of SCAN. Sig-
nificant improvement of over an order of magnitude was obtained
by INC. This result confirms our hypothesis that a more effective
upper bound for HAUSDIST(X,Y ) can be obtained by examining
deeper nodes in RY instead of just the root node.
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Figure 16: Effect of k on the traversal costs

Figure 17 shows the comparison of the four methods in terms of
priority queue cost. The results conform with those of the traversal
cost. DF and BF incur similar costs and perform marginally better
than SCAN. INC significantly outperforms all competitors.
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Figure 17: Effect of k on the priority queue costs

Figure 18 shows the distance calculation costs of the four meth-
ods. In this cost measure, we can see that DF has a slightly higher
cost than BF. This is because, DF computes lower bounds of nodes
for pruning purposes (Line 7, Algorithm 2), while this step is not
required for BF (Algorithm 3) since pruning is handled implicitly
by the best-first traversal order. We can also see that INC continues
to outperform all other methods.
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Figure 18: Effect of k on the distance calculation costs

Figure 19 displays the total execution times of the four methods.
We can see that DF and BF provide a marginal speed improvement

over SCAN. The performance difference between DF and BF is
due to the difference in the distance calculation cost. INC, which
is the method that has the lowest traversal cost, priority queue cost
and distance calculations, also significantly outperforms all other
methods in this cost measure.
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Figure 19: Effect of k on the total execution times

As can be seen from the synthetic dataset, results FROM-Q and
TO-Q given in this section are similar to that for SYM given in Sec-
tion 7.2. Hence, we omit presentation of results from FROM-Q and
TO-Q for the real dataset.

I. ALTERNATIVE TRAJECTORY REPRE­

SENTATION
Figure 20(a) illustrates a problem that may arise when using
HAUSDIST to determine the similarity between two trajectories
A and B. The figure shows two trajectories A and B repre-
sented as two point sets {a1, ...,a6} and {b1, ..., b6}, respec-
tively. Since every point in A is close to at least one point in B,
HAUSDIST(A,B) yields a distance which is not indicative of the
actual discrepancy of the trajectory A with respect to B. One ap-
proach to mitigate this problem is to ensure that the frequency in
which trajectories are sampled is sufficient to preserve their conti-
nuity. As a result, points that are temporally close to each other are
also spatially close to each other.

(a) Lower sampling rate (b) Polyline Representation

Figure 20: Discrete and continuous trajectory representations

A more sophisticated approach to addressing this problem is to
represent trajectories as piecewise linear curves as illustrated by
Figure 20(b). In this case, the Hausdorff distance from Trajectory
A to Trajectory B is given by a point along Polyline A that maxi-
mizes the minimum distance to Polyline B. Another benefit of this
method is that it allows line simplification techniques to be applied
to trajectories [14]. As a result, consecutive locations that are ap-
proximately co-linear are simplified to a single line segment reduc-
ing the number of line segments to store and to process.
Our proposed Hausdorff distance computation algorithm (Al-

gorithm 4) can be adjusted to handle this extension. Specifically,
we can replace calculation of the Hausdorff distance between two
points a and b (which is simply DIST(a, b)) by the Hausdorff dis-
tance from one line segment to another. Details on how this calcu-
lation can be derived is given by Alt et al. [3]. This extension will
be investigated as part of our future research.
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