
Proc. of the 3rd Intl. Conf. on Document Analysis and Recognition, Montreal, Canada, August 1995. 1

A Map Acquisition, Storage, Indexing, and Retrieval System
�

Hanan Samet Aya So�er

Computer Science Department and Computer Science Department and

Center for Automation Research and Center for Automation Research and

Institute for Advanced Computer Science Institute for Advanced Computer Science

University of Maryland at College Park University of Maryland at College Park

College Park, Maryland 20742 College Park, Maryland 20742

E-mail: hjs@umiacs.umd.edu aya@umiacs.umd.edu

Abstract

A system for the acquisition, storage, indexing, and

retrieval of map images is presented. The input to

this system are raster images of separate map layers

and map composites. A legend driven map interpre-

tation system converts layer images from a physical

to a logical representation. This logical representation

is used to automatically index both the composite and

the layer images. Methods for incorporating logical

and physical layers as well as composite images into

the framework of a relational database management

system are described. An example query and a corre-

sponding query processing strategy that uses these in-

dices is presented. The user interface is demonstrated

via an example query execution.

1 Introduction

The paper map has long been the traditional rep-
resentation of spatial data. Today, we are seeing the
emergence of geographic information systems (GIS) as
a replacement. One of the central issues in this �eld is
how to integrate paper maps into a GIS. In particular,
we would like to store scanned images of paper maps
(termed map images) and be able to retrieve portions
of these maps based on the information that they con-
vey, termed retrieval by content. An example query is
\�nd all map images containing camping sites within
3 miles of �shing sites".

In order to support retrieval by content, the maps
should be interpreted to some degree when they are

�The support of the National Science Foundation under

Grant IRI-9017393 and HPCC/GCAG Grant BIR-9318183,

and the National Aeronautics and Space Administration under

Grant NGT-30130 are gratefully acknowledged.

inserted into the database. This process is referred to
as converting a map image from a physical represen-
tation to a logical representation. It is desirable that
the logical representation also preserve the spatial in-
formation inherent in the map image. Both the logical
and the physical representation of the map images are
stored in the database. An index mechanism for the
logical representation can then be used to retrieve map
images based on both contextual and spatial informa-
tion in an e�cient way.

The process of converting a map image from its
physical to its logical representation is the subject of
the �eld of map interpretation. There has been some
research in recent years on automating this process.
Most researchers have focussed on skeletonization and
vectorization methods [4, 8]. Unfortunately, this does
not always yield accurate and useful results. One
problem in performing this conversion is that a pa-
per map is nothing more than an abstraction. The
information found in maps is mainly symbolic rather
than an accurate graphical description of the region
covered by the map. For example, the color and size
of city names on the map convey information about
the population of a city. Many graphical symbols are
used to indicate the location of various sites such as
post o�ces, scenic areas etc. The key to this symbolic
information may be found on the map itself in the
form of the legend. In [7], we described a map inter-
pretation system that was built by us that performs
legend-driven geographic symbol recognition.

In this paper, we present a system for acquisition,
storage, indexing, and retrieval of map images. The
input to this system are raster images of separate map
layers and raster images of map composites (the maps
that result from composing the separate map layers).
We refer to these raster images as layer images and
composite images, respectively. The map interpreta-



Proc. of the 3rd Intl. Conf. on Document Analysis and Recognition, Montreal, Canada, August 1995. 2

tion system described in [7] is used to convert map
layer images from their physical to logical representa-
tion. This logical representation is then used to auto-
matically index both the composite and layer images.
In this paper, we describe how to incorporate both
layer and composite images into an existing spatial
database. Our emphasis is on extracting and storing
both contextual and spatial information from the layer
images. The logical map images are stored as tuples in
a relation. Indices are constructed on both the contex-
tual and the spatial data. Although this system was
designed for maps, it can be adapted easily to handle
many other types of documents that are of a symbolic
nature. These include CAD/CAM documents, engi-
neering drawings, 
oor plans, etc.

2 Map Acquisition and Conversion

LEGEND

MODIFICATION

LIBRARY

VERIFICATION

USER

VERIFY
BY

USER ?

System 

Classifications
Generated

MAP IMAGE

DATABASE

MANAGEMENT

SYSTEM

ACQUISITION

Non-

Legend
Initial Modified Training Set Library

Library
Training Set 

Tile

SEGMENTATION

AND
YES

NO

PREPROCESSING

EXTRACTION

FEATURE

CLASSIFICATION

OBJECT

Physical Layer Tile 

Set of:
Logical Map Tile

Classifications
User Verified 

Physical Composite Tile

location)
(class, certainty,

Layer 
Tile

Legend

Figure 1: Map interpretation system

Map layers and composites are scanned and divided
into small tiles (i.e., of size 512 � 512 pixels). Fig-
ure 1 is a block diagram of the map interpretation
system that we have developed. The map layer tiles
are processed one-by-one. Legend tiles are used to cre-
ate an initial training set library. Non-legend tiles are
converted from a physical to a logical representation.
See [7] for a complete description of this process.

The output of the conversion is a logical map tile.
It consists of the candidate classi�cations that were
made, the certainty of the classi�cations, and the cor-
responding location of the symbols found in the map
tile. The logical map tile, physical layer tiles, and
composite tiles are input to the map image database
management system.

3 Map Image Storage

Map images and other information pertaining to
the application are stored in relational tables. The
database system that we use for this purpose is SAND
[1] (denoting spatial and non-spatial database) devel-
oped at the University of Maryland. It is a home-
grown extension to a relational database where the
tuples may correspond to geometric entities such as
points, lines, polygons, etc. having attributes which
may be both of a locational (i.e., spatial) and non-
locational nature.

3.1 Schema De�nitions

(create table (create table (create table

classes phys_mi log_mi

class CHAR[30], img_id INTEGER, class CHAR[30],

seman CHAR[50], desc CHAR[50], cert FLOAT,

bitmap IMAGE); low_left POINT, limg_id INTEGER,

raw IMAGE); cimg_id INTEGER,

l_loc POINT,

c_loc POINT);

Figure 2: schemas for the relations classes,

phys mi, and log mi.

The schema de�nitions given in Figure 2 de�ne the
relations that are used by the map image database
system. We use an SQL-like syntax. The classes

relation has one tuple for each classi�cation used by
the system. The class �eld stores the name of the
classi�cation (e.g., star), the seman �eld stores the se-
mantic meaning of the classi�cation in the map (e.g.,
site of interest). The bitmap �eld stores a bitmap of
an instance of a symbol representing this class. It is an
attribute of type IMAGE. The classes relation is pop-
ulated using the same data that is used to create the
initial training set library for the map interpretation
system.

The phys mi relation has one tuple per map tile
T in the database. These include both layer tiles and
composite tiles. The desc �eld stores an alphanumeric
description of the tile T that the user gives when in-
serting T . The raw �eld stores the actual tile T in
its physical representation. It is an attribute of type
IMAGE. The low left �eld stores an o�set value that
locates the lower left corner of map tile T with respect
to the lower left corner of the non-tiled map imageM .

The log mi relation stores the logical representa-
tion of the map tiles. It has one tuple for each can-
didate classi�cation output by the map interpretation



Proc. of the 3rd Intl. Conf. on Document Analysis and Recognition, Montreal, Canada, August 1995. 3

system for each valid symbol s in each layer tile LT .
The class and cert �elds store the name of the class
C to which the map tile conversion system classi�ed
s and the certainty that s 2 C. The limg id and
cimg id �elds are the integer identi�ers assigned to
the corresponding layer tile LT and composite tile CT,
respectively, that contain symbol s. The l loc and
c loc �elds store the (x; y) coordinate values of the
center of gravity of s relative to the non-tiled layer
and composite images, respectively.

Alphanumeric and spatial indices are de�ned on the
schemas of the map image database. These indices in-
clude an alphanumeric index that is used to search the
log mi relation by the class attribute, and a spatial
index that is used to search the log mi relation by
location. The spatial indices are implemented by a
PMR quadtree for points [2].

4 Map Image Retrieval

An example query seeks to \display all layer and
composite tiles that contain a beach within 5 miles of
a hotel." This query can be given in SQL format

display PI1.raw PI2.raw

from log_mi LI1, log_mi LI2, classes C1,

classes C2, phys_mi PI1, phys_mi PI2

where C1.seman = "beach" and

C2.seman = "hotel" and

C1.class = LI1.class and

C2.class = LI2.class and

distance(LI1.l_loc,LI2.l_loc) < 15 and

LI1.limg_id = LI2.limg_id and

PI1.img_id = LI1.limg_id and

PI2.img_id = LI1.cimg_id;

The following execution plan outlines how a response
to this query is computed using the available index-
ing structures. See [6] for a more detailed plan and
for more example queries. Indices on alphanumeric
attributes are capable of locating the closest value
greater than or equal to a given string or number. In-
dices on spatial attributes are capable of returning the
items in increasing order of their distance from a given
point. Direct addressing of a tuple within a relation
is possible by means of a tuple identi�er (or tid for
short). All index structures have an implicit attribute
that stores this tid. The strategy is to search for ho-
tel tuples using an alphanumeric index on class and
search for site of interest tuples using a spatial index
on l loc.

get all tuples of log mi which correspond to "hotel"

(use index on the class attribute)
for each such tuple t

get all points within 5 miles of t.l loc

(use spatial index on the l loc attribute)
for each one of these points p

if p is a \beach" and in same map tile then
display the corresponding physical

map layer and composite tiles

4.1 User Interface

Queries may be given to our system using either
an SQL-like language or a graphical user interface
(GUI). The SQL-like language used by our system is
part of SAND and it includes primitives for spatial
queries such as distance, intersect, nearest neighbor,
etc. By using this language, users can pose a wide
range of queries to the system. However, this extended
SQL-like language is not trivial and requires that the
user know the schema de�nitions. In contrast, the
graphical user interface provides access to a number
of query categories that are common in such a map
image database application. The variety of queries
that can be posed using the GUI is limited; however,
it is very easy to use. Currently, we have de�ned �ve
query categories as follows:

Contain Query �nd all map tiles that contain a
symbol from a given class.

One within Query �nd all map tiles in which a
symbol from class2 is within a given distance from
a symbol from class1.

All Within Query �nd all map tiles in which a sym-
bol from any class is within a given distance from
a symbol from class1.

Nearest Query �nd all map tiles with the nearest

symbol from class2 to a symbol from class1.

Directional Location Query �nd all map tiles in
which a symbol from class1 is located in a given
direction relative to a symbol from class2.

An additional di�erence between queries speci�ed us-
ing SQL and queries speci�ed using the GUI is in the
cost (in terms of time) of responding to the queries.
For queries that are speci�ed using SQL, the query
plan is generated automatically. Thus the cost of
computing the result is determined by the quality of
SAND's query optimizer. The problem of writing a



Proc. of the 3rd Intl. Conf. on Document Analysis and Recognition, Montreal, Canada, August 1995. 4

query optimizer for a spatial database is very com-
plex [1], and thus these plans will most likely not be
optimal. On the other hand, using the GUI, the user
has access to only a limited number of query cate-
gories. The plans for these query categories are hard-
wired into the system, and thus they are very e�cient.

5 Implementation and Tests

The system was tested on the red sign layer and the
composite of the GT3 map of Finland. This map is one
of a series of 19 GT maps that cover the whole area
of Finland. The red sign layer contains geographic
symbols that mostly denote tourist sites. The map
layer was scanned at 240dpi. The layer was split into
425 tiles of size 512 � 512. The map composite was
scanned at 160dpi. The layer was split into 551 tiles
of size 256 � 256. The composites were scanned at a
lower resolution in order to reduce the space required
to store these tiles.

The initial training set was created by using one
example symbol of each class as taken from the leg-
end of the map. There were 22 classes in the map.
The tiles were input in random order to the map im-
age database via the map interpretation system out-
lined in Section 2. The �rst 50 tiles were processed
in user veri�cation mode. At that point, the training
set contained 100 instances of symbols and the cur-
rent recognition rate was determined su�cient. The
remaining tiles were processed automatically. The re-
sults of this conversion (i.e., the logical tiles) were in-
put to SAND and inserted into the log mi relations as
de�ned in Section 3. The physical layer and composite
tiles were also input to SAND and inserted into the
phys mi relation. The GUI and the plans for the �ve
query categories were implemented using Tcl (short
for Tool Command Language), and Tk, a toolkit for
the X window system [3].

5.1 An Example Query Execution

The following scenario describes how the example
query, \display all layer and composite tiles that con-
tain a beach within 5 miles of a hotel", is speci�ed
using the GUI and how the results are presented. Fig-
ure 3 shows the GUI for initiating a query. It consists
of a button for each query category and an icon for
each of the symbol classes. The icon is composed of the
bitmap and seman �elds of the tuples in the classes
relation. To perform a \one within" query, the user
�rst selects the icons of the two required classes fol-

Figure 3: Graphical User Interface for query

initiation. User has selected a \One Within

Query" between a \hotel" and a \beach".

Figure 4: Results of query computation. The

user has selected to display the layer tiles of

the �rst three results.

lowed by pressing the \symbol1 Within x of symbol2"
button. The user is then prompted for the required
distance. Once the user enters the required distance,
the result of the query is computed using the plan that
was outlined in Section 4. The result of this query is
displayed in a window as seen in Figure 4. A thumb-
nail (i.e., a reduced bitmap of the whole tile) is dis-
played for each layer tile that was found that meets
the query speci�cation. The result tiles are displayed
in decreasing order of the certainty of the response.
The user may now display any of the result tiles by
selecting the corresponding thumbnails. A square is
drawn around the two symbols that were given to the
query. The user may also choose to display the cor-
responding composite tile. In addition, the user may
choose to display the non-tiled map with the query
result tiles highlighted.



Proc. of the 3rd Intl. Conf. on Document Analysis and Recognition, Montreal, Canada, August 1995. 5

5.2 Evaluating the System

We have identi�ed two error types in order to eval-
uate the system in terms of accuracy.

Type I A tile that meets the query speci�cation was
not retrieved by the system (a miss).

Type II A tile that the system retrieved for a given
query does not meet the query speci�cation (a
false hit).

Type II errors are counted by visual inspection of
the result tiles. Each result tile that does not meet
the query speci�cation, is counted as a Type II error.
We performed a \contain query" for each of the sym-
bols in our application. 92% of the result tiles did in
fact contain the desired symbol (a Type II error rate
of 8%). Furthermore, 98% of those result with a cer-
tainty value over 0.5 contained the required symbol.

In order to count the Type I errors we need to vi-
sually inspect the physical map tiles (in contrast to
just looking at the result tiles as we did for Type II
errors) or the paper map and look for all required re-
sults in order to determine whether any result tiles
were missed (since we do not have ground truth for
this data set). We did this for 50 tiles (out of the 425
tiles) chosen at random and for each one of the sym-
bols. 94% of the tiles that should have been retrieved
were in fact retrieved by the system. Thus we have a
6% type I error rate.

6 Concluding Remarks

Although our system was designed for maps it
can easily be adapted to many other types of docu-
ments that are of a symbolic nature. These include
CAD/CAM documents, engineering drawings, 
oor
plans, etc.. Note that we have used a similar system
for the interpretation of 
oor plans [5]. The results of
this interpretation could be incorporated into a sim-
ilar image database management system. The main
di�erence would be in the graphical query interface
that would need to be adapted to query categories
suitable for such a 
oor plan application.

In our system, the automatic indexing of map com-
posites is done according to a map layer that contains
geographic symbols. In order to index by other layers
that contain additional types of symbolic information
such as roads, bodies of water, etc., other methods
that are suitable for interpreting this kind of sym-
bolic information need to be developed. The results

of such an interpretation can then be integrated into
the map image database system using spatial index-
ing methods that are suitable for corresponding data
types such as lines, polygons, etc. This would enable
the system to provide a comprehensive tool to utilize
the vast amount of data that is found in paper maps.

7 Acknowledgements

We are grateful to Karttakeskus, Map Center,
Helsinki, Finland for providing us the map data.

References

[1] W. G. Aref and H. Samet. Optimization strategies
for spatial query processing. In G. Lohman, editor,
Proceedings of the Seventeenth International Con-

ference on Very Large Data Bases, pages 81{90,
Barcelona, September 1991.

[2] R. C. Nelson and H. Samet. A consistent hierar-
chical representation for vector data. Computer

Graphics, 20(4):197{206, August 1986. also Pro-

ceedings of the SIGGRAPH'86 Conference, Dallas,
August 1986.

[3] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, Reading, MA, April 1994.

[4] D. J. Peuquet. An examination of techniques
for reformatting cartographic data part 1: The
raster-to-vector process. Cartographica, 18(1):34{
48, January 1981.

[5] H. Samet and A. So�er. Automatic interpretation
of 
oor plans using spatial indexing. In S. Impe-
dovo, editor, Progress in Image Analysis and Pro-

cessing III, pages 233{240. World Scienti�c, Sin-
gapore, 1994.

[6] H. Samet and A. So�er. Integratiing images into a
relational database system. Technical Report CS-
TR-3371, University of Maryland, College Park,
MD, October 1994.

[7] H. Samet and A. So�er. A legend-driven geo-
graphic symbol recognition system. In Proceedings

of the 12th International Conference on Pattern

Recognition, volume II, pages 350{355, Jerusalem,
Israel, October 1994.

[8] S. Suzuki and T. Yamada. MARIS: Map recogni-
tion input system. Pattern Recognition, 23(8):919{
933, August 1990.


