
A Distributed Quadtree Index for Peer-to-Peer Settings∗

Egemen Tanin† Aaron Harwood† Hanan Samet‡
†Department of Computer Science and Software Engineering, University of Melbourne

‡Department of Computer Science, University of Maryland at College Park
(www.cs.mu.oz.au/p2p)

1 Distributed Quadtree-based Hashing

For a Peer-to-Peer (P2P) application to provide the func-
tionality readily available on client-server systems, it must
be capable of facilitating spatial queries such as “selecting
all real-estate ads for properties in a given region in a city”,
e.g., in a P2P auction network. We introduce a P2P quadtree
index to support such accesses. It is based on the Chord
method [3]. Methods such as Chord have been gaining us-
age in P2P settings to facilitate exact-match queries. The
Chord method maps both the data keys and peer addresses
to a common set of virtual locations using a hash function
(e.g., SHA-1). In Chord, each peer maintains a table of
other peer addresses. Each entry in the table represents an
interval that is double the interval size of the previous entry
in a circular name space starting from the position of the
peer in this space. Each interval is associated with a loca-
tion to which a peer is already mapped. Given a file name,
the tables can then be used to traverse the network and to
find data files. In general, given n peers, it can be proven
that, with a high probability, a request to locate a file will be
forwarded O(log n) times.

Mondal et. al [2] describe preliminary results on in-
dexing spatial data using R-trees and queries on this data
for P2P networks, while we are using a quadtree variant.
Ganesan et. al [1] describe two approaches to handle range
queries on point data that can also be applied to other spa-
tial data sets. First, they use space-filling curves to reduce
multi-dimensional data into one dimension and then utilize
skip-graphs for range queries. Second, they introduce a P2P
version of a kd-tree.

A spatial query can be efficiently executed by recursively
subdividing the space into four congruent regions, i.e., find-
ing the result using some variant of a quadtree. With our
distributed quadtree index we assign responsibilities for re-
gions of space to the peers. If a peer is responsible for a re-
gion of space, then it is responsible for query computations
that intersect that region of space and for storing the objects
that are associated with that region. Each quadtree block
can be uniquely identified by its centroid. We call this cen-
troid a control point. These control points are hashed using

∗The support of the National Science Foundation under Grants EIA-
99-00268, IIS-00-86162, and EIA-00-91474, and Microsoft Research is
gratefully acknowledged.

the Chord method so that the responsibility for a quadtree
block is associated with a peer. For example, the result of
hash function H(“(5, 2)”) is used as the location of the con-
trol point (5, 2) on the Chord. The control points can be
determined using the globally known quadtree subdivision
method to recursively subdivide the space. Given a control
point, there is a unique mapping to a quadtree block. With
a good base hash function, we can achieve a uniformly ran-
dom mapping of the quadtree blocks to the peers.

A query starts at the root of the quadtree and is propa-
gated down through the branches of the tree, testing for the
intersection with objects as it proceeds. For a P2P system,
the tree traversal becomes a set of peer visits. The query
is transmitted from a parent block of a quadtree, i.e., from
the peer to which the control point maps to the child blocks,
i.e., to the peers that store the child blocks, by utilizing the
Chord P2P lookup method. Note that there is a single point
of failure that occurs had all tree operations are started at the
peer that stores the root control point. On the other hand, as
we have a distributed structure, there is no reason for us to
start all the operations from the root of the tree. There-
fore, we introduce the concept of the fundamental mini-
mum level, fmin. This modification forces objects to be
stored and query processing to start at a level l ≥ fmin.
Hence, no objects can be stored at levels 0 ≤ l < fmin

for our trees. The objects are subdivided into parts and then
stored at lower levels. The concept of fmin also avoids any
potential overloading of peers that would have otherwise
stored control points at a level less than fmin. We also use
fmax as the fundamental maximum level which allows us
to prevent objects from falling deeper than a level that is
greater than fmax. Values for fmax and fmin are constant,
globally known, and can be chosen per application. With
fmin = 0 our structure reverts to the standard quadtree, but
a distributed version of it. With fmin = fmax, our struc-
ture degenerates to a distributed grid in which case, the tree
structure has been collapsed into a single level. Operations
on our index are decentralized and queries are delegated to
child-blocks using the Chord method. Chord usually takes
O(log n) messages to reach a destination (n is the number
of peers in the system). Since each node of our distributed
tree has a fixed number of children, we allow each node to
maintain a cache of addresses for its children and thereby
reduce the delegation message complexity to O(1). Our
caches need updates with incoming/outgoing peers and we



make our updates when a cache miss occurs.

2 Experimental Results

Our simulation environment used the ns-2 package, an
advanced network simulator, in tandem with the GT-ITM
package. Our peers were placed randomly on the nodes of
a generated transit-stub topology. We created a P2P real-
estate application for the Internet. Users were assumed to
be making area selections from a map to search for houses
or land for sale or rent. Extra data was associated with each
spatial object, e.g., a picture and/or a set of descriptive at-
tributes of the house/land for sale. This was made available
from the original peer that inserted this spatial object to the
system. For our experiments, we submitted a given number
of queries, arriving as a flash crowd, to the system.

We first looked at how our index scales with the increas-
ing number of queries and with respect to a standard client-
server system. There were 1000 peers in the network host-
ing 1000 spatial objects and the data attached to these ob-
jects were assumed to be 100 KBytes. The fmin value was
3 and the fmax value was 10. Our cache is assumed to have
no misses for this experiment. As an obvious result, our dis-
tributed quadtree index shows almost no degradation with
the increasing number of queries. The only time that the
P2P system has a larger cost was when there were very few
(i.e., 10) queries in the system, as it is much easier to go to
a single server (that is not congested) to obtain some data.
Once the number of queries reached 20, the client-server
started to perform poorly. For more than 300 queries, there
is an order of magnitude difference between the central and
the distributed index. The time needed to download a large
number of hits determines the performance when we have a
large number of queries.

We also wanted to find how our index scales as the num-
ber of peers in the system increases. The number of queries
is fixed at 100 for this experiment. The number of objects is
3000. The remaining experiment parameters have the same
values as in the first experiment. We used miss ratios of
0 and 5 percent and repeated the experiment twice. We
saw almost no change when the number of peers increased
from 1000 to 3000. Basically, due to caching, the number
of peers loses most of its relevance for the distributed tree,
except during the query initiatization period (i.e., finding
the peers at level fmin). We also observed that for the case
where the miss ratio is 5 percent, there is almost no signifi-
cant change in the behavior of the index.

Our most interesting experiment was the load-balance
experiment. This experiment observed the relationship be-
tween fmin and the load-balance in the system and, more
importantly, the overall distribution of load using our index
over peers (Fig. 1). The number of queries was fixed at 100
for this experiment (the remaining experiment parameters
have the same values as the first experiment). We can see
that about 99 percent of all peers process between 0 to 60
messages regardless of the value of fmin. With increas-
ing values of fmin, we see a gradual improvement in load-
balance. For example, there are approximately 807 peers for
fmin = 3 that share the load of up to 30 messages, while

0.8 0.2 0 0.6 0.4 00.2 0 0 0 0 0

778.6

155.8

6.6

52.4

4.6

130.2

54.6

7.6 0.2 0 0 0 00 0

807.4

0.4

807.6

104

81.6

6.2
0

100

200

300

400

500

600

700

800

900

0 30 60 90 120 150 180 210 240 270 300

Number of Messages

Number of Peers

FMin = 0
FMin = 3
FMin = 5

Figure 1. Load-balance for three fmin values.

there are 779 peers for fmin = 0. But, more importantly,
the possibility to observe a few peers with a drastically high
number of messages diminishes. For example, we can see
that for fmin = 0 there is a possibility for observing a peer
with more than 240 messages as the graph has the value of
0.4. On the other hand, for fmin = 5 or fmin = 3 there is
not even a single run with a peer that handles more than 150
messages, and even the probability of this occurring is very
small (for up to 150 messages we see 0.2 on the graph). It
is important to note that with fmin = 5 we see an increase
in the number of peers that handle more than 30 messages,
many of which are redundant messages as the tree starts to
lose its pruning capability since it approaches to a grid.

In summary, we have described a distributed quadtree in-
dex for enabling more powerful accesses on complex data
over P2P networks. Our work can be applied to higher di-
mensions, to various data types, i.e., other than spatial data,
and to different types of quadtrees. Finally, we can use
other key-based methods than the Chord method as our base
P2P routing protocol. Our algorithms and index scale well.
The index also benefits from the underlying fault-tolerant
hashing-based methods by achieving a nice load distribu-
tion among many peers. We can seamlessly execute a sin-
gle query on multiple branches of the index hosted by a dy-
namic set of peers.

References

[1] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule
them all: Multidimensional queries in P2P systems. In Pro-
ceedings of the ACM SIGMOD’04, WebDB Workshop, pages
19–24, Paris, France, June 2004.

[2] A. Mondal, Yilifu, and M. Kitsuregawa. P2PR-tree: An
R-tree-based spatial index for peer-to-peer environments. In
Proceedings of the International Workshop on Peer-to-Peer
Computing and Databases (held in conjunction with EDBT),
Heraklion-Crete, Greece, March 2004.

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proceedings of the ACM SIG-
COMM’01, pages 149–160, San Diego, CA, August 2001.


