
DATA-PARALLEL R-TREE ALGORITHMS*

Erik G. Hoely

Geography Division

Bureau of the Census

Washington, D.C. 20233

Hanan Samet

Computer Science Department

Center for Automation Research

Institute for Advanced Computer Sciences

University of Maryland

College Park, Maryland 20742

Abstract { Data-parallel algorithms for R-trees, a com-
mon spatial data structure are presented, in the domain
of planar line segment data (e.g., Bureau of the Cen-
sus TIGER/Line �les). Parallel algorithms for both
building the data-parallel R-tree, as well as determin-
ing the closed polygons formed by the line segments, are
described and implemented using the SAM (Scan-And-
Monotonic-mapping) model of parallel computation on
the hypercube architecture of the Connection Machine.

INTRODUCTION

The SAM (Scan-And-Monotonic-mapping) model of
parallel computation [1] may be de�ned by one or
more linearly ordered sets of processors which allow
element-wise and scan-wise operations to be performed.
A scan operation [2] takes an associative operatorL

, a vector [a0; a1; : : : ; an�1], and returns the vector
[a0; (a0

L
a1); : : : ; (a0

L
a1

L
: : :

L
an�1)]. Both within

and between each linearly ordered set of processors,
monotonic mappings may also be performed. Being a
subset of the scan-model [2], the SAM model consid-
ers scan operations as taking unit time, thus allowing
sorting operations to be performed in O(logn).
The R-tree [3] is a data structure for representing spa-

tial data based upon spatial occupancy. Such methods
decompose the space from which the data is drawn into
regions called buckets. The R-tree buckets the data on
the basis of minimal bounding rectangles (in the 2-d
case). Objects are then grouped into hierarchies, and
then stored in another structure such as a B-tree.
The R-tree's drawback is that it does not result in a

disjoint decomposition of space. An object is associated
with a single bounding rectangle, but the area spanned
by the rectangle may be included in several other bound-
ing rectangles. To determine which object is associated
with a particular point in a 2-d space, we may have to
search the entire database in the degenerate case. Al-
ternatives such as the R+-tree and the PMR quadtree
[4] which decompose the space into disjoint cells which
are then mapped into buckets are not described here.
This paper is organized as follows; First, we present

the data-parallel R-tree and give an R-tree building al-
gorithm. Next, we describe the parallel implementation
of a polygonization.

*This work was supported in part by the National Science
Foundation under Grant IRI-90-17393.

yAlso with the Center for Automation Research at the Univer-

sity of Maryland.

PARALLEL R-TREES

We limit ourselves to objects which are line segments
although our techniques are applicable to other objects
as well. Standard sequential R-trees are constructed in a
manner whereby all leaf nodes appear at the same level
in the tree. Each entry in a leaf node is a 2-tuple of the
form (R;O) so that R is the smallest rectangle enclos-
ing line segment O (where O points to the actual line
segment). Each entry in a directory (non-leaf) node is a
2-tuple of the form (R;P), where R is the minimal rect-
angle enclosing the rectangles in the child node pointed
at by P . An R-tree of order (m;M) means that each
node in the tree, with the exception of the root, contains
between m � dM=2e and M entries. The root node has
at least two entries unless it itself is a leaf node.

R3R1

R4

R5

R6R2

R1 R2

R3 R4 R5 R6

a b c i e fg hd

a b

c

d
e

f

g h

i

Figure 1: Example order (1,3) R-tree.

R-trees are built in the same way as B-trees. Line seg-
ments are inserted into leaf nodes. The appropriate leaf
node is determined in a top-down fashion by traversing
the R-tree starting at its root and at each step choos-
ing the subtree whose corresponding bounding rectangle
will have to be enlarged the least by the addition of line
segment x. Once a leaf node is determined, a check is
made to see if the insertion of x will cause the leaf node
to over
ow. If the leaf node is over
owing, it is then
split and the M + 1 2-tuples are redistributed among
the two resulting nodes. Splits may propagate up the
R-tree. Note that the tree's �nal shape depends on the
insertion order of the line segments. In the data parallel
environment, all line segments are inserted at the same
time, and thus the �nal shape of the parallel R-tree will
likely not be the same as its sequential one.
The parallel R-tree building algorithm proceeds as

follows. Initially, one processor is assigned to each line
of the data set, and one processor to the resultant R-
tree (e.g., Fig. 2). Assume an order (1; 3) R-tree. In
the �gure, label A denotes the line processor set, C0

denotes the R-tree node processor set, with the associ-
ated square region containing the line processor identi-
�er for the corresponding line segment group (i.e., the

49

Proceedings of the 22nd International Conference on Parallel Processing (ICPP'93) 50

line processor segment group starting at processor 0 in
A), Within set A, the square regions contain the line
identi�ers and indicate which processor is associated
with which line. Each of the line processors is asso-
ciated with the single R-tree node processor. A down-
ward scan operation (i.e., a scan which returns the vec-
tor [(a0

L
a1

L
: : :

L
an�1); (a1

L
a2

L
: : :

L
an�1); : : : ;

an�1]) is performed on the line processor set to de-
termine the number of lines associated with the single
R-tree processor (shown in Fig. 2 as the count �eld be-
neath the line processor set). The number of lines in
the segment (a collection of line processors associated
with a single R-tree node processor) is then passed to
the single R-tree node processor. If the number of lines
in the segment exceeds M , then split the R-tree root
node into two leaf nodes and a root node (as is also
done for the sequential R-tree). The two new leaf nodes
are inserted into the R-tree processor set, with the for-
mer root node/processor updated to re
ect the two new
children.

a b

c
d

e

f

g
h

i
A

C0

processor #: 0 1 2 3 4 5 6 7 8
 count: 9 8 7 6 5 4 3 2 1

0

a b c d e f g h i

Figure 2: Initial processor assignments.

We use a node splitting algorithm that �rst sorts
all lines in the segment according to the left edge
of their bounding boxes. A parallel upward scan
operation (i.e., a scan which returns the vector
[a0; (a0

L
a1); : : : ; (a0

L
a1

L
: : :

L
an�1)]), is used to de-

termine the extents of the bounding box formed by all
lines preceding a line in the sorted segment. Similarly,
a downward scan determines the bounding box for all
following lines in the segment. For all legal splits (i.e.,
where each of the two resulting nodes receives at least
m=M of the lines being redistributed), the amount of
bounding box overlap is calculated, with the split cor-
responding to the minimal amount of overlap being se-
lected as the x-axis candidate. An analogous proce-
dure is employed for the y-axis in obtaining the y-axis
candidate split coordinate value. Next, we choose the
candidate split coordinate value corresponding to the
minimal bounding box overlap. In case of a tie, use an-
other metric such as the split with the minimal bound-
ing box perimeter lengths. The complexity is O(logn)
at each stage of the building operation as we employ
two O(logn) sorts and a constant number of scan oper-
ations.

Once the splitting axis and the coordinate value are
chosen, an un-shu�e operation [1] (where two inter-
mixed types are rearranged into two disjoint groups via
two monotonic mappings) is used to concentrate those
line processors together into two new segments, each of
which corresponds to one of the two R-tree leaf node
processors (Fig. 3). For example, all lines with a mid-

point less than the split coordinate value are monoton-
ically shifted toward the left, while those which are

a b

c
d

e

f

g
h

i

A

C0

a b c d e f g h i

0

Figure 3: Un-shu�e operation.

greater than the split coordinate value are monotoni-
cally shifted toward the right among the line processors.
Note that the root node of the R-tree is now associ-
ated with two segments in the line processor set A (i.e.,
(a; b; e; h) and (c; d; f; g; i)), and must itself be subdi-
vided in an analogous manner. Fig. 4 shows the result
which consists of two segments in the line processor set
A, and two di�erent R-tree processor sets C0 and C1

(each set corresponding to a node at a di�erent height
in the R-tree).

0 4

a b

c
d

e

f

g

h

i

A

C1

C0

a b e h c d f g i

0

Figure 4: Completion of root node split operation.

The insertion algorithm proceeds iteratively as be-
fore, with each segment determining the number of lines
it contains, and transmitting the count to the associ-
ated R-tree processor. If the number of lines in the
segment is greater than M , then the segment (and cor-
responding R-tree node processor) are forced to subdi-
vide (i.e., split). Note that this subdivision process may
result in processors that correspond to internal nodes in
the R-tree splitting themselves (with these splits possi-
bly propagating up the R-tree). The building process
terminates when all nodes in the R-tree processor set
have at mostM child processors. The R-tree root node
corresponds to the single processor in set C2, the leaf
nodes are contained in processor set C0, and all lines
area grouped in segments of length � 3 in processor set
A (recall that our R-tree is order (1; 3)).

a h b e d g c f i

0

0 2

0 2 4 6

a b

c
d

e

f

g

h

i

A

C0

C1

C2

Figure 5: Completion of the R-tree building operation.

The data-parallel R-tree building operation is

Proceedings of the 22nd International Conference on Parallel Processing (ICPP'93) 51

O(log2 n). Each of the O(logn) stages is O(logn) (a
constant number of scans and two bounding box sorts).

POLYGONIZATION

Polygonization is the process of determining all closed
polygons formed by a collection of planar line segments.
We identify each polygon uniquely by the bordering line
with the lexicographically minimum identi�er (i.e., line
number) and the side on which the polygon borders the
line. Polygonization can be done without a data-parallel
R-tree. Basically, the lines could be sorted based upon
their identi�er in O(logn) time, then each line in sorted
sequence would transmit its endpoint coordinates, line
identi�er, and current left and right polygon identi�ers
to all following lines via a sequence of O(n) scan op-
erations. Each line can independently determine the
identi�ers of the left and right polygons. The drawback
is that it is an O(n) operation with a large amount of
scans. The R-tree decomposition can reduce the amount
of global scan operations (i.e., a scan across the entire
processor set) by instead relying upon segmented scans
executed in parallel, thus speeding the computation.
Given a data-parallel R-tree, start by constructing a

partial winged-edge representation (see, e.g., [4]) (an as-
sociation between the incident line segments forming the
minimal and maximal angles at each endpoint of each
segment). This representation enables us to determine
all edges that comprise a face (i.e., polygon) and all
edges that meet at a vertex in time proportional to the
number of edges. It consists of face, vertex, and edge
tables. The face table has an entry for each face which
is one of the face's constituent edges. The vertex table
has an entry for each vertex which is one of the edges
that meets at the vertex. The edge table has an entry
for each edge which consists of the two vertices de�ning
the edge, the two adjacent faces, and the preceding and
following edges for each of these faces.
We implicitly construct the entire data structure al-

though our example only illustrates how we determine
the adjacent faces of each edge. We proceed by broad-
casting the endpoints of each line in a segment group to
all other lines in the segment group through a series of
scans. By broadcast we mean the process of transmit-
ting a constant value from a single processor to all other
processors in the same segment group via a scan opera-
tion (i.e., the vector [a0; a0; : : : ; a0]). Locally, each line
processor maintains the minimal and maximal angles
formed at each endpoint as well as the identities of the
corresponding lines. Once the broadcasts are done, each
line processor locally assigns an initial polygon identi-
�er for the bordering polygon on the left and right side
(moving from source to destination endpoint).
In Fig. 6, the left polygon identi�er for line segment

z is selected from the minimum identi�ers of the source
endpoint minimal angle (wR, where w is the line identi-
�er and R denotes the right side of w), the destination
endpoint maximal angle (yR), and the line identi�er it-
self (zL). Similarly, for the right side polygon identi-
�er, the minimum identi�er among the source endpoint

maximumangle (xR), the destination endpoint minimal
angle (vR), and the line identi�er (zR) is selected.

min

max
max

min

z
w

x

y

v

Figure 6: Selecting the initial polygon identi�ers.

In Fig. 6, line z is assigned wR as the initial left polygon
identi�er, and vR as the right polygon identi�er. Fig. 7
shows the initial polygon assignment for our example
where the left and right polygon identi�ers are contained
in processor sets LID and RID, respectively. Since we
are restricted to considering only lines that share the
same R-tree node (e.g., in Fig. 5 in line processor set
A, lines a; h compose the �rst segment group; lines b; e
the second segment group; lines d; g the third segment
group; and lines c; f; i the �nal segment group) when
constructing the initial winged-edge representation, line
i in Fig. 7 is assigned identi�ers cL and cR rather than
bR and cR as would be the case had line b also shared
the same R-tree node.

0 2

0 2 4 6

a b

c
d

e

f

g

h

i

A a h b e d g c f i
aL aR bL bR dL dL cL cR cL

aR aL bR bL dR dR cR cL cR

C0

C1

C2

LID

RID

0

Figure 7: Initial polygon assignments.

Next, starting at the leaf level, merge all sibling lines
together into the parent nodes. Mark all lines that in-
tersect any of the overlapping regions formed by the
bounding boxes of the nodes that have been merged for
rebroadcasting among the lines in the merged nodes.
This enables propagating the equivalence between the
di�erent identi�ers in the merged nodes representing
the same polygon (e.g., Fig. 8a where two R-tree nodes
A and B are to be merged). In Fig. 8, A contains lines
(a; c; g; h), and B contains lines (b; d; e; f). Lines (a; b; d)
must be rebroadcast to the merged set of lines (i.e., lines
(a; b; c; d; e; f; g; h)) as they intersect the overlapping re-
gion formed by the bounding boxes of A and B. This
operation updates the winged-edge representations of
any necessary lines (i.e., lines a and b in Fig. 8a). Dur-
ing the update, we note any polygon identi�ers that
must also be updated (e.g., line b has both its left and
right polygon identi�ers updated; bL in Fig. 8a becomes
aL in Fig. 8b, and similarly, bR becomes aR). Neither
of line a's polygon identi�ers are updated because they
are lexicographically minimal.
Broadcast the updates to all other lines in the merged

node via scan operations (e.g., bL to aL and bR to aR
in Fig. 8). Locally, if the transmitted polygon update
matches either the left or right polygon identi�ers of
the local line, the local polygon identi�er is updated

Proceedings of the 22nd International Conference on Parallel Processing (ICPP'93) 52

to re
ect the polygon identi�ers that have been broad-
cast. In Fig. 8a, the right polygon identi�er of line e
is updated to show that polygon identi�er bR becomes
aR. Similarly, the left side polygon identi�ers of lines d
and f are updated to show that polygon identi�ers bL
becomes aL. Fig. 8b shows the resulting polygon iden-
ti�ers and merged nodes. Continue the process up the
entire R-tree until all lines are contained in a single node
and all necessary broadcasts have been made. Fig. 9 is
the �nal con�guration of our example. The identi�ers
assigned to the three polygons are circled in the �gure.

a
g

c

h eb

f
d

aL

aL

aL

aR

aR

aR
cL

cL

bL

bR

bL

bL

bR

dR

dR

dR

A
B

(a) (b)

a
g

c

h eb

f
d

aL

aL

aL

aR

aR

aR
cR

cR

aL

aR

aL

aL

aR

dR

dR

dR

Figure 8: (a) Example of two nodes merging; and (b), the
result of the merge operation.

The R-tree's spatial sort greatly limits the amount
of inter-segment communication necessary as compared
with a non-spatially sorted dataset where all lines would
have to communicate their endpoints and polygon iden-
ti�ers to all others. However, the non-disjoint decompo-
sition of the R-tree causes more work in the local broad-
casting phase of the sibling merge operation in compari-
son to an analogous disjoint decomposition spatial data
structure such as the PMR quadtree and the R+-tree
[4] because often many lines fall in the intersecting ar-
eas when the R-tree nodes are merged. Representations
based on a disjoint decomposition of space mean that
only those lines intersecting the splitting lines would
need to be locally broadcast during the sibling merge
operation.

a h b e d g c f i
aL aR aL cR aR aR aL cR aR

aR aL aR aL aL aL cR aL cR

0

a b

c
d

e

f

g
h

i

C2

A
LID

RID

cR

aR

aL

Figure 9: Completion of the polygonization operation.

Now, let us estimate the number of broadcasts neces-
sary during the polygon identi�cation process due to the
lines intersecting overlapping regions. Assume that each
R-tree node has an average fanout of M . Let c (where
0 � c � 1) be the fraction of the lines in each node inter-
secting one or more of the overlapping regions formed
by bounding boxes of nodes that have been merged.
Let h be the height of the R-tree (without loss of gen-
erality, h = logM n, n = number of lines in the tree).

As Mh = n, it can be shown that the number of local
broadcasts B that must be made during merging phases
due to the intersection of lines with overlapping regions

is B =
P

h

i=2
cM i � n(M=(M � 1)), which is O(n).

bucket build polygonization
size time scans time scans
25 105.6 1607 1042.1 92795
35 86.6 1315 997.7 81124
45 76.0 1147 1047.5 92496
55 73.0 1107 1046.6 92149
65 65.5 980 1741.8 115152
75 62.9 940 1695.9 111443
85 60.1 898 1479.4 104366
95 59.9 898 1625.6 108281

Table 1: Performance statistics for Montgomery Co., MD.

However, on the average it is expected to be lower. In
particular, the average complexity of the line broadcast-
ing step depends on the ability of the node splitting
algorithm to partition the buckets as much as possi-
ble (thereby lowering the fraction c of lines intersecting
overlapping regions).

CONCLUDING REMARKS

The data-parallel R-tree construction algorithm has
been implemented on a Thinking Machines CM-2 with
16K processors and benchmarked against a sequential
implementation on a Sun SPARCStation 1+. Data-
parallel R-trees were observed to be approximately 10�
faster during the build operation than their sequen-
tial counterparts for large datasets (i.e., 250K line seg-
ments). Table 1 shows some of the results for the Mont-
gomery County, MD dataset (90K line segments). Note
that build times decrease with increasing bucket sizes;
this is due to larger buckets requiring fewer subdivi-
sions, and consequently fewer scan and sorting oper-
ations. Polygonization times behave di�erently, with
larger bucket sizes implying that more buckets are being
merged at each level. This results in more lines present
in the intersecting bucket regions, thereby causing in-
creased numbers of line rebroadcasts and winged-edge
updates.

REFERENCES

[1] T. Bestul, Parallel Paradigms and Practices for
Spatial Data, Comp. Sci. Dept., Univ. of Mary-
land, Ph.D. diss., CS-TR-2897, College Park, MD,
1992.

[2] G. E. Blelloch and J. J. Little, \Parallel Solutions
to Geometric Problems on the Scan Model of Com-
putation", Proc. of the 17th Intl. Conf. on Parallel
Processing, 1988, St. Charles, IL, 218{222.

[3] A. Guttman, \R-trees: A Dynamic Index Struc-
ture for Spatial Searching", Proceedings of the SIG-
MOD Conference, June 1984, San Diego, 47{57.

[4] H. Samet, The Design and Analysis of Spatial
Data Structures, Addison-Wesley, Reading, MA,
1990.

