
Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 1

DATA-PARALLEL SPATIAL JOIN ALGORITHMS�

Erik G. Hoely

Geography Division

Bureau of the Census

Washington, D.C. 20233

Hanan Samet

Computer Science Department

Center for Automation Research

Institute for Advanced Computer Sciences

University of Maryland

College Park, Maryland 20742

Abstract { E�cient data-parallel spatial join algorithms
for pmr quadtrees and R-trees, common spatial data
structures, are presented. The domain consists of pla-
nar line segment data (i.e., Bureau of the Census
TIGER/Line �les). Parallel algorithms for map inter-
section and a spatial range query are described. The
algorithms are implemented using the SAM (Scan-And-
Monotonic-mapping) model of parallel computation on
the hypercube architecture of the Connection Machine.

INTRODUCTION

The spatial join is one of the most common opera-
tions in spatial databases. This term is usually used
in conjunction with a relational database management
system [9]. In that context, a join is said to combine
entities from two data sets into a single set for every
pair of elements in the two sets that satisfy a particular
condition. Traditionally, these conditions involve speci-
�ed attributes that are common to the two sets. In the
spatial variant of the join, the condition is usually inter-
preted as being satis�ed (i.e., two elements are joined)
when the elements of the pair cover some part of the
space that is identical.
In this paper we compare the parallel implementa-

tion of a couple of variants of spatial join for databases
consisting of collections of line segments that are orga-
nized using hierarchical spatial data structures. These
collections correspond to maps. The �rst variant is a
simple intersection operation which seeks to �nd all line
segments of a given type that intersect line segments of
another type. The second variant is a bit more com-
plex. It seeks to �nd all line segments that lie within
a given distance of line segments of another type. This
is a spatial range query. It is also known as a corridor
or a bu�er zone in GIS [22], or image dilation in image
processing [19]. For example, suppose that we have one
map corresponding to the roads in the United States
and another map corresponding to the border of Col-
orado. An instance of the �rst spatial join is a query
that seeks to determine all roads that cross the border of
Colorado, while an instance of the second spatial join is
a query that seeks to determine all roads that lie within
10 miles of the border of Colorado.
We assume that the line segments are represented us-

ing hierarchical spatial data structures [20, 21]. In this

�This work was supported in part by the National Science
Foundation under Grant IRI-90-17393.

yAlso with the Center for Automation Research at the Univer-
sity of Maryland.

paper we focus on representations that sort the data
with respect to the space that it occupies. This results
in speeding up operations involving search. The e�ect of
the sort is to decompose the space from which the data
is drawn (e.g., the two-dimensional space containing the
lines) into regions called buckets. One approach known
as an R-tree [13] buckets the data based on the concept
of a minimumbounding (or enclosing) rectangle. In this
case, lines are grouped (hopefully by proximity) into hi-
erarchies, and then stored in another structure such as
a b-tree [8]. The drawback of the R-tree is that it does
not result in a disjoint decomposition of space | that
is, the bounding rectangles corresponding to di�erent
lines may overlap. Equivalently, a line may be spatially
contained in several bounding rectangles, yet it is only
associated with one bounding rectangle. This means
that a spatial query may often require several bounding
rectangles to be checked before ascertaining the pres-
ence or absence of a particular line.

The second approach is based on a decomposition of
space into disjoint cells. Each line is decomposed into
disjoint sublines such that each of the sublines is as-
sociated with a di�erent cell. There are a number of
variants of this approach. They di�er in the degree of
regularity imposed by their underlying decomposition
rules and by the way in which the cells are aggregated.
The price paid for the disjointness is that in order to de-
termine the area covered by a particular line, we have
to retrieve all the cells that it occupies. The approach
that we study here is known as a PMR quadtree [17].
It is based on recursively decomposing the space into
four equal area blocks on the basis of the number of
lines that it contains. The decomposition process can
be implemented by a tree structure.

We use the SAM (Scan-And-Monotonic-mapping)
model of parallel computation [3]. It is de�ned by one
or more linearly ordered sets of processors which allow
element-wise and scan-wise operations to be performed.
A scan operation [4, 16] takes an associative opera-
tor
L

, a vector [a0; a1; � � � ; an�1], and returns the vec-
tor [a0; (a0

L
a1); � � � ; (a0

L
a1
L

� � �
L

an�1)]. Both
within and between each linearly ordered set of pro-
cessors, monotonic mappings may also be performed.
A monotonic mapping is de�ned as a mapping between
two linearly ordered processor sets where the destina-
tion processor indices are a monotonically increasing
function of the source processor indices. Being a subset
of the scan-model [5], the SAM model considers scan
operations as taking unit time, thus allowing sorting

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 2

operations to be performed in O(logn).
There are a number of possible ways to implement

the spatial join operations. In order to compare the two
representations we try to implement comparable algo-
rithms. We have chosen a bottom-up approach as we are
working with data parallel algorithms which are based
on assigning a processor to each object (i.e., line seg-
ment in our case). Of course, a top-down approach
[6] could also have been used; we leave this to future
work. The simplest algorithm checks every line segment
against every other line segment for intersection or sat-
isfaction of the within condition. Ideally, we would like
to take advantage of the decomposition of underlying
space from which the lines are drawn and avoid testing
lines that cannot possibly intersect. This is quite easy
when using the PMR quadtree as it provides a sort of
the underlying space and a partition into disjoint blocks.
Moreover, since it is easy to identify blocks in the two
maps that correspond to the same parts of the under-
lying space, we can avoid checking for the intersection
of lines that cannot possibly intersect. However, this is
not possible for the R-tree as the bounding rectangles
are not disjoint. In addition, the R-tree data structure
does not contain any information as to which bounding
rectangles in one map overlap with bounding rectangles
in the other map. This means that little of the search
space can be pruned while performing the operations.
The problem is that although the R-tree's main util-
ity is to enable the user to distinguish easily between
occupied and unoccupied regions in a particular map,
it does not provide a means of correlating the contents
of one map with another map. Unfortunately, this is
exactly the ability that is needed to implement spatial
join algorithms e�ciently. This places the R-tree is at
a considerable disadvantage in comparison to the PMR
quadtree.
The rest of this paper is organized as follows. Section

2 deals with the PMR quadtree. It contains a de�ni-
tion of its sequential and parallel variants as well as a
description of an algorithm for constructing the latter.
This is followed by the algorithms for the two spatial
join algorithms. Section 3 is concerned with the R-tree
and is organized in the same way as Section 2. Section
4 compares the two parallel data structures in terms of
performance data for the two spatial join algorithms on
a Thinking Machines CM-5 parallel computer. Section
5 contains concluding remarks as well as a discussion of
topics for future research.

Sequential PMR Quadtrees and R-trees

The �rst spatial data structure that we consider is
the PMR quadtree. It is a member of a family of data
structures that adaptively sort the line segments into
buckets of varying size. There is a one-to-one cor-
respondence between buckets and blocks in the two-
dimensional space from which the line segments are
drawn. There are a number of approaches to this prob-
lem [20]. They di�er by being either vertex-based or
edge-based. Their implementations make use of the

same basic data structure. All are built by applying the
same principle of repeatedly breaking up the collection
of vertices and edges (making up the polygonal map)
into groups of four blocks of equal size (termed siblings)
until obtaining a subset that is su�ciently simple so
that it can be organized by some other data structure.
The PMR quadtree [17, 18] is edge-based. It makes

use of a probabilistic splitting rule. A block is permit-
ted to contain a variable number of line segments. The
PMR quadtree is constructed by inserting the line seg-
ments one-by-one into an initially empty structure con-
sisting of one block. Each line segment is inserted into
all of the blocks that it intersects or occupies in its en-
tirety. During this process, the occupancy of each af-
fected block is checked to see if the insertion causes it to
exceed a predetermined splitting threshold. If the split-
ting threshold is exceeded, then the block is split once,
and only once, into four blocks of equal size. The ratio-
nale is to avoid splitting a node many times when there
are just a few very close lines in a block. In this manner,
we avoid pathologically bad cases. For more details, see
[17].
A line segment is deleted from a PMR quadtree by

removing it from all the blocks that it intersects or occu-
pies in its entirety. During this process, the occupancy
of the block and its siblings (the ones that were cre-
ated when its predecessor was split) is checked to see if
the deletion causes the total number of line segments in
them to be less than the predetermined splitting thresh-
old. If the splitting threshold exceeds the occupancy of
the block and its siblings, then they are merged and the
merging process is recursively reapplied to the resulting
block and its siblings. Notice the asymmetry between
the splitting and merging rules.

lines

nodes

a b c d e f g h i

1

ab

c

d

e
f

gi

h

1

Figure 1: Initial PMR quadtree processor as-
signments.

1.0

Data-Parallel PMR Quadtree

The algorithm for building a parallel PMR quadtree
proceeds as follows. Initially, a single processor is as-
signed to each line in the data set, and one processor to
the resultant PMR quadtree as depicted for the sample
data set in Figure 1. Via a downward scan operation,
the number of lines associated with the single node pro-
cessor (9 in the example) is determined and then passed
to the node processor. If the number of lines associated
with the node processor exceeds the splitting threshold
(in our example, the splitting threshold is 2), then the

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 3

node must be split into four subnodes and each of the
lines must be regrouped. according to which nodes it
intersects. The regrouping is achieved with a series of
un-shu�e operations as described in greater detail in
conjunction with the presentation of the parallel R-tree
build process in Section 3.1. Note that a line may span
two nodes, thus requiring the line to be duplicated and
hence an additional processor in the line processor set is
allocated for it (termed cloning [3]). For example, con-
sider line a in Figure 2 which intersects both the NW
and the NE nodes in the quadtree. The result of the
�rst node subdivision is shown in Figure 2.

lines

nodes

b d e a f b c g h

1 2 3 4

ii a

ab
c

d

e
f

gi

h

1 2

3 4

Figure 2: Result of the �rst node subdivision,
line duplication and un-shu�ing.

1.0
Continuing with this iterative process, each line seg-

ment group (i.e., a group of line segment processors) de-
termines the number of lines it contains, and then com-
municates the count to the associated node processor.
For example, in Figure 2, the �rst line segment group
transmits a count of three to node 1, the fourth line
segment group transmits a count of two to node 2, etc.
Each of the node processors then determines whether
or not the transmitted line count exceeds the splitting
threshold. If the splitting threshold is exceeded, the
node will subdivide and the associated lines will be re-
grouped according to which of the resulting subnodes
they intersect. If Figure 2, the NW and SE nodes will
subdivide, resulting in the situation depicted in Fig-
ure 3.

lines

nodes

d d e b e a i c g

1 2 3 4

i g hf b

ab
c

d

e
f

gi

h

5 6 7 8 9 10

a

Figure 3: Result of the second node subdivi-
sion.

1.0
This iterative subdivision process will continue un-

til all nodes in the parallel PMR quadtree have a line
count less than or equal to the splitting threshold, or
the maximal resolution of the quadtree has been reached
(i.e., a node of size 1 � 1). Note that in the degenerate
case, even at the maximal resolution of the quadtree,
it is possible that the number of lines associated with a

node exceeds the splitting threshold. For practical split-
ting thresholds (i.e., eight and above), this situation is
exceedingly rare and will not cause any algorithmic dif-
�culties provided that the quadtree algorithms do not
assume an upper bound on the number of lines associ-
ated with a given node.

lines

nodes

d d e b e a i c g

1 2 3 4

i g hf b

ab
c

d

e
f

gi

h

5 6 7 8 9 10111213

a c

Figure 4: Result of the PMR quadtree build
process.

1.0
The result of the third and �nal subdivision for our

example data set is shown in Figure 4. Note that one
of the quadtree nodes (node 9) still has its splitting
threshold exceeded. To facilitate the discussion of the
algorithms, this node will not be further subdivided.
The data-parallel PMR quadtree building operation

is of complexity O(logn), where each of the O(logn)
subdivision stages requires O(1) computations (a con-
stant number of scans and re-shu�es).

PMR Quadtree Map Intersection

In the following algorithm description, assume that
we are starting with two data-parallel PMR quadtrees;
one termed the source quadtree, and the second termed
the target quadtree. The quadtrees are of equal size
(i.e., they represent the same 2n� 2n area). The source
quadtree will contain the reference set of lines from
which to intersect against (e.g., the border of the city),
and the target quadtree contains the lines which will
be determined to intersect the objects in the source
quadtree (e.g., the roads found in the county).
1.0
Given the data-parallel source and target PMR

quadtrees, we �rst establish a correspondence between
the source and target quadtree nodes. This will fa-
cilitate the lessening of communication between the
two quadtrees when performing the actual intersection.
While establishing the source and target node corre-
spondence a third temporary set of quadtree nodes
(termed the mapping quadtree), is employed. The map-
ping quadtree is discarded following completion of the
operation.
1.0
The mapping quadtree initially consists of a single

large node, equal in physical size to the exterior dimen-
sion of the source and target quadtrees (i.e., 2n � 2n).
The single mapping node is associated with the en-
tire collection of both source and target quadtree leaf
nodes (as an example, consider the situation depicted
in Figure 5). The mapping quadtree nodes (of which

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 4

lines

nodes

lines

nodes

target quadtree

mapping quadtree

source quadtree

ab

c

d

e
f

gi

d d e b e a f b i a c c g i g h

m o n q n u m p s p s

m

n

p

o
q

r

nodes

h

s

t

u

r s u r r t

1 2 3 4 5 6 7 8 9 10111213141516

1 2 3 4 5 6 7 8 9 10111213

1

Figure 5: Example of a source and target PMR
quadtree (each with a splitting threshold of 2)
and a mapping quadtree prior to the �rst map-
ping node subdivision.

lines

nodes

lines

nodes

target quadtree

mapping quadtree

source quadtree

ab

c

d

e
f

g
i

d d e b e a f b i a c c g i g h

m o n q n u m p s p s

m

n

p

o
q

r

nodes

h

s

t

u

r s u r r t

AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA
AAAAA

lines

nodes

lines

nodes

target quadtree

mapping quadtree

source quadtree

d d e b e a f b i a c c g i g h

m o n q n u m p s p s

m

n

p

o
q

r

nodes

s

t

u

r s u r r t

AAAAA
AAAAA
AAAAA
AAAAA

ab

c

d

e
f

g
i

h

(b)(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6: (a) Mapping quadtree nodes at the
completion of the �rst subdivision phase with
completed mappings shaded. (b) Mapping
quadtree nodes at the completion of the second
subdivision phase.

there is initially only one) are then repeatedly subdi-
vided until each mapping node is associated with either
a single source node, or a single target node. Essen-
tially, the mapping nodes are subdivided until there is
a one-to-one, one-to-many, or many-to-one relationship
established between the source and target nodes. For
our example dataset shown in Figure 5, the single map-
ping node is associated with thirteen source nodes, and
sixteen target nodes, thus the mapping node must be
split and the source and target nodes reassigned to the
appropriate mapping node. The result of the �rst map-
ping node split is shown in Figure 6a. Continuing with
this process, the shaded mapping nodes 1, 2, and 3 in
Figure 6a have satis�ed the termination condition and
do not need to be further split. Mapping node 4 must
further subdivide as it is associated with seven source
nodes and seven target nodes. The result of mapping
node 4 in Figure 6a splitting is shown in Figure 6b. The

�nal mapping node split (of mapping node 4 in Fig-
ure 6b) results in the situation depicted in Figure 7a,
where each mapping node corresponds to either a single
source or a single target node.

AA
AA
AA
AA
AA
AA

A
A
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

lines

nodes

lines

nodes

target quadtree

mapping quadtree

source quadtree

ab

c

d

e
f

g
i

d d e b e a f b i a c c g i g h

m o n q n u m p s p s

m

n

p

o
q

r

nodes

h

s

t

u

r s u r r t

AA
AA
A
A
AA
AA

1 2 3 4 5 6 7 8 9 10 11 12 13

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lines

nodes

lines

nodes

target quadtree

mapping quadtree

source quadtree

ab

c

d

e
f

g
i

b d e a f b i a c c g i g h

m o n q u m p s s r s

m

n

p

o
q

r

nodes

h

s

t

u

u r r t

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

(b)(a)

Figure 7: (a) Mapping quadtree nodes at
the completion of the subdivision phase which
creates one-to-one, many-to-one, or one-to-
many mappings between the source and tar-
get quadtrees. (b) Quadtree nodes highlight-
ing the one-to-one source to target node cor-
respondence after node merging.

1.0
Once the mapping quadtree subdivisions are com-

pleted (see Figure 7a where each mapping node cor-
responds to either a single source or target node), there
exists a one-to-one, many-to-one, or one-to-many asso-
ciation between source and target nodes. The source
and target quadtree nodes are then merged as neces-
sary in order to establish a one-to-one relationship be-
tween the nodes in the two input maps. For instance, if
there are four source nodes associated with a single tar-
get node (refer to the �rst mapping node in Figure 7a),
then the four source nodes (which will share the same
parent node in the quadtree decomposition) are merged
together (with duplicate line segments removed). This
will result in a one-to-one correspondence between these
source and target nodes (see Figure 7b). At the comple-
tion of the source and target node merging, the mapping
quadtree may be discarded.
The actual process of determining the line segment

intersections begins with each source node broadcast-
ing the endpoints of all associated line segments (i.e.,
all the line segments that are found in the quadtree
node) to the set of line segments in the associated target
quadtree node. Figure 8 highlights the source to target
line communication for the example dataset (note that
the shaded nodes and lines represent inactive proces-
sors for which no action is necessary as there are ei-
ther no source lines or target lines associated with the
nodes). This is accomplished by the �rst line processor
associated with each active source node (where an ac-
tive line or node is de�ned as one that is participating
in the current operation) passing its endpoints to the

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 5

�rst line processor in the corresponding target quadtree
node. In Figure 8, the �rst line processors are shown
with arrows emanating from them directed at the cor-
responding source nodes. The source line endpoint co-
ordinates are then shared among all line processors in
the associated target quadtree node via a sequence of
scan operations.

lines

nodes

lines

nodes

target quadtree

source quadtree

ab

c

d

e
f

g
i

b d e a f b i a c c g i g h

m o n q u m p s s r s

m

n

p

o
q

r

h

s

t

u

u r r t

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 8: Source to target quadtree line end-
point communication channels for determining
intersection. Shaded nodes and lines are not
the recipient of any communications.

1.0
Each active target line processor then simultaneously

determines whether or not the line that it represents in-
tersects the broadcasted source quadtree line segment.
If the target line intersects the broadcasted source line,
the target line is so marked. Continuing this process,
the collection of second line processors associated with
each active source quadtree node passes their coordi-
nates to the �rst processor in each active associated
target node. Again, the line coordinates are then com-
municated among all line processors in the target node
via a sequence of scan operations, and each target line
processor determines in parallel whether or not it inter-
sects the source line. Once all active source line proces-
sors have transmitted their coordinates to the associated
target line processors, the intersection operation is com-
plete and all target lines intersecting any of the source
lines have been determined.

PMR Quadtree Spatial Range Query

The data-parallel PMR quadtree spatial range query
algorithm proceeds in a fashion similar to the intersec-
tion algorithmwhere the quadtree decomposition is em-
ployed to maximize the number of parallel operations.
In the following description, again assume that there
are two input data-parallel PMR quadtrees of the same
size. We will term the quadtree that contains the line
segments to be expanded (also referred to as the expan-
sion set) the source quadtree, and the quadtree contain-
ing the line segments from which to test for intersection
with the expansion set the target quadtree.

lines

nodes

lines

nodes

target quadtree

source quadtree

ab

c

d

e
f

g
i

b d e a f b i a c c g i g h

m o n q u m p s s r s

m

n

p

o
q

r

h

s

t

u

u r r t

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 9: One-to-one source to target node
mapping and region formed by the expansion
set and expansion radius.

1.0

The algorithm begins by establishing a mapping be-
tween source and target nodes in an identical manner
to that employed at the beginning of the intersection
algorithm. Once the one-to-one source to target node
mapping is established (refer to Figure 9 for an example
source to target node mapping and an example expan-
sion region which is denoted by the gray region superim-
posed on the source quadtree), the process of determin-
ing all target lines that intersect the region de�ned by
the source line expansion set and the expansion radius
proceeds in an iterative fashion.

lines

nodes

lines

nodes

target quadtree

source quadtree

ab

c

d

e
f

g
i

b d e a f b i a c c g i g h

m o n q u m p s s r s

m

n

p

o
q

r

h

s

t

u

u r r t

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 10: Active source and target nodes of
minimal size (with other larger inactive nodes
shaded) during the �rst iteration of line com-
munications.

1.0
The spatial range query algorithm operates on a sin-

gle size set of nodes at a time (i.e., all nodes of size
2m � 2m where m � n), iterating upward from the
smallest sized nodes to the root node in the quadtree
representation. Given the set of the smallest sized nodes
in the source quadtree (corresponding to the unshaded

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 6

nodes in Figure 10), in parallel, each broadcasts the end-
points of all associated line segments (i.e., all the line
segments that are found in the quadtree node) to the
set of line segments in the associated target quadtree
node. This is accomplished in a similar fashion as was
done with the intersection algorithm, with the �rst line
processor associated with each active source node pass-
ing its endpoints to the �rst line processor in the corre-
sponding target quadtree node. These coordinates are
then shared among all line processors in the associated
target quadtree node via a sequence of scan operations.
Each active target line processor then simultaneously
calculates the Euclidean distance between itself and the
communicated source line. If the separation distance
is less than the radius of expansion, the target line is
marked as laying within the space de�ned by the source
expansion set.

Continuing this process, the second line processor as-
sociated with each active source quadtree node passes
its coordinates to the �rst processor in each active asso-
ciated target node. Again, the line coordinates are then
communicated among all line processors in the target
node via a sequence of scan operations, and each tar-
get line processor calculates the distance between itself
and the source line. Once all active source line pro-
cessors have transmitted their coordinates to the asso-
ciated target line processors, the communication stage
for the currently active quadtree node size is complete.
For example, only line segment s is found to intersect
the expanded region in the �rst iteration.

r

a b
c

A B

Figure 11: Example where one source line a

may be deleted, and the second line b may not
be deleted during the source node merge phase.
For the given radius of expansion r, line b's
expansion region might intersect a target line
c in another currently unassociated node B.

1.0

Before the source node iteration continues (i.e., nodes
of twice the current active node size are made active),
each of the currently active source and target sibling
nodes is merged. As an optimization to lessen the num-
ber of source line segment communications, all source
line segments in the currently active source nodes whose
distance from the border of their corresponding block
is greater than the expansion radius are deleted. If a
source line lies at distance less than the expansion ra-
dius from the border of the source node's corresponding
block, then the source line must be retained for later
rebroadcast. This is because a source line's region of

expansion (the area within the expansion radius of the
line) may intersect target lines that are not associated
with the block corresponding to the source line's node
(i.e., a target line may lie very close to the border in
an adjoining node). For example, consider the situa-
tion depicted in Figure 11 of two line segments a and
b in a source node corresponding to block A. Given
the example situation (with the expansion radius r), a
may be safely deleted as its expansion region can not
possibly intersect any other blocks outside of A, while
b may not be deleted as it's expansion region intersects
other blocks (i.e.,blockB). Note that there is no need to
delete any target lines as all the target lines are checked
for intersection with a source line in parallel. Thus re-
moval of a target line does not a�ect performance. Of
course, if there are more target lines than processors,
then this may be a useful optimization.
The result of the node merging and line deletion is de-

picted for our example dataset in Figure 12. Note that
no source lines were deleted as each of their expansion
regions intersected the border of the blocks correspond-
ing to their nodes in the initial quadtree.

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

AA
AA

lines

nodes

lines

nodes

target quadtree

source quadtree

ab

c

d

e
f

g
i

b d e a f b i a c g i g h

m o n q u m p s r s u

m

n

p

o
q

r

h

s

t

u

r r t

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Figure 12: Active source and target nodes of
minimal size (with other larger inactive nodes
and lines shaded) after the �rst round of line
communication and node merging. Note that
the dashed target line s indicates that it was
marked as intersecting the expansion region
during the previous iteration.

1.0
Once all currently active source and target nodes

have been merged, we then continue the above process,
making all nodes of twice the size as the currently ac-
tive nodes active (i.e., we are climbing one level of the
quadtree as we move from the deepest node toward the
root node). Once the level of the root of the quadtrees
has been processed, the spatial range query operation
is complete, with all lines in the target quadtree that
intersect the source expansion set thus marked. Notice
that during the algorithm a line in the target quadtree
could be marked as intersecting the query region several
times. However, the reporting of the intersection only
happens once at the conclusion of the algorithm. This

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 7

is important as it avoids the need to eliminate duplicate
answers [1]. Figure 13 depicts the situation immedi-
ately prior to the �nal round of source to target line
communications.

AA
AA

AA
AA

lines

nodes

lines

nodes

target quadtree

source quadtree

ab

c

d

e
f

g
i

a b c g i

m n o p q r s t u

h

m

n

p

o
q

r
s

t

u

Figure 13: Active source and target nodes im-
mediately prior to the �nal round of commu-
nication. Note that target lines n and s have
been previously marked as intersecting the ex-
pansion region. Additionally, source lines d, e,
f , and h were deleted during a prior source
node merge phase as their expansion regions
did not lay outside of the blocks corresponding
to their source nodes.

1.0

R-trees

The R-tree and its variants are designed to organize
a collection of arbitrary spatial objects (most notably
two-dimensional rectangles) by representing them as d-
dimensional rectangles. Each node in the tree corre-
sponds to the smallest d-dimensional rectangle that en-
closes its son nodes. Leaf nodes contain pointers to the
actual objects in the database, instead of sons. The
objects are represented by the smallest aligned rectan-
gle containing them. In our case, the object are line
segments.
The de�nition of an R-tree is similar to that of a b-

tree. All leaf nodes appear at the same level. Each entry
in a leaf node is a 2-tuple of the form (R;O) such that R
is the smallest rectangle that encloses the line segment
O (where O points to the actual line segment). Each
entry in a directory (non-leaf) node is a 2-tuple of the
form (R;P), where R is the minimal rectangle enclosing
the rectangles in the child node pointed at by P . An
R-tree of order (m;M) means that each node in the
tree, with the exception of the root, contains between
m � dM=2e and M entries. The root node has at least
2 entries unless it itself is a leaf node.
1.0
The algorithm for building an R-tree is analogous to

that employed when building a B-tree. Line segments
are inserted into leaf nodes. The appropriate leaf node

R1 R2

R3 R4 R5 R6

a b c i e fg hd

R3R1

R4

R5

R6R2

a b

c

d

e

f

g h

i

Figure 14: Example order (1; 3) R-tree.

is determined in a top-down fashion by traversing the
R-tree starting at its root and at each step choosing the
subtree whose corresponding bounding rectangle will
have to be enlarged the least by the addition of the
line segment. Once a leaf node is determined, a check is
made to see if the insertion of the line segment will cause
the leaf node to over
ow. If the leaf node is over
owing,
it is then split and the M +1 2-tuples are redistributed
among the two resulting nodes. Splits may propagate
up the R-tree.
Note that the �nal shape of the R-tree will be de-

pendent upon the insertion order of the line segments.
In the data parallel environment [14], all line segments
are inserted at the same time, and thus the �nal shape
of the parallel R-tree will likely not be the same as its
sequential counterpart.

a b

c
d

e

f

g
h

i
A

C0

 processor #: 0 1 2 3 4 5 6 7 8
 count: 9 8 7 6 5 4 3 2 1

0

a b c d e f g h i

Figure 15: Initial R-tree processor assignments.

1.0

Data-Parallel R-trees

The parallel R-tree building algorithm proceeds as
follows (for more details, see [15]). Initially, one pro-
cessor is assigned to each line of the data set, and one
processor to the resultant R-tree as depicted for a sam-
ple dataset in Figure 15. Our example assumes an or-
der (1; 3) R-tree. In the �gure, the label A denotes
the line processor set, C0 denotes the R-tree node pro-
cessor set, with the associated square region containing
the identi�er for the group of line processors associated
with the R-tree node processor (i.e., the group of line
processors beginning at processor 0 in A). We use the
term segment to refer to the collection of line proces-
sors associated with a particular R-tree node proces-
sor. Within the line processor set A, the nine square
regions contain the line identi�ers and indicate which
processor is associated with which line. A downward
scan operation (i.e., a scan which returns the vector
[(a0
L

a1
L

� � �
L

an�1); (a1
L

a2
L

� � �
L

an�1); � � � ; an�1])
is performed on the line processor set to determine the

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 8

number of lines associated with the single R-tree pro-
cessor. This is shown in Figure 15 as the count �eld
beneath the line processor set. The number of lines in
the segment is then passed to the single R-tree node
processor. If the number of lines in the segment exceeds
M , then the R-tree root node must be split into two
leaf nodes and a root node (as is similarly done with
the sequential R-tree). The two new leaf nodes are in-
serted into the R-tree processor set, with the former root
node/processor updated to re
ect the two new children.
The topic of how to split an over
owing node has

been the subject of much research on sequential R-trees
(e.g., the R*-tree [2] is an R-tree variant that uses a
more sophisticated node insertion and splitting algo-
rithm than the conventional de�nition of the R-tree
[13]). For the parallel R-tree, the node splitting algo-
rithm �rst sorts all lines in the segment according to
the left edge of their bounding boxes. A parallel up-
ward scan operation (i.e., a scan which returns the vec-
tor [a0; (a0

L
a1); � � � ; (a0

L
a1
L

� � �
L

an�1)]), is used
to determine the extents of the bounding box formed
by all lines preceeding a line in the sorted segment. A
downward scan will similarly determine the bounding
box for all following lines in the segment. For all legal
splits (i.e., where each of the two resulting nodes re-
ceives at leastm=M of the lines being redistributed), the
amount of bounding box overlap is calculated, with the
split corresponding to the minimal amount of overlap
being selected as the x-axis candidate. An analogous
procedure is employed for the y-axis in obtaining the
y-axis candidate split coordinate value. Once the two
candidate split coordinate values are determined, the
one corresponding to the minimal bounding box over-
lap is selected. In the event of a tie, some other metric
such as choosing the split with the minimal bounding
box perimeter lengths may be employed. This splitting
algorithm is of complexity O(logn) at each stage of the
building operation as we employ two O(logn) sorts and
a constant number of scan operations.

a b

c
d

e

f

g
h

i

A

C0

a b c d e f g h i

0

Figure 16: Un-shu�e operation.

1.0
Once the splitting axis and the coordinate value are

chosen, an un-shu�e operation [3] (where two inter-
mixed types are rearranged into two disjoint groups via
two monotonic mappings) is used to concentrate those
line processors together into two new segments, each
of which will correspond to one of the two R-tree leaf
node processors as depicted in Figure 16. For example,
all lines which have a midpoint that is less than the split
coordinate value are monotonically shifted toward the

left, while those which are greater than the split coor-
dinate value are monotonically shifted toward the right
among the line processors. The result of the un-shu�e
operation on the lines in Figure 16 is shown in Figure 17.
Note that the root node of the R-tree is associated with
two segments in the line processor set A (i.e., (a; b; e; h)
and (c; d; f; g; i)), and must itself be subdivided in an
analogous manner.

a b

c
d

e

f

g

h

i

A

C0

a b e h c d f g i

0

Figure 17: Result of the un-shu�e operation.

1.0

Thus, at this stage after the �rst root node split and
line redistribution, we will wind up with two segments
in the line processor set A, and two di�erent R-tree
processor sets C0 and C1 (each set corresponding to a
node at a di�erent height in the R-tree), as shown in
Figure 18.

a b

c
d

e

f

g

h

i

0 4

A

C1

C0

a b e h c d f g i

0

Figure 18: Completion of root node split oper-
ation.

1.0

The insertion algorithm will now proceed iteratively
as before, with each segment determining the number of
lines it contains, and transmitting the count to the as-
sociated R-tree processor. If the number of lines in the
segment exceeds M , then the segment (and correspond-
ing R-tree node processor) will be forced to subdivide
(i.e., split). Note that this subdivision process may re-
sult in processors that correspond to internal nodes in
the R-tree splitting themselves (with these splits possi-
bly propagating up the R-tree). The building process
will terminate when all nodes in the R-tree processor set
have at mostM child processors (either internal R-tree
nodes or line processors), shown in Figure 19 for our
example dataset. The R-tree root node corresponds to
the single processor in set C2, the leaf nodes are con-
tained in processor set C0, and all lines area grouped in
segments of length less than or equal to 3 in processor
set A (recall that we are dealing with an order (1; 3)
R-tree in our example).

1.0

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 9

a b

c
d

e

f

g

h

i

a h b e d g c f i

0

0 2

0 2 4 6

A

C0

C1

C2

Figure 19: Completion of the data-parallel R-
tree building operation.

The data-parallel R-tree building operation is of com-

plexity O(log2 n), where each of the O(logn) stages
requires O(logn) computations (a constant number of
scans along with two bounding box sorts).

R-tree Map Intersection

Given data-parallel source and target R-trees, a corre-
spondence between the source and target R-tree nodes
must be established which will be used to determine
patterns of parallel communication. Basically, for each
source R-tree leaf node,b s we must determine the in-
tersecting target leaf nodes. Any source line in s might
intersect another target line contained in a target leaf
node that intersects s. For example, in Figure 20, source
line segment c (contained in source node B), might in-
tersect target line s (contained in target node L) as
nodes B and L intersect. If a source and target leaf
node do not intersect, then it is not possible for the
associated contained lines to intersect. In Figure 20,
source line c cannot intersect target line r (contained in
target node N) as nodes B and N do not intersect.

lines

leaf
nodes

source R-tree

d e b c i g h a f

ab

c

d

e f

g
i

h

lines

leaf
nodes

target R-tree

m o p s n q u r t

m

n

p

o q

r
s

t

u

A

B

C

D

A B C D

K

L

M

N

K L M N

Figure 20: Example data-parallel R-trees for
the same set of source and target lines as in
Figure 1. Leaf node bounding rectangles are
shown for both source (A, B, C, and D) and
target (K, L, M, and N) R-trees. Internal R-
tree nodes and bounding boxes are omitted for
clarity.

1.0

For each source node, the process of determining
which target leaf nodes it intersects is quite straightfor-
ward. In essence, each target node in turn will transmit
its bounding rectangle coordinates to the �rst source
leaf node in the arbitrary linear ordering (i.e., source
leaf node A in Figure 20). These coordinates will then
be shared among all source leaf nodes via a series of
scan operations. Once each source leaf node knows the
coordinates of the communicated target leaf node, in
parallel, each source leaf node then determines whether
or not it intersects the target node. If there is an inter-
section, then the index of the target node is appended
to the source leaf node's list of target node intersections.
This situation is depicted in Figure 20, where the com-
munication path between �rst target leaf node (node K)
and the �rst source leaf node (node A) is shown. The
dashed arrow beneath the source leaf nodes represents
the scan operation that is employed to share the target
node bounding rectangle coordinates among all of the
source leaf nodes.

lines

leaf
nodes

source R-tree

d e b c i g h a f

ab

c

d

e f

g
i

h

lines

leaf
nodes

target R-tree

m o p s n q u r t

m

n

p

o q

r
s

t

u

A

B

C

D

A B C D

K

L

M

N

K L M N

K K L L
L M

N

intersect
list

Figure 21: Source and target R-trees after all
source and target leaf node intersections have
been determined and recorded in the appropri-
ate source nodes.

1.0
Figure 21 represents the situation found after all of

the target leaf nodes have communicated their bound-
ing rectangle coordinates to the source leaf nodes, and
each source leaf node has compiled its intersection list.
The intersection lists for each source leaf node are de-
picted as the collection of boxes beneath each source
node identi�er (e.g., source node B's intersection list
contains target node identi�ers K and L).
Once all source/target node intersections have been

determined, the source leaf nodes will then transmit the
endpoint coordinates of all contained line segments to
all intersecting target leaf node line segments. Each
target line then determines whether or not it intersects
any source line segment.
Unlike the parallel PMR quadtree source to target

node communication process, the non-disjoint irregular
partitioning of space induced by the R-tree decomposi-
tion creates additional communication di�culties. In-

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 10

stead of all active source nodes communicating in par-
allel with the associated target node in the one-to-one
mapping available in the PMR quadtree, the R-tree
source to target leaf node communications are sched-
uled and made in an iterative process. This is due to
the situation when multiple source nodes intersect a sin-
gle target node (i.e., in Figure 21, source nodes B, C,
and D each intersect target node L).
The scheduling problem is analogous to the Chro-

matic Index problem [12] where the set of source and
target leaf nodes may be thought of as a set of ver-
tices, and the intersections between the nodes as edges
between the vertices. These edges and vertices form a
bipartite graph, and it has been shown that there exists
a polynomial time algorithm for scheduling the neces-
sary communications [11].
In solving the communication scheduling problem,

a non-optimal solution was chosen using a greedy ap-
proach. At each iteration of source to target communi-
cations, the �rst source node requiring communication
selects the �rst target node in its intersection list (e.g.,
in Figure 22, source node A selects target node K). The
next source node requiring communication then selects
the �rst target node that has not been previously se-
lected by the �rst source node (e.g., in Figure 22, source
node B selects target node L). Continuing in this fash-
ion, all following source nodes requiring communication
select the �rst target node in their intersection lists that
has not been previously selected by another source node
during the current communication iteration.
Once all possible communications have been deter-

mined for the current iteration, each source leaf node
that has a scheduled communication is made active (in
Figure 22, this corresponds to source nodes A, B, and
D). Using a technique similar to that employed in
the PMR quadtree intersection algorithm, each active
source node broadcasts the endpoints of all associated
line segments (i.e., all the line segments that are found
in the R-tree node) to the set of line segments in the
associated target R-tree node. This is accomplished by
the �rst line processor associated with each active source
node passing its endpoints to the �rst line processor in
the corresponding target R-tree node. In Figure 22, the
�rst line processors (i.e., source lines d, b, and a) are
shown with arrows emanating from them directed at
the corresponding source nodes. Once the source line
endpoint coordinates have been communicated to the
�rst target line processor in the associated target R-
tree node, they are then shared among all target line
processors in the same target node via a sequence of
scan operations.
1.0
Each active target line processor then simultaneously

determines whether or not it intersects the broadcasted
source R-tree line segment. If the target line inter-
sects the broadcasted source line, the target line is so
marked. Continuing this process, the collection of sec-
ond line processors associated with each active source
R-tree node (i.e., in Figure 22, source lines e, c, and f)
passes it's coordinates to the �rst processor in each ac-

lines

leaf
nodes

source R-tree

d e b c i g h a f

ab

c

d

e f

g
i

h

AA
AA

AA
AA
AA
AA
A
Alines

leaf
nodes

target R-tree

m o p s
AA
AAn
A
Aq
A
Au r t

m

n

p

o q

r
s

t

u

A

B

C

D

A B C D

K

L

M

N

AA
AAK L M N

K K L L
L M

N

intersect
list

Figure 22: Source and target R-trees with
�rst round of communication scheduling high-
lighted (inactive lines and nodes are shaded).

tive associated target node. Again, the line coordinates
are then communicated among all line processors in the
target node via a sequence of scan operations, and each
target line processor in parallel determines whether or
not it intersects the source line. Once all active source
line processors have transmitted their coordinates to the
associated target line processors, the current iteration of
communications is complete, and all active source nodes
delete the target node that was the recipient of their
communications from their intersection lists.

lines

leaf
nodes

source R-tree

d e b c i g h a f

ab

c

d

e f

g
i

h

AA
AA
AA
AAlines

leaf
nodes

target R-tree

m o p s n q u r t

m

n

p

o q

r
s

t

u

A

B

C

D

A B C D

K

L

M

N

K L M N

AA
AA
AA
AAK L L

Nintersect
list

Figure 23: Source and target R-trees with sec-
ond round of communication scheduling high-
lighted. Note that source node intersection
lists have been modi�ed following the �rst
round communication depicted in Figure 10.
Additionally, target lines marked as intersecting
the expansion region are shown with covering
diagonals (i.e., s and n).

1.0
Continuing with this process, the second round of

source node to target node communications must be
scheduled. Following an identical selection process as
before, the �rst source node requiring a communication

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 11

makes its selection. Each following node (in our arbi-
trary linear ordering of source leaf nodes) requiring a
communication �rst determines whether or not any of
it's remaining intersecting target nodes has not been se-
lected by a preceeding source node. If this is the case,
the selection is made, and the following source nodes re-
quiring communication make their selections (provided
an unselected target node in their intersection lists is
available). In Figure 23, the selected target nodes are
shown in the intersection lists enclosed in circles.

lines

leaf
nodes

source R-tree

d e b c i g h a f

ab

c

d

e f

g
i

h

AA
AA
AA
AAlines

leaf
nodes

target R-tree

m o p s n q u r t

m

n

p

o q

r
s

t

u

A

B

C

D

A B C D

K

L

M

N

K L M N

AA
AA
AA
AAL

intersect
list

Figure 24: Source and target R-trees with �-
nal round of communication scheduling high-
lighted. Note that only source node D needs
to communicate with a target node.

1.0
Once all source nodes have communicated their en-

closing source lines with all of the target nodes in their
intersection lists, and all intersecting target lines have
been marked if they intersect a broadcasted source line,
the intersection operation is complete. For our example
data set, the third and �nal round of communications is
shown in Figure 24, with only source node D broadcast-
ing source lines a and f to the target line p contained
in target node L.

R-tree Spatial Range Query

The algorithm for performing the spatial range query
for data-parallel R-trees is very similar to that employed
when computing the intersection as described previ-
ously. There are two small modi�cations that are nec-
essary in adapting the R-tree intersection algorithm to
a spatial range query algorithm.
1.0
The �rst modi�cation involves the process of deter-

mining the target nodes with which each source node
must communicate. In the intersection algorithm, this
required �nding all source/target node intersections. If
the bounding rectangles for each source node are ex-
tended by the radius of expansion in each dimension
prior to calculating all node intersections, one may en-
sure that no necessary source line to target line commu-
nications are overlooked.

r

a b

A

c

B

A'

Figure 25: Example where the enlargement of
the source R-tree bounding rectangle A by the
expansion radius r (creating bounding rectan-
gle A') prior to node intersection detection is
necessary. The dashed bounding rectangle B
represents a target R-tree node that contains
target line c.

The second and �nal modi�cation to the R-tree in-
tersection algorithm concerns the source line to target
line intersection calculation. Rather than determining
whether or not two lines intersect, one would calculate
the distance between the source and target lines. If the
distance is less that the radius of expansion, the target
line will clearly intersect the expansion region of the as-
sociated source line and should thus be marked. Once
these two small modi�cations are made to the R-tree
intersection algorithm, it will also function as a spatial
range query algorithm.

Performance Comparison

In order to compare the behavior of the two data-
parallel spatial decompositions and their performance
on two map spatial join algorithms, each of the four de-
scribed algorithms was implemented in C* on a Think-
ingMachines CM-5 (32 processor model). The data that
we used consisted of maps containing planar line seg-
ment data from Bureau of the Census TIGER/Line �les
[7]. Our experiments used the map of Prince Georges
County in Maryland as an example dataset.
In each of the spatial joins, the set of lines correspond-

ing to railroads was chosen as the source dataset; with
the set of lines corresponding to the road network in the
county as the target dataset. In this case, the spatial
join queries were trying to determine which roads were
within a speci�ed distance of a railroad line. The radius
of expansion varied between 0 (corresponding to a map
intersection query) and 50 units. Additionally, the split-
ting thresholds for the PMR quadtree varied between 8
and 32, while R-tree node capacities ranged from 10 to
50.
1.0
In Figure 26, the cpu times (in seconds) for the PMR

quadtree variants of the spatial join operations are pre-
sented, with the vertical axis corresponding to the total
cpu time, and the two other axes to the radius of ex-
pansion and to the splitting threshold. Observing the
surface, we note that for the two map intersection query,
a splitting threshold of roughly 14 to 16 corresponds to
the smallest execution times. As the radius of expansion

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 12

5

20

40
12

16

20

32

30

40

50

50

30

10

0

8

24

28

radius of expansion

bu
ck

et
 c

ap
ac

ity

CPU
seconds

Figure 26: Execution time in seconds for
the PMR quadtree spatial join algorithms for
the example dataset (Prince Georges County,
Maryland TIGER/Line �le).

increases toward 50, these splitting thresholds continue
to exhibit good performance although the performance
advantage is not as great.
There are two basic forces working against each other

as the radius of expansion and splitting thresholds in-
crease. First, with a larger radius, fewer source lines
are deleted as the source nodes are merged (recall the
situation described in Figure 11), thus resulting in more
source line to target line endpoint transmissions. Sec-
ond, as the splitting threshold increases for a �xed ra-
dius of expansion, we �nd fewer nodes but of larger ca-
pacity. The lessened node count results in a quadtree of
shallower depth (which will result in fewer iterations of
the spatial join algorithms), but each iteration will take
longer as more source line segments need to transmit
their endpoint coordinates to the target lines.

5

20

40
10

20

30

40200

300

400

50

30

10

0

50

radius of expansion

no
de

 c
ap

ac
ity

CPU
seconds

Figure 27: Execution time in seconds for the
R-tree spatial join algorithms for the example
dataset.

1.0
In Figure 27, the cpu times (in seconds) for the R-

tree variants of the spatial join operations is presented,

again with the vertical axis corresponding to the total
cpu time, and the two other axes to the radius of expan-
sion and to the node capacity (analogous to the split-
ting threshold in PMR quadtrees). The performance
surface clearly indicates that R-trees with smaller node
capacities (i.e., 10 or 15) exhibit execution times that
are far less than for larger node capacities (i.e., 45 or
50). The reason for this large di�erence in performance
is that smaller node capacities result in a �ner decom-
position of space; each of the smaller source nodes will
intersect a smaller number of target nodes. With this
�ner granularity, there is increased opportunity of par-
allel communication when broadcasting the source lines
to the appropriate target nodes.

Not surprisingly, execution times for a �xed node ca-
pacity tend to increase as the radius of expansion in-
creases. Similar to what was observed with the data-
parallel PMR quadtree, the increased radius results in
increased numbers of source/target node intersections
(as the source node bounding rectangles are expanded
as is shown in Figure 25) and consequently an increased
execution time.

When comparing the execution times of the PMR
quadtree and R-tree spatial join implementations, it
is apparent that the PMR quadtree o�ers signi�cant
performance advantages. This is primarily because the
PMR quadtree yields a regular disjoint decomposition
of space which facilitates increased amounts of parallel
communication between source and target maps in com-
parison to the R-tree. The R-tree's non-disjoint, irreg-
ular decomposition of space su�ers in the data-parallel
environment.

One must keep in mind that these execution times are
for the two map spatial joins. If one was to implement
single map versions of the queries (i.e., given a single
map containing line segments representing both roads
and railways), the performance of the parallel R-tree
would increase considerably, perhaps to a level compa-
rable to that displayed by the parallel PMR quadtree.
The single map spatial join algorithms is a topic for
future research.

Concluding Remarks

Data parallel algorithms for computing a spatial join
for the PMR quadtree and R-tree spatial data structures
have been presented. The algorithms have been tested
and revealed the superiority of the PMR quadtree. The
main reason for this behavior is the fact that the PMR
quadtree yields a disjoint decomposition of space while
this is not the case for the R-tree. The problem is com-
pounded when we wish to determine overlapping areas
in the two maps that serve as operands to the spatial
join. The algorithms that we studied are based on a
bottom-up approach. It could be that this problem is
avoided by use of a top-down approach. This is a sub-
ject for future work.

Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{234 13

References

[1] W. G. Aref and H. Samet, Uniquely reporting spa-
tial objects: yet another operation for comparing
spatial data structures. Proceedings of the Fifth In-
ternational Symposium on Spatial Data Handling,
Charleston, SC, August 1992, 178{189.

[2] N. Beckmann, H. P. Kriegel, R. Schneider, and B.
Seeger, The R*-tree: an e�cient and robust access
method for points and rectangles, Proceedings of
the SIGMOD Conference, Atlantic City, NJ, June
1990, 322{331.

[3] T. Bestul, Parallel paradigms and practices for spa-
tial data, Ph.D. dissertation, CS-TR-2897, Center
for Automation Research, Computer Science De-
partment, University of Maryland, College Park,
MD, 1992.

[4] G. E. Blelloch and J. J. Little, Parallel solutions to
geometric problems on the scan model of compu-
tation, Proceedings of the International Conference
on Parallel Processing, St. Charles, IL, 1988, 218{
222.

[5] G. E. Blelloch, Scans as primitive parallel oper-
ations, IEEE Transactions on Computers, C-38,
1989, 1526{1538.

[6] T. Brinkho�, H. P. Kriegel,and B. Seeger, E�cient
processing of spatial joins using R-trees, Proceed-
ings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, Washington, DC,
May, 1993, 237{246.

[7] Bureau of the Census, TIGER/Line Census Files,
1990 Technical Documentation, Washington, 1991.

[8] D. Comer, The ubiquitous B-tree, ACM Computing
Surveys 11, 2 (June 1979), 121{137.

[9] R. Elmasri and S. B. Navanthe, Fundamentals
of Database Systems, Benjamin/Cummings, Red-
wood City, CA, 1989.

[10] C. Faloutsos, T. Sellis, and N. Roussopoulos, Anal-
ysis of object oriented spatial access methods, Pro-
ceedings of the SIGMOD Conference, San Fran-
cisco, May 1987, 426{439.

[11] H. N. Gabow, Using Euler partitions to edge color
bippartite multigraphs", International Journal of
Computational Information Sciences, 5, 345{355.

[12] M. R. Garey and D. S. Johnson, Computers and
Intractibility: A Guide to the Theory of NP-
Completeness, Freeman, NY, 1979.

[13] A. Guttman, r-trees: a dynamic index structure
for spatial searching, Proceedings of the SIGMOD
Conference, Boston, June 1984, 47{57.

[14] W. D. Hillis and G. L. Steele, Data parallel algo-
rithms, Communications of the ACM, 29, 12 (De-
cember 1986), 1170{1183.

[15] E. G. Hoel and H. Samet, Data-parallel R-tree al-
gorithms, Proceedings of the International Confer-
ence on Parallel Processing, St. Charles, IL, August
1993, 49{53.

[16] F. T. Leighton, Introduction to Parallel Algorithms
and Architectures, Morgan Kaufmann, San Mateo,
CA, 1992.

[17] R. C. Nelson and H. Samet, A consistent hier-
archical representation for vector data, Computer
Graphics 20, 4 (August 1986), 197{206 (also Pro-
ceedings of the SIGGRAPH'86 Conference, Dallas,
August 1986).

[18] R. C. Nelson and H. Samet, A population anal-
ysis for hierarchical data structures, Proceedings
of the SIGMOD Conference, San Francisco, May
1987, 270{277.

[19] A. Rosenfeld and A. C. Kak, Digital Picture Pro-
cessing, Academic Press, NY, 1982.

[20] H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley, Reading, MA, 1990.

[21] H. Samet, Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS,
Addison-Wesley, Reading, MA, 1990.

[22] C. D. Tomlin,Geographic Information Systems and
Cartographic Modelling, Prentice Hall, Englewood
Cli�s, NJ, 1990.

