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Abstract

A new method has been developed recently for overcoming some of the major obstacles

of object recognition. In this method, both 2D images and 3Dmodels from a data-base are

represented by view-point invariant descriptors in the same invariant space. Since there

is a large number of possible matches between the image and model invariants, there is

a crucial need to perform this match very e�ciently. In this paper we answer this need

by using an adaptation of spatial sorting based on the octree representation of the model

points and image lines in three-dimensional space. In particular, the points and lines are

sorted with respect to the space that they occupy using techniques similar to hashing.

Once the points and lines have been sorted, we evaluate the usage of two alternatives

matching methods. The �rst is based on �nding the n nearest model points to each line,

while the second is based on �nding the m nearest line-point pairs. Both of the methods

are incremental in the sense that n and m can be increase without having to restart

the matching process. We show the advantage of these alternatives over the traditional

\brute-force" approach and we compare the merits of the two methods. We demonstrate

that the performance gain of our incremental algorithms increases substantially with the

number of matches to be performed. This makes it possible for the recognition task to

be performed in a reasonable time for a large number of models.
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1 Introduction

In a typical recognition task, one has an image of an unknown object, and the objective is to match

it with a known set of objects, given in an appropriate representation such as models or reference

images. Since the viewpoint from which the image was taken and other camera parameters are

unknown, the matching involves searching in a prohibitively large search space.

To avoid the search for the correct viewpoint, we can match viewpoint invariant descriptors of

the models and images rather than the original representations. Such invariants exist for projective

transformations, including viewpoint changes, between spaces of the same dimensionality, e.g. a

projection of a planar object onto an image. However, when we project a 3D object onto a 2D image,

the depth information is lost. This loss creates di�culties in two ways:

1. There are no full invariants, only invariant constraints. That means that the search space cannot

be eliminated completely as in the 2D case, although it is far smaller than the non-invariant

description.

2. General objects cannot be identi�ed uniquely. In principle, many di�erent objects, di�ering

only in their depth coordinates, can yield the same 2D image.

In this paper we deal with the two issues above. In the �rst issue, since a search is unavoidable,

our goal is to reduce the complexity of the search as much as possible. Two key steps are involved

here: a) representation of both the models and the images as entities in an invariant space b) using

spatial sorting and ranking algorithms to perform e�cient matching in this space.

The second issue is dealt with by the use of modeling assumptions. Such assumptions should

make up for the missing depth information. One such assumption is the use of a prede�ned set

of known models rather than trying to recognize a general unconstrained object. Such modeling is

already partly implied in our de�nition of object recognition. However, we have to be careful that

our set of models do not contain many models that can project the same image.

Our method is described brie
y as follows. We represent each 3D model as a set of points in

a 3D invariant space. An image is represented as a set of invariant lines in the same invariant

space. The fact that we have lines rather than points re
ects the fact that the image is missing the

depth information. The goal is now to �nd the model point set which is closest to the set of lines

representing the image. This involves ranking distances between lines and points in 3D. The ranking

is facilitated by sorting the points and lines with respect to the space that they occupy. The sorting

makes use of a hiearchical spatial data structure known as an octree which is a three-dimensional

variant of the quadtree.
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In contrast to usual methods, we make use of an incremental approach termed distance ranking [2].

Given an object, we �nd the k + 1st nearest neighbor without having to recompute the k nearest

neighbors. When we deal with pairs of objects such as point-line pairs, we can �nd a global ranking

of the distances over all pairs by what is termed a join algorithm (e.g., [1]).

2 Object Recognition and Modeling

Most work in invariants have concerned transformations between spaces of equal dimensionality [9, 7].

For a single view, invariants were found for planar curves, while for 3D objects, multiple views with

known correspondence were involved.

Since it has been shown that there are no invariant functions of a single projection from 3D to

2D [5], modeling assumptions are required to recover 3D shape. Such assumptions can take the form

of generalized cylinders [4, 10], surfaces of revolution or orthogonal vertices [6]. Another approach

is to characterize an object by local properties like tangencies and in
ection points [8]. Our method

does not make any such speci�c modeling assumption, but uses a set of given models.

2.1 The Method

Given a set of representations of 3D models and a set of image feature con�gurations, it is required

to determine which models appear in the image. The mechanism ought to ensure that the set of

hypothesized models is generated fairly quickly.

An outline of the method follows. A 3D invariant space based on triplets of invariants is de�ned

and such triplets extracted from the models, so that each model is represented by a collection of

points in this invariant space. Given an image of a model, we derive a set of lines in this space. If a

su�cient number of these lines intersect the points corresponding to a model, then we can hypothesize

that the image is indeed of that model. These intersections can be determined fairly quickly thus

circumventing an expensive search for correspondences. Once a model has been identi�ed its pose

can be determined and it can be projected to the image in order to verify the match.

Thus, this method extends the use of model-based invariant functions to the task of recognizing

general 3D models from a single perspective view. The recognition task is reduced to a search for

intersections between simple subspaces (lines,points) in an invariant space.

2.2 3D Invariants

A 3D a�ne transformation A is uniquely determined by the mapping of 4 non-coplanar points.

Hence, we can de�ne a canonical frame by mapping any four non-coplanar points fXig
4

i=1 to the
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points fIO = (0 0 0 1T ); Ix = (1 0 0 1)T ; Iy = (0 1 0 1)T ; Iz = (0 0 1 1)Tg. The coordinates of any

point X in this canonical frame will be 3D a�ne invariants. This invariant representation I is given

by I = AX where A = (IO; Ix; Iy; Iz)(X1;X2;X3;X4)
�1. Since I will be of the form (a b c 1)T we

use the triplet (a; b; c) to de�ne the 3D invariant space.

2.3 Perspective Projection

A 3D point X is related to its image x as x = TX where T is a 3�4 projection matrix incorporating

the e�ects of the unknown camera geometry and the viewpoint transformation. Since X is linearly

related to its invariant representation I, we can write the equation as x = ~TI where ~T = TA�1 is of

the same dimensions as T .

Let ~T = ftijg
j=1;:::;4
i=1;:::;3 . In order to eliminate these unknown parameters, we require a set of at

least six image points fxig
6

i=1. Let the invariant representations of the corresponding model points

be fIig
6

i=1. Assume that fIig
4

i=1 correspond to the points mapped to the canonical frame and fIig
6

i=5

are f(a b c 1)T ; (� � 
 1)Tg.

If I = (p q r 1)T is an invariant representation of a model point and x = (x; y) its image point,

then

x =
t11p+ t12q + t13r + t14

t31p+ t32q + t33r + t34
; and y =

t21p+ t22q + t23r+ t24

t31p+ t32q + t33r+ t34
(1)

Since we have 12 equations from the 6 image points fxig
6

i=1, we can eliminate the parameters

of ~T to obtain an invariant relation involving the unknowns fa; b; c; �; �; 
g. However, this is a

fourth-order surface and of limited practicality.

2.3.1 A simpli�cation

A signi�cant simpli�cation can be achieved by a simple modeling assumption. We can then reduce

the problem to �nding the intersection between a line and a point in invariant space, using only

�ve rather than six image points. We make the assumption that vanishing points in the image

are an indication of parallelism in space. The vanishing points in the directions de�ned by the

four image points forming the basis, can be assumed to correspond to model points with invariant

representations f(1 0 0 0)T ; (0 1 0 0)T ; (0 0 1 0)Tg. Using these together with the basis points, we

can directly estimate ~T by solving the resultant linear system with t34 = 1. Once, ~T is determined,

the invariant representation of an additional point I = (a b c 1)T is related to its image x = (x; y) by

(t11 � xt31)a+ (t12 � xt32)b+ (t13 � xt33)c = x� t14

(t21 � yt31)a+ (t22 � yt32)b+ (t23 � yt33)c = y � t24
(2)
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which, being the equations of two planes, de�ne a line passing through the point (a; b; c) in invariant

space. The invariant space is illustrated in Figure 3.

2.4 The Recognition Process

The recognition algorithm proceeds as follows:

1. Extraction of 3D invariants: Invariant model points are generated using a small number of

basis sets to de�ne the canonical frame. Di�erent basis sets are utilized in order to ensure that

all the points of at least one set are visible in an image.

2. Extraction of image features: Corners need to be extracted in order to de�ne invariant lines.

In this implementation, intersections of image lines are used to localize corners.

3. Purging of feature points and estimation of vanishing points: Since quintuples of corners are

required to de�ne invariant lines, the number of such lines can be very large. To reduce this,

only the lines lying on principal directions are retained. Such closely parallel image lines can

be assumed to correspond to parallel lines in space, so that their intersections can be used to

estimate the vanishing point in a particular direction.

4. Determination of line-point intersections in invariant space: Points lying close to an invariant

line derived from the image are extracted using spatial sorting and ranking (see Section 3).

Once these points are obtained, a set of possible models together with their respective poses

can be hypothesized.

5. Veri�cation: In order to select the correct model from among the hypothesized ones, it is

necessary to project each model onto the image and evaluate the match. Such a projection

is achieved by estimating the projection matrix from the hypothesized matches between the

image and model points.

3 Ranking and Join

3.1 Octrees

We use two di�erent hierarchical sorting algorithms for the di�erent spatial features | that is,

the points that make up the models and the in�nite lines that make up the image. The sorting

methods are based on octrees (a three dimensional form of quadtrees). The idea is that we recursively

decompose the underlying three-dimensionaly space into eight cube blocks until each block contains
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one or a very small number of points. This is the basis of the PR octree [3]. This technique may

result in much decomposition when two points are very close to each other. This problem is overcome

by increasing the number of points for which the decomposition halts. Figure 1a is an example of

the block decomposition resulting from a PR quadtree for points in two-dimensional space.

The octree sorting technique can also be adapted to non-point data such as collections of line

segments. However, we must be careful when the line segments are connected as a decomposition rule

that only halts when each block contains one line segment will never halt. To overcome this, we use

a di�erent splitting strategy. Whenever the insertion of a line segment causes the block to have more

than s line segments, then the block is decomposed once and only once into eight cube blocks. If the

subsequent insertion of other line segments causes block b to contain more than s line segments, then

the block is split again but just once. PMR octrees can also be used for collections of points as well

as other spatial objects such as faces of three-dimensional polyhedra, etc. Figure 1b is an example

of the block decomposition resulting from a PMR quadtree for line segments in a two-dimensional

space inserted in alphabetical order. In a quadtree/octree, non-point objects may be stored in more

than one leaf block. For example, segment a in Figure 1b is associated with three leaf nodes.

h
a b

e

fi

c

d

g

(a) (b)

Figure 1: (a) A PR quadtree for points, and (b) a PMR quadtree for line segments with a splitting

threshold of 2, where the line segments have been inserted in alphabetical order.

3.2 Incremental Nearest Neighbor Algorithm

The incremental nearest neighbor algorithm is a method for obtaining objects from a set of spatial

objects S in the order of distance from a given query object q (termed ranking). The set of objects

must be organized with some sort of a hierarchical spatial data structure, octrees in our case. The

algorithm is incremental in the sense that the nearest neighbors are reported one-by-one. That is,

if we have found k nearest neighbors and we need an additional one, we do not need to recalculate

the current k neighbors as other methods do. Thus, it is especially useful when the exact number of

neighbors needed is not known in advance.

The algorithm uses a priority queue to organize nodes from the spatial data structure as well as
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objects. The key used to order the elements on the queue is their distance from the query object.

Special treatment is done when two elements are at equal distance from the query object.

Initially, the node spanning the whole index space is the sole element in the priority queue. In

the main loop of the algorithm, the element at the head of the queue (i.e., the closest element not

yet examined) is retrieved. If the element is an object from the set S it can be reported. If the

element is a node, then its contents (i.e., child nodes or objects, depending on whether the node is

an internal node or a leaf node) is inserted into the queue. One way of visualizing the workings of

the algorithm when the query object q is a point is as follows: The algorithm �rst locates the leaf

node in the spatial data structure that contains q. Then a search circle is expanded around the q.

When the circle hits a new node or an object, that node or object will have reached the front of the

priority queue.

3.3 Incremental Distance Join

When the ranking is with respect to a set of reference objects, the process is more complex than

�nding the nearest object to one reference object. The distance join operation is an extension of the

ranking operation that operates on two sets of objects SA and SB . Informally, it is an ordering on

all pairs of objects from SA and SB , based on distance. If one of the sets contains only one element,

the distance join operation is equivalent to the ranking operation.

The incremental distance join algorithm is based on the same principles as the incremental nearest

neighbor algorithm. Thus, the two sets must be organized with a hierarchical spatial data structure.

The incremental join algorithm may be thought of as applying the incremental nearest neighbor

algorithm simultaneously to the two spatial data structures.

The input to the incremental join algorithm is two spatial indexes, A and B. The algorithm

maintains a set of pairs P , with one item from each of A and B, each item being either a node or

an object. A priority queue is used to organize the set of pairs P in order of distance. Initially, P

contains just one pair corresponding to the root nodes of A and B. At each step in the algorithm,

the element at the head of the priority queue is retrieved, i.e., the element with the smallest distance

key. If the element stores a pair of data objects, then the pair is reported as the next closest pair.

If one of the items in the dequeued element is a node, then the algorithm pairs up the entries of the

node (objects for leaf nodes, child nodes for non-leaf nodes) with the other item. If both items the

pair are nodes, we have a choice which one to process. The best way of making this choice depends

on the spatial data structure and the application.
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Point Sets #points Line Sets (Small) #lines Line Sets (Large) #lines

P1 8,896 Mod. 1 Im. 1 (M1L11) 1,120 Mod. 1 Im. 1 (M1L12) 2,144

Mod. 1 Im. 2 (M1L21) 420 Mod. 1 Im. 2 (M1L22) 2,624

P2 26,687 Mod. 2 Im. 1 (M2L11) 814 Mod. 2 Im. 1 (M2L12) 12,191

Mod. 2 Im. 2 (M2L21) 902 Mod. 2 Im. 2 (M2L22) 20,760

Table 1: Dimensions of invariant point and line sets

Figure 2: Images of Model 1 and Model 2.

4 Experiments

Experiments were performed on two images each of a truck and of a HMV vehicle (Fig. 2). From

each of the two corresponnding models, two invariant point sets, P1 and P2, are extracted, the smaller

P1 under a more restrictive selection of feature sets. From each image, two invariant line sets are

de�ned, the smaller from true corner features detected in the image and the larger from both true

and false corners (Fig. 5). The dimensions of these sets are shown in Table 1. Intersections between

these lines and the invariant points derived from the models are demonstrated in Figure 4.

Points lying close to each line in the invariant space are obtained by a variety of hierachical

methods described subsequently. The points are classi�ed into subsets according to the model and

the basis from which they were obtained. The lines are classi�ied according to the basis used in the

image. The point subsets lying closest to a line subset are hypothesized as matches, and veri�ed by

projection on the image. Since only two models were used, the recognition was simple for all four

images, but more models need to be incorporated into this framework.

4.1 Timing Results

All of our experiments were run on a Sun Ultra 1 Model 170E machine, rated at 6.17 SPECint95

and 11.80 SPECfp95, with 64MB in main memory. The software was compiled with a GNU C++

compiler set for maximum optimization ({O3). The results are shown in Table 2. All times are in

seconds and the speedup is shown with respect to the brute force approach.

Three search methods are used in the results shown in Table 2: 1) The incremental join algorithm
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Invariants from 2D image

 Invariant from 3D points

a

b

c

Figure 3: Invariant space.

Figure 4: Intersections in in-

variant space between lines and

points of Model 3 derived from

matching bases.

Figure 5: True corners (circles), false corners (crosses) and van-

ishing points(thick lines) in the images.

Test A B C D

time speedup time speedup time speedup time

P1 : M1L11 8.1 1.8 7.6 1.9 3.4 4.4 14.8

P1 : M1L21 3.2 1.7 3.7 1.5 1.2 4.6 5.5

P1 : M2L11 6.1 1.8 6.2 1.7 2.2 4.9 10.7

P1 : M2L21 6.2 1.9 6.4 1.9 2.4 5.0 11.9

P1 : M1L12 6.7 4.2 6.0 4.7 3.0 9.5 28.4

P1 : M1L22 10.3 3.4 8.9 3.9 3.9 8.9 34.9

P1 : M2L12 42.8 3.8 36.9 4.4 17.3 9.4 162.5

P1 : M2L22 73.7 3.8 60.8 4.6 30.0 9.3 277.7

P2 : M1L11 14.0 3.2 14.8 3.0 5.3 8.5 44.8

P2 : M1L21 8.8 1.9 8.3 2.0 1.7 9.8 16.7

P2 : M2L11 12.6 2.6 12.8 2.5 3.5 9.3 32.6

P2 : M2L21 12.4 2.9 13.3 2.7 3.7 9.8 36.2

P2 : M1L12 13.1 6.6 14.3 6.0 5.8 14.8 86.0

P2 : M1L22 18.2 5.8 18.9 5.6 6.3 16.8 105.6

P2 : M2L12 81.1 6.1 74.8 6.6 29.3 16.8 492.5

P2 : M2L22 130.5 6.1 117.7 6.7 52.2 15.1 789.9

A: Join1 (max distance = 0.2) C: Nearest Neighbor (#neighbors = 50)

B: Join2 (max distance = 0.2) D: Brute Force

Table 2: Timing Results
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(Join1 and Join2) 2) the incremental nearest neighbor algorithm, and 3) brute force. The times for

Join1 and Join2 include the cost of building a line octree, which are built using two di�erent methods.

The �rst is based on the PMR quadtree rules, with a splitting threshold ranging from 128 to 512,

while the second is to build the line octree based on the same spatial decomposition as for the point

octree. The second method leads to faster octree build times, but sometimes slower search times.

The nearest neighbor experiment results are for computing a �xed number of neighbors for each line,

using the point octree.

The nearest neighbor approach appears to be superior to the join approach. However, we have

not yet explored the full advantages of the join method.

The advantage of the nearest neighbor approach is that it enables the addition of lines and �nding

their nearest n points. In this case, we have the ability to converge on a solution in an incremental

manner. An alternative approach is to use the incremental join algorithm and �nd the closest m

pairs of points and lines. This approach has the advantage of enabling a quick convergence on a

solution in the sense that if the points that are the closest to the lines are from the same model, then

we know that we have hit on a good solution. The advantage of the join method over the nearest

neighbor method is that it operates simultaneously over all the lines in the line set. With the nearest

method, once a nearest neighbor query has been terminated for line l1 and a new one started for the

line l2, we cannot request more neighbors for l1 without computing all the nearest neighbors from

scratch, even the ones that have already been determined.

Another advantage of our incremental approach is that it is not so sensitive to the model size.

Addition of more models is not so expensive as the PR quadtree for the points is relatively fast to

compute and only needs to be done once. Thus an extensive model library can be built up over time.

In addition, the storage requirements of the PR quadtree are proportional to the number of points

in each model.

5 Concluding Remarks

The main conclusion from this study is that the object recognition task is greatly speeded up by

the use of hierarchical methods for ranking distances in an invariant space. The speadup factor

increases as the number of image and model features increase. These hierarchical methods would not

be possible without the invariant representation of both the models and the images.

An interesting by product of this study has been the evaluation of the ranking and join algorithms

on collections of lines. Most previous studies that have dealt with lines have used collections of very

short line segments that are found on maps. Thus in our PMR octree a line needs to be decomposed
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into many more q-objects. Also, alternative spatial representation such as R-trees which would

represent each spatial object (i.e, line) by its minimum bounding rectangle would not result in a

sort of the objects as many of the bounding boxes would overlap thereby leading to little pruning of

objects from consideration when performing the join operation.
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